Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес влияние на механические свойств

    На кинетику полимеризации изопрена, микроструктуру и физико-механические свойства полимера вредное влияние оказывают примеси соединений различных классов. Наиболее сильным каталитическим ядом является циклопентадиен при его содержании в реакционной смеси 0,014-10 моль/л наблюдается значительный индукционный период и замедление всего процесса полимеризации, а при содержании 1,5-10 моль/л катализатор разрушается полностью [47]. При низких концентрациях циклопентадиена не происходит снижения молекулярной массы полимера, при высоких концентрациях молекулярная масса может снижаться в 3—4 раза. [c.213]


    Абсолютные значения приведенной степени однородности для одного полимера существенного интереса не представляют. Однако, если сравнивать значения 5п различных образцов одного и того же полимера, то оказывается, что чем ниже приведенная степень однородности, тем равномернее полимер по своему молекулярному составу. На рис. 1.26 приведены результаты изучения влияния полидисперсности на физико-механические свойства различных волокон. Уменьшение содержания низкомолекулярных фракций в полимере улучшает комплекс физикомеханических свойств формуемых из них волокон. Содержание этих фракций не должно превышать 3-5%. С увеличением гибкости полимерных цепей влияние молекулярной однородности полимера на физико-механические свойства волокон и пленок возрастает. Увеличение полидисперсности сравнительно гибкоцепных полимеров приводит к резкому ухудшению прочностных, и в особенности усталостных, характеристик волокон. С повышением жесткости макромолекул волокнообразующих по- [c.63]

    Отрицательное влияние гидролиза лучше пояснить на примере асимметричной ацетатцеллюлозной мембраны, применяемой для опреснения воды обратным осмосом. В данном случае происходит катализируемый кислотой гидролиз звеньев р-глюкозида, связывающих звенья ангидро-глюкозы в полимерную цепь. Происходящее уменьшение молекулярной массы приводит, во-первых, к постепенному ухудшению механических свойств и к неизбежному внезапному прорыву мембраны. Гидролиз, катализируемый основанием, вызывает постепенное деацилирование, по многим каналам влияющее на проницаемость, селективность и механические свойства. Если гидролиз идет быстро, проницаемость может возрастать благодаря увеличению числа гидрофильных гидроксильных групп. Если гидролиз идет медленно, увеличение гидрофильности может быть незаметным из-за увеличения сжатия и последующего снижения проницаемости вследствие того, что гидролизованный сополимер легче пластифицируется водой. Селективность падает из-за уменьшения числа гидрофобных ацетатных групп, служащих поперечными мостиками между соседними звеньями, а также вследствие того, что за большими ацетильными группами остаются пустоты, которые сейчас же заполняются сольватирующей ионы водой. [c.71]

    Влияние молекулярной структуры на относительное удлинение при разрыве и истинную прочность исследовалось в работе [153]. Авторы сравнивали образцы ПЭВД, имеющего большое число коротких ветвей при наличии длинных, с образцами промышленного ПЭНД, представляющего собой линейный полимер с незначительным числом коротких ветвей, и сополимера этилена с пропиленом (СЭП), моделирующего линейный полиэтилен, близкий по содержанию коротких ветвей к ПЭВД. ММР образцов сравнительно близки. Это позволило проследить влияние разветвленности на механические свойства. [c.151]


    Состав и строение макромолекул зависят не только от химического состава и строения молекул мономера, но и от способа, с помощью которого осуществлено соединение малых молекул в большие. При этом как в цепных, так и в ступенчатых процессах синтеза полимеров невозможно представить себе случай, когда все образующиеся макромолекулы имели бы одинаковую степень полимеризации, т. е. одинаковую молекулярную массу. В любом образце полимера присутствуют вместе макромолекулы разных размеров, т. е. любой полимер неоднороден по молекулярной массе. Эта полимолекулярность является одним из основных понятий в химии и физике полимеров. Существенные прочностные свойства полимеров проявляются при довольно больших значениях молекулярной массы (5—10 тыс. ед.) и далее возрастают с ее увеличением. Регулирование молекулярной массы полимера в процессе синтеза является, таким образом, важным фактором влияния на его механические свойства. [c.16]

    На физико-химич. и технич. свойства вулканизатов влияет не только тип поперечных химич. связей, но и взаимодействие макромолекул за счет водородных и др. видов межмолекулярных связей, возникающих вследствие наличия в полимере полярны групп и активных атомов, а также образование ассоциатов в результате взаимодействия самих поперечных связей (ионных и полисульфидных). Поэтому необходимо учитывать изменение при В. межмолекулярного взаимодействия вследствие присоединения к макромолекулам вулканизующих агентов и продуктов разложения ускорителей, антиоксидантов и др. Из-за отсутствия разработанной молекулярной теории механических свойств полимеров представления о влиянии структуры вулканизатов на их прочностные и эластические свойства носят характер гипотез. [c.266]

    Для вулканизатов каучуков, содержащих концевые меркаптогруппы и имеющих одинаковую степень разветвленности, наблюдается влияние молекулярной массы на физико-механические свойства [7, 9]. [c.566]

    Влияние величины индекса расплава полиэтилена, Все важные механические свойства полимеров, особенно прочность при разрыве, удлинение, ударная прочность и эластичность, зависят от молекулярного веса, косвенным показателем которого является индекс расплава [91. [c.128]

    С увеличением напряжения натяжения в отсутствие изометрического нагрева усадка уменьшается. Однако влияние натяжения при 600-1000 С на механические свойства У В невелико (они увеличиваются примерно на 10%). Это связано с тем, что при натяжении процессы структурной перестройки вызывают разрывы в молекулярных цепях, что снижает механические свойства УВ, несмотря на увеличение ориентации в волокне. [c.587]

    В последнее время важное значение придается влиянию надмолекулярных структур на механические свойства полимеров. Полимеры, обладающие после синтеза определенной структуро и свойствами, могут приобрести иной комплекс свойств при перестройке их надмолекулярных структур. Прочность ориентированных полимеров зависит не только от совершенства молекулярной ориентации, но и от характера надмолекулярной структуры. Большое разнообразие надмолекулярных структур позволяет получить многообразие свойств в пределах каждого физического состояния полимера кристаллического, стеклообразного и высокоэластического. [c.127]

    Размер и форма зерен ионита оказывают значительное влияние на адсорбцию и на механические свойства столбца ионита в колонке. Ионит тонкого зернения имеет большее количество доступных функциональных групп поэтому он менее селективно задерживает веш,ества в зависимости от их молекулярного веса. [c.550]

    Исследования по влиянию количества и типа пластификатора на механические свойства пластифицированных полимеров проведены в основном для молекулярного механизма пластификации, т. е. для случая, когда можно ввести в состав полимера большие количества пластификаторов. [c.172]

    Долгое время дискуссионным оставался вопрос о влиянии химической природы и строения пластификаторов на эффект пластификации. Так, Соколов и Фельдман [286] отмечали, что механические свойства пластиката зависят в первую очередь от числа введенных в полимер молекул пластификатора независимо от их молекулярной массы, состава и строения. Последующими работами эта точка зрения была опровергнута [287—291]. Эффект [c.172]

    Помимо молекулярной массы и межмолекулярного взаимодействия на механические свойства оказывает большое влияние степень разветвленности цепных молекул [136 137, с. 2]. [c.56]

    Большое расхождение теоретических и экспериментальных значений для полиметилметакрилата и стали объясняется недоучетом энергии, рассеиваемой при процессах, которые происходят под влиянием высоких напряжений в вершине трещины и не являются проявлением только упругих сил. Механические свойства и молекулярная структура неорганического стекла таковы, что развитие локальной местной пластической деформации исключено. Поэтому большого расхождения в значениях и не наблюдается. [c.98]


    Влияние структурных параметров наполнителя на механические свойства рези представляется в первом приближении ясным. Что касается связи неравновесных (вязкоупругих) свойств наполненных эластомеров с усиливающим действием наполнителя, а также представлений о молекулярном механизме усиления, то эти вопросы требуют как более детального теоретического рассмотрения, так и дальнейших экспериментальных исследований. [c.146]

    В настоящее время известно большое число экспериментальных данных по изменению Тс полимера под влиянием поверхности твердого телг(. Эти данные получены различными методами (дилатометрическим, динамическим, по измерению механических свойств, теплоемкости, методами ЯМР, диэлектрической релаксации, радио-термолюминесценции и пр.). Так как каждый из этих методов имеет свои ограничения и позволяет выявить преимущественно какой-либо один тип молекулярных движений, то результаты, полученные различными методами, не всегда сопоставимы между собой. [c.89]

    Процесс формирования надмолекулярных структур протекает по-разному в зависимости от расстояния до поверхности и связан с энергией когезии полимера. Влияние поверхности на формирование структур обусловливает возникновение неоднородностей в наполненной или армированной системе на. надмолекулярном уровне. Так как возникновение молекулярной структурной и химической неоднородности является следствием формирования полимерного материала в присутствии наполнителя, то механические свойства связующего в такой наполненной системе всегда хуже свойств связующего, отвержденного в отсутствие наполнителя. Ухудшение свойств полимерной фазы компенсируется ее взаимодействием с наполнителем и существованием структуры наполнителя, играющей важную роль в свойствах композиционного материала. [c.284]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Таким образом, для молекулярных кристаллов, как и для других типов твердых тел, может наблюдаться качественное изменение механических свойств под влиянием обратимого физико-химического действия окружающей среды. Эти представления должны быть распространены также и на исследование закономерностей разрушения вы- [c.171]

    Молекулярно-весовое распределение играет определяющую роль в реологических свойствах. Поэтому оно может оказывать влияние на механические свойства твердого полимера косвенно, предопределяя его конечную физическую структуру. Обнаружена также прямая корреляция между молекулярными характеристиками полимеров, их вязкоупругими свойствами и стойкостью к ударным нагрузкам. Исследования в этом направлении успешно развиваются. [c.14]

    Физико-механические свойства вулканизатов в большой мере зависят от соотношения звеньев этилена и пропилена в сополимере. Вулканизаты сополимеров, содержащих 73% и больше звеньев этилена, полученных при полимеризации на каталитической системе УСЦ-Ь (ЫЗО-С4Н9) 2А1С1, имеют высокое остаточное удлинение, что можно объяснить наличием в молекулярной цепи сравнительно длинных последовательностей звеньев этилена, ухудшающих релаксационные свойства сополимеров. Блоки с длинными последовательностями звеньев этилена, способные кристаллизоваться, действуют как узлы поперечных физических связей и таким образом, по-видимому, оказывают влияние на подвижность молекул в. соседней аморфной фазе [46]. Наличие микрокристаллической фазы в сополимерах увеличивает сопротивление разрыву невулканизованных резиновых смесей. [c.312]

    Значительный интерес в качестве объекта исследования в научном и практическом отношении представляют полиэтиленовые воски, занимая по молекулярной массе промежуточное лоложёние между н-парафинами и полиэтиленом. Целена-лравленных исследований по использованию полиэтиленовых восков в качестве модифицирующих структуру парафина до- бавок в литературе приведено крайне недостаточно. В связи с этим целью данной работы явилось исследование влияния полиэтиленовых восков (ПВ) различной молекулярной массы на температурные и структурно-механические свойства нефтяного парафина. [c.97]

    Поведение КМУП под действием определенных доз радиации зависит от вида эпоксидной смолы [9-42]. Основное влияние радиация оказывает на разрывы связей в боковых цепях связующего. Это приводит к образованию новых поперечных связей и увеличению относительной молекулярной массы. При разрывах основных цепей относительная молекулярная масса уменьшается. В этом случае снижаются температура стек.по-вания (Тд) и механические свойства. [c.537]

    Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени соверщенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение. [c.138]

    Деформационные свойства, в том числе механические потёри, являются проявлением релаксационных свойств полимеров. Влияние механических потерь на процесс разрушения поставило более широкую проблему о взаимосвязи релаксационных свойств (деформационных) и процессов разрушения в полимерах. Эта важная проблема находится в стадии развития как в теоретическом [10 11.20], так и в экспериментальном плане [11.21 11.22]. Так, замечено, что прочность испытывает на температурной зависимости скачкообразные изменения при температурах у- и -релаксационных переходов, когда изменяется молекулярная подвижность в цепях полимера. В стеклообразном состоянии существует ряд характерных температур (релаксационных переходов), в которых долговечность претерпевает изменение. Для исследования природы деформация и разрушения полимера в стеклообразном состоянии изучались ползучесть, долговечность, разрывное напряжение и ширина линии ЯМР в широком температурном интервале. Установлены следующие принципиальные положения. [c.317]

    В последнее десятилетие, благодаря ряду принципиально новых достижений по изучению дисперсных систем, физико-химическая механика окончательно сформировалась как новая наука, объединяющая пути и методы молекулярной физики (физики твердого тела), механики материалов и физической химии, особенно современной коллоидной химии — физико-химии поверхностных явлений и дисперсных систем. Так, П. А. Ребиндером, Н. Н. Серб-Сербиной, В. А. Федотовой впервые получены полные реологические кривые стационарного течения в широком диапазоне скорости деформации для водных суспензий глин с учетом управляемости данного процесса. 3. И. Маркина исследовала механические свойства полуколлоидных растворов, влияние [c.9]

    Физико-механические свойства аморфных полимеров зависят от температуры, оказываюш,ей влияние на взаимосвязь между молекулярными цепями и на их подвижность. Определенному температурному интервалу соответствует характерное физическое состояние полимера. У аморфных полимеров различают три таких состояния стеклообразное, в ы с о к о э л а с т и ч е- [c.16]

    Студни похожи по свойствам на гели, однако отличаются от них по строению тем, что сплошная пространственная сетка имеет в сечении молекулярные размеры и образована не вандерваальсовыми, а химическими или водородными связями. Таким образом, студни можно рассматривать как гомогенные системы, в отличие от гетерогенных гелей. Иная природа связей определяет и структурно-механические свойства студни, в отличие от гелей, не тик-сотропны. Действительно, если химические связи окажутся при механическом воздействии разорванными, то они уже не восстановятся, поскольку в местах разрыва изменится состав в результате взаимодействия с растворителем. Студни, образованные полимерами, не обладают пластическими свойствами, но по упругости и эластичности они сходны с гелями и влияние различных факторов на эти свойства аналогично рассмотренному выше для ненабухших полимеров и гелей. [c.314]

    Влияние пористой структуры катализатора паровой конверсии метана на производительность контакта. Активность нанесенных никелевых катализаторов зависит от температуры прокаливания глиноземного носителя. Эта зависимость проходит через максимум, что объясняется следующим. При испытании катализатора на проточно-циркуляционной установке конверсия метана протекает в кинетической области лишь при сравнительно низких температурах (300—400 С), а при температурах выше 800 С скорость реакции определяется процессом внутренней диффузии. В образцах катализатора, полученного на основе глиноземного носителя, прокаленного при 900° С, содержится значительное количество пор до 1000 А при относительно небольшом количестве транспортных пор. Такой пористой структуре катализатора в условиях конверсии метана соответствует режим кнудсеновской диффузии. Поскольку коэффициент диффузии при таком режиме меньше коэффициента молекулярной диффузии, то активность соответствующего катализатора оказывается ниже, чем у более крупнопористого образца, полученного на основе носи-теля, прокаленного при 1000° С, в порах которого осуществляется молекулярная диффузия. Дальнейшее увеличение температуры прокаливания чисто глиноземного носителя и связанное с этим отклонение пористой структуры контакта от оптимальной приводит к уменьшению его активности. Этим же объясняется отмеченное в производственных условиях снижение активности катализатора ГИАП-3 при увеличении температуры прокаливания его носителя до 1400° С. Повышение температуры прокаливания носителя, способствующее увеличению механической прочности и термостабильности катализатора, в сочетании с применением порообразую-щих добавок, одновременно стабилизирующих пористую структуру контакта, позволяет регулировать ее таким образом, что происходящее при этом улучшение его механических свойств не сопровождается существенным понижением активности контакта. [c.116]

    Согласно взглядам, которые развиваются Б. А. Догадкиным и его сотрудниками, вулканизованный каучук обладает пространственной молекулярной сеткой, состоящей из сложно переплетающихся молекул каучука, в которой между молекулярными цепями в отдельных местах существуют межмолекулярные невалентные связи и химические связи. Концентрация, природа, распределение связей в пространственной сетке вулканизата, а также энергия связей оказывают сильное влияние и определяют важ-нейшие физпко-механические свойства вулканизата . [c.77]

    Реологические свойства (структурно-механические свойства, температура застывания, вязкость и др.) НДС зависят в первую очередь от ее физического состояния, на которое оказывает влияние соотношение энергий мел молекулярного взаимодействия и твидового движения. Нефтяные дисперсные системы могут находиться в трех физических состояниях вязкотекучем (жидком), высокоэластическом и твердом. Способность к вязкому течению таких продуктов, как битумы, пеки, используют для их внутризаводского транспортирования ио трубопроводам. Для НДС характерно высокоэластическое состояние в интервале между температурами Стеклования и вязкотекучести (температуры размягчения). [c.18]

    Л ы с и X и н а А. И. Влияние молекулярно-поверхностных свойств битумов, дегтей и минеральных материалов на свойства асфальтовых смесей. В ки. Исследование органических вяжущих материалов и физико-механических свойств асфальтовых смесей. М., Дориздат, 1949, с. 6—37 (Труды Дорожного науч.-исслед. ин-та. Вып. 8). [c.253]

    Для промышленности пластмасс и синтетических волокон наибольший интерес представляет изотактический полипропилен. Поэтому молекулярная структура и ее влияние на физико-механические свойства полимера рассматриваются ни ке, в основном, применительно к данному стереоизомеру иолиироиилена. [c.67]

    Наибольшее влияние на свойства ХСПЭ (как и на свойства ХПЭ) оказывают молекулярная масса, разветвленность и степень кристалличности исходного ПЭ. Для получения ХСПЭ используется ПЭ различной структуры со средней молекулярной массой 20—30 тыс. С увеличением молекулярной массы (>30 тыс.) уве-.лшчивается жесткость полимера, уменьшается его термопластичность, ухудшаются технологические свойства получаемого ХСПЭ, повышаются остаточные деформации композиций на его основе.. С уменьшением средней молекулярной массы (<18 тыс.) ухудшаются физико-механические свойства вулканизатов. Наилучшими (свойствами обладают ХСПЭ, полученные из полиэтиленов, имеющих однородный состав по молекулярной массе, регулярную структуру, большую степень кристалличности. Такими свойствами обладает ПЭ высокой плотности, поэтому новые типы ХСПЭ выпускаются на его основе [57, 58]. [c.36]

    Одно из уникальных свойств полимеров — эластичность — можно объяснить в рамках простой гауссовой модели. Эластичность — это способность к большим обратимым деформациям. Механические свойства полимеров, как и др тих упругих материалов, описываются законом Гука. Однако наибольшая величина деформации, которую материал способен выдержать без разрущения, у полимеров на несколько порядков больше, чем у обычных твердых тел. Предел упругих деформаций стали или стекла составляет несколько процентов, тогда как у эластичного полимера, например каучука, он выражается сотнями процентов. В обычных материалах упругая деформация возникает в результате небольшого (на проценты) изменения межатомных расстояний и углов кристаллической решетки. Очевидно, что эластичность невозможно объяснить таким механизмом деформации. Гигантские величины обратимых деформаций полимерных веществ обусловлены тем, что при действии деформирующего усилия (например, растяжения образца) происходит распрямление молекулярных цепей, а при снятии деформирующего усилия цепи вновь сворачиваются в клубки. Сворачивание в клубки происходит не потому, что в распрямленной цепи возникли какие-либо напряжения (типа тех, что появляются в растянутой стальной пружине). Таковые просто отсутствуют. Состояние и распрямленной, и свернутой в клубок цепи механически одинаково устойчиво. Не существует сил, которые делали бы предпочтительным одно из таких состояний. Причина сворачивания цепи в клубок иная — вероятностная. Существует один способ так расположить звенья цепи, чтобы макромолекула приобрела максимально возможный размер, равный ее контурной длине гЫ. В го же время имеется множество вариантов (порядка 3 ) такого расположения звеньев, при котором расстояние между концами макромолекулы станет равно ее среднестатистической величине К = Каждый из вариантов изогнутого состояния реализуется при тепловом движении звеньев с той же вероятностью (частотой), что и единственное состояние предельно вытянутой молекулы, поэтому растянутый клубок непременно перейдет в одно из многочисленных свернутых состояний под влиянием только лишь теплового движения звеньев. [c.730]

    На механические свойства, а также такие свойства, как проницаемость н электрическая прочность, в значительной степени влияют свойства исходного ПТФЭ и методы его переработки. Выяснено, что многие механические свойства мало зависят от молекулярной массы полимера, если степень кристалличности и пористость образцов одинаковы [72]. Исключение составляют разрушающее напряжение при растяжении, предел текучести и удлинение при разрыве. Для первого значения максимальное отклонение за счет увеличения М составляет 25, для второго 50 и для третьего 20%. Следовательно, увеличение М приводит к повышению прочности при растяжении и снижению относительного удлинения. Однако влияние М на эти свойства всегда будет носить более сложный характер, поскольку одно-вре.менно с изменением М изменяется и степень кристалличности образцов, а иногда и их пористость. [c.49]

    Влияние продолжительности нагревания при 200 °С на механические свойства сополимера ТФЭ — ТрФЭ разной молекулярной массы [c.138]

    Многочисленные исследования влияния степени полимеризации на механические свойства полимеров показали, что полимер обладает измеримой механической прочностью только при некотором минимальном значении степени полимеризации, лежащем обычно между 40 и 80. По мере увеличения средней степени полимеризации прочность полимера непрерывно увеличивается (рис. IV. 1). Верхняя кривая, ограничивающая заштрихованную область на рис. IV. 1, относится к полиамидам, нижняя — к полио.пефинам -Между этими кривыми располагаются соответствующие кривые для таких полимеров, как, например, сложные зфиры целлюлозы. До степени полимеризации около 250 соблюдается пропорциональная зависимость между механической прочностью и степенью полимеризации. Затем кривая изгибается, и после достижения степени полимеризации порядка 600 дальнейшее увеличение молекулярной массы уже мало отражается на прочности полимеров. [c.173]

    В связи с изучением влияния степени полимеризации на прочность полимеров [472, с. 45] целесообразно упомянуть работу Сукни и Гарриса [479, с. 478], которые изучали разрушающее напряжение, удлинение при разрыве и сопротивление при изгибе для образцов, полученных из фракций ацетата целлюлозы. Эти механические характеристики зависят от средневесовой молекулярной массы и при графическом изображении их значения укладываются на кривую, аналогичную описанной Марком [469, с. 207]. Сукни и Гаррис считают, что механические свойства смесей фракций разной молекулярной массы выражаются как средневесовые из свойств взятых фракций  [c.175]

    Размягчение, вызванное предшествующей деформацией, также тесно связано с рассеянием энергии или гистерезисом. Гистерезис в наполненных вулканизатах может быть вызван рядом причин, из которых, согласно Маллинзу [270], наиболее важны следующие 1) разрушение вторичных образований частиц наполнителя 2) перестройка молекулярной сетки без разрушения ее структуры 3) разрушение структуры сетки разрыв связей наполнитель — каучук или поперечных связей молекулярной сетки. Все эти процессы могут происходить одновременно. Однако разрушение структуры сетки, обусловленное разрывом связей между каучуком или наполнителем или разрушением поперечных связей, незначительно влияет на рассеяние энергии при малых и умеренных деформациях. В основе сеточных теорий усиления, рассмотренных Бики [536], лежит положение о том, что между цепями каучука и частицами усиливающего наполнителя существуют прочные связи и что неподвижные узлы сетки, образованные такими связями, оказывают влияние на механические свойства резины. Степень этого влияния зависит главным образом от числа связей и их прочности, а также от подвижности частиц наполнителя в среде каучука. Для [c.267]

    Рассмотрим с этих позиций экспериментальные данные по исследованию влияния параметров литья на механические свойства отливок из полистирола . В качестве основной механической характеристики, довольно тонко реагирующей на изменение структуры, авторы использовали величину ударной вязкости. Эксперименты показывают, что увеличение температуры литья, очевидно, сопровождающееся снижением ориентации, приводит к значительному уменьшению ударной вязкости. Так, если при температуре расплава 165° С (полистирол с Ма, = 49 300) она составляет 18 кгс-см см , то при температуре 200° С она уменьшается до 6,4 кгс-см см . С увеличением молекулярного веса полистирола диапазон изменений ударной рязкости уменьшается, но качественная картина остается той же .  [c.439]

    Предполагается, что механические свойства полимеров должны зависеть от принципиальных характеристик взаимного расположения молекул, т. е. морфологии кристаллов, и молекулярной ориентации, которые настолько тесно связаны друг с другом, что любые попытки разделить их влияние будут в той или иной степени искусственными. Так, фактором, определяющим механическую анизотропию полиэтилентерефталата, является степень молекулярной ориентации, оцениваемая, например, по двулуче-прелрмлению. В табл. 10.5 приведены результаты измерения продольного модуля и модуля при кручении для волокон полиэтилентерефталата при комнатной температуре. Можно видеть,, что влияние степени кристалличности на эти модули мало по сравнению с влиянием молекулярной ориентации. Полагают поэтому, что в первом приближении неориентированные полимеры можн рассматривать как систему анизотропных упругих элементов с такими же упругими свойствами, как и у высокоориентированных полимеров [34, 351. [c.232]


Смотреть страницы где упоминается термин Молекулярный вес влияние на механические свойств: [c.105]    [c.117]    [c.202]    [c.94]    [c.461]    [c.145]    [c.59]   
Химия высокомолекулярных соединений (1950) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние величины молекулярного веса и распределения по молекулярным весам на механические свойства

ДНК молекулярные свойства

влияние механических



© 2024 chem21.info Реклама на сайте