Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация образование ионных активных

    Образование ион-радикалов доказано аналитически наличием в полимерах концевых сульфатных групп, а также возможностью проведения полимеризации под влиянием персульфата калия в отсутствие эмульгатора, роль которого выполняет образующийся низкомолекулярный полимер, обладающий поверхностной активностью. [c.135]

    Модель реакции алкилирования, разработанная в настоящей статье (рис. 18), предполагает протекание процесса как в кислотной фазе, так и на поверхности раздела кислота/углеводород. Образование триметилпентанов и других октанов протекает преимущественно на поверхности раздела фаз. Добавка катионоактивных азотсодержащих веществ снижает стабильность промежуточно образующихся карбоний-ионов, ускоряя отрыв гидрид-ио- нов от молекулы изобутана или других потенциальных доноров гидрид-ионов. Ускорение гидридного переноса способствует более быстрому насыщению карбоний-ионов на поверхности раздела фаз, ведущему к образованию целевого алкилата, и соответственно замедляет протекание полимеризации и других побочных реакций. Вполне вероятно также, что поверхностно-активные вещества физически отделяют карбоний-ионы один от другого на поверхностной пленке, препятствуя полимеризации карбоний-иона и олефина. В такой пленке концентрация карбоний-ионов должна быть ниже, чем без добавки, и эффект действия масс тоже будет направ- [c.31]


    Катионная, или карбониевая, полимеризация протекает с образованием иона карбония - полярного соединения с трехвалентным атомом углерода, несущим положительный заряд. Катализаторами служат вещества, активные в реакциях Фриделя -Крафтса. Катализатор является акцептором, а полимеризую-щийся мономер - донором электронов  [c.254]

    Как И любая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновения других. Такой разрыв, как известно, может происходить или по гетеролитическому, или гомолитическому механизму. В первом случае образуются ионы, а во втором — свободные радикалы. Полимеризация, протекающая через образование ионов, называется ионной полимеризацией, г идущая с участием свободных радикалов — радикальной. Таким образом, радикальная и ионная полимеризация различаются природой активного центра, начинающего и ведущего макро-молекулярную цепь. [c.390]

    Анионная полимеризация. При анионной полимеризации возникно-зение активного центра связано с образованием карбаниона. Анионную полимеризацию часто подразделяют на собственно анионную и анионно-координационную. К последней относят полимеризацию в присутствии металлоорганических соединений, протекающую через стадию образования промежуточного комплекса катализатор — мономер, в котором катализатор связан с мономером координационными связями. Следует отметить, что такое подразделение условно, так как для одной и той же пары мономер — катализатор в зависимости от полярности среды и других условий реакции механизм полимеризации может изменяться ОТ ЧИСТО ИОННОГО К ИОННО-координационному и наоборот. [c.84]

    Другая особенность реакций ограничения цепи в катионной полимеризации - образование промежуточных ионных структур пониженной кислотной активности. Примером может служить аллильный обрыв при полимеризации изобутилена [68]  [c.98]

    Ионная полимеризация, как любая цепная реакция, протекает в три стадии инициирование - образование ионов или ионных пар рост макроионов прекращение роста макроионов. Активные центры при ионной полимеризации состоят из растущего иона (К или К ) и противоиона (А или А ). Ионная полимеризация приводит к получению полимеров, не имеющих или имеющих очень мало боковых ответвлений, с высокой средней молекулярной массой и узким молекулярно-массовым распределением полимера. Это объясняется невозможностью обрыва цепи соударением двух растущих частиц, имеющих одинаковый по знаку заряд. Обрыв цепи в ионных процессах происходит обычно за счет передачи реакционной цепи на мономер или растворитель, или какие-то добавки и примеси. [c.31]


    Поляризованная молекула стирола, перед присоединением к растущей цепи, ориентируется в поле действия ионной пары ( -Na ), что обеспечивает регулярное присоединение молекул мономера по принципу голова к хвосту . Если инициаторами являются щелочные металлы (Li, К, Na и др.), то реакция начинается с образования ион-радикалов мономеров, которые соединяются друг с другом и дают начало кинетическим цепям полимеризации в обоих направлениях от активного центра [c.34]

    Анионные вакансии — Р-центры могут играть роль ловушек электронов, которые затем эмиттируют и улавливаются мономером с образованием ион-радикала (XX), способного развивать цепь как по ионному, так п свободнорадикальному механизму. Таким образом инициируется, по-видимому, полимеризация мономеров при диспергировании кристаллов ионных солей, в том числе и кристаллов солей мономеров, акрилата натрия, акрилата кальция и т. д. Если решетка образована ковалентными связями, например в окислах (ЗЮг и др.), то диспергирование приводит к возникновению активных центров на атомах элемента, из которого состоит окисел, и на атомах кислорода  [c.180]

    Для образования макромолекулы одна из молекул ненасыщенного или циклического вещества должна быть переведена в состояние высокой активности. Такая молекула приобретает способность вступать в реакцию с неактивированными молекулами, последовательно присоединяя их. Реакционная способность растущей цепи при этом не утрачивается. Активация молекул ненасыщенного или циклического соединения связана с разрывом двойной связи или разрушением цикла. Если в результате разрыва связи молекула превращается в радикал, происходит радикальная полимеризация. Разрыв кратной связи молекулы может привести к образованию иона, в этом случае реакция протекает по законам ионной полимеризации. Если начальный ион приобретает положительный заряд, происходит катионная полимеризация, а в случае образования отрицательно заряженного иона—анионная полимеризация. [c.396]

    Индивидуальные особенности каждой конкретной полимери-зующейся системы определяются прежде всего природой агента, вызывающего образование начальных активных центров. Эти центры могут быть либо свободными радикалами, либо ионами. Поэтому различают процессы радикальной, катионной и анионной полимеризации, в которых растущие цепи представляют собой макрорадикалы, макрокатионы или макроанионы. При ионной полимеризации растущие цепи далеко не всегда могут рассматриваться как свободные ионы. Наряду с сольватацией, способствующей образованию ионов, весьма значительную роль в ионной полимеризации играют силы электростатического взаимодействия активных центров с ионами противоположного заряда, что приводит к существованию относительно устойчивых ионных пар, степень разделения которых зависит от полярности среды, [c.185]

    Фридлендер предложил для полимеризации на твердой поверхности катализатора другой механизм [65] образование ионо-радикалов при взаимодействии адсорбированных молекул мономера с активными центрами катализатора и последующий рост по радикальному центру. Имеется в виду, что реакция роста целиком протекает на поверхности катализатора и что этим можно объяснить стереоспецифичность процесса. До настоящего времени отсутствуют экспериментальные подтверждения подобной точки зрения. [c.437]

    Инициирование полимеризации. Полимеризация виниловых мономеров протекает в присутствии малых количеств различных реагентов, известных как инициаторы. Поскольку инициаторы разрушаются в процессе реакции, их не следует считать катализаторами, хотя они иногда так называются. Инициаторы необходимы для образования некоторых активных веществ, таких, как ионы или свободные радикалы, способных присоединяться к углерод-углеродной двойной связи с образованием нового иона или свободного радикала, который в свою очередь может присоединить следующую единицу. Различные процессы полимеризации наиболее легко описать, принимая во внимание химическую природу растущей полимерной цепи. [c.579]

    Инициатором ионной полимеризации являются ионы, содержащие трехвалентный углерод, заряженный положительно или отрицательно. Возникающий ион как в момент образования, так и в процессе роста макромолекулы находится в поле иона, несущего противоположный заряд, — противоиона. Оба иона создают активную ионную пару. В зависимости от знака заряда атома углерода различают катионную (карбониевую) и анионную (карбанионную) полимеризацию. [c.31]

    Высокая прочность ионных пар является при полимеризации эпоксидов термодинамическим препятствием образования наиболее активных состояний — свободных ионов и разделенных ионных пар, [c.346]


    Ионная полимеризация. При ионной полимеризации активными центрами, возбуждающими цепную реакцию, являются ионы. Ионная полимеризация протекает в присутствии катализаторов, вызывающих образование ионов, поэтому ионную полимеризацию называют также каталитической полимеризацией. В зависимости от заряда образующегося иона различают катионную и анионную полимеризацию. [c.19]

    Кислородсодержащие растворители п мономеры (например, метилметакрилат), блокируя активные центры, ингибируют полимеризацию стирола на поверхности глинистых материалов 192, 193]. Эти выводы согласуются с данными работ [194—196] о том, что ароматические соединения сорбируются на кислотных центрах поверхности минералов с образованием ион-радикалов. [c.166]

    При рассмотрении этой системы мы встретились еще с одной особенностью, характерной вообще для всякой ионной полимеризации, при которой инициирование, т. е. образование ионных активных центров, происходит в результате взаимодействия нейтральных молекул, а скорость этого инициирования мала. При этом в системе накапливаются ионные продукты, которые сдвигают равновесие в сторону ионных пар, уменьшая концентрацию активных в реакции роста свободных ионов. Если эти ионные пары менее активны в по.тимеризации, то скорость полимеризации будет уменьшаться по ходу процесса, если же они более активны, то скорость полимеризации будет возрастать. [c.171]

    В 1932 г. Уитмор [61, 62] впервые опубликовал серию работ, в которых развил теорию реакций иона карбония, в частности реакций полимеризации катализаторами кислого характера. В 1943 г. Дэвидсон, Эвинг и Шут [19] приписали ноли.иеризационную активность монтмориллонита го кислотности и высказали предположение, что полимеризация, вызванная им, ворояхно, идет с образованием иона карбония, как это предлагалось [c.87]

    По типу промежуточных активных частиц, образующихся при протекании процесса цепной полимеризации, различают р а-д и к а л ь н у ю полимеризацию и ионную полимеризацию. Радикальная полимеризация протекает чере 5 образование свободных радикалов, ионная—через образование ионов. В зависи1 остп от заряда иона различают к а т и о н н у ю и анионную полимеризацию. [c.89]

    Реакция полимеризации состоит из трех элементарных стадий образования активного центра, роста цепи и обрыва цепи. В зависимости от природы активного центра различают радикальную полимеризацию, при которой активным цеятром является свободный радикал, а рост цепи протекает гомолитически, и ионную полимеризацию, при которой активными центрами являются ионы или поляризованные молекулы, а рост цепи протекает гетеролитически. Методы возбуждения и механизмы этих двух видов полимеризации различны. [c.9]

    Применение теории жристаллического поля и поля лигандов к структуре комшлексав приводит к одинаковым результатам. Ли-гаиды, имеющие я-связи, взаимодействуют с заполненными -орбиталями с образованием дативной связи. Поэтому лучшими катализаторами для олефиновых и ацетиленовых углеводородов являются ионы с конфигурацией > Hg +, 0(1 +, Си+, Ад+, Р1°. В реакции полимеризации олефинов наиболее активны соединения катионов с конфигурацией Т1 +, Сг +, Мо +. [c.170]

    Каучук СКДК получается методом ионной полимеризации бутадиена в растворе нефраса под действием кобальтосодержащей каталитической системы октаноат кобальта-диизобутилалюминийхлорид-вода. При этом используется специальная технология получения готового каталитического комплекса, обеспечивающего образование однотипных активных центров. Как показывает опыт освоения данного процесса скорость полимеризации, молекулярно-массовые характеристики и, соответственно, свойства полимеров в широких интервалах зависят от многих факторов, особенно от дозировки каталитического комплекса, соотношений компонентов, температуры и т.д. С другой стороны, поведение каталитической системы изучено явно недостаточно. Поэтому для промышленного освоения технологии СКДК целесообразно провести математическое моделирование данного процесса. [c.59]

    ФОТОПОЛИМЕРИЗАЦИЯ, образование макромолекул под действием света, гл. обр. УФ излучения. Осуществляется в газообразной, жидкой или твердой фазе. К Ф. относят все фотохим. процессы получ. полимеров независимо от их механизма — цепного (полимеризационного) или ступенчатого (поликонденсацнонного). В первом случае свет служит только для инициирования р-ции (образования начальных активных центров в результате перевода молекул мономера или инициатора в возбужд. состояние), к-рая далее развивается как обычная ионная или радикальная полимеризация. Во втором случае каждый акт роста цепи требует поглощения кванта света, т. к. в этой р-ции участвуют только электронно-возбужд. молекулы. При ступенчатой Ф. образуются макромолекулы с циклами в осн. цепи. Цепная и ступенчатая Ф. в твердой фазе протекают даже при т-рах, близких к абсолютному нулю. В пром-сти используется гл. обр. цепная Ф., напр, для получ. оптически однородных изделий (оргстекло и др.) и нек-рых стереорегуляр- [c.632]

    Общая особенность в поведении ионных частиц реакции - это зависимость активности от факторов внешней (сольватация ионов, электростатический эффект противоиона) и внутренней (влияние электродонорных заместителей) стабилизации, а различие - в обратимом и необратимом характере образования ионов аренония и карбония соответственно. Следовательно, при наличии в системе более сильного, чем арен, 71-акцептора должно происходить его протонирование. Это подтверждается при использовании для инициирования полимеризации изобутилена различных комплексов присоединения протона на основе замещенных аренов, в том числе в составе полимеров стирола. [c.84]

    Образование активных центров происходит в результате инициирования с образованием или свободньпс радикалов (электронейтральные частицы, имеющие один или два неспаренных электрона), или ионов (положительно или отрицательно заряженные частицы), или ион-радикалов. Соответственно различают радикальную, ионную (анионную или катионную) и ионно-координационную полимеризацию. Образование активного центра во всех видах полимеризации происходит с затратой энергии и характеризуется намного меньшей скоростью, чем рост цепи, которая обычно сопровождается выделением энергии. [c.20]

    Чаще активным центром полимеризации эпокспдов является ионная пара, активность которой зависит от природы катиона. В тетрагидрофуране, например, активность ионных нар растет от натрия к цезию [9]. Серьезную и сложную роль играет в полимеризации окисей сольватация активных центров, в которой может участвовать и образующийся полимер. Спирты, вводимые в систему, с одной стороны, понижают нуклеофильность алкоголятных ионных Пар за счет их сольватации, по, с другой, нри более высоких концентрациях, могут благоприятствовать росту цепи по так называемому пуш-иульному механизму, перераспределяя электронную Плотность в молекуле эпоксида в результате образования водородной связи  [c.219]

    Спорным до настоящего времени представляется вопрос о существовании особого типа инициирования катионной полимеризации, в котором первичными образованиями, генерирующими активные центры, являются л-комплексы мономер—катализатор. Идея о возможности подобного инициирования, выдвинутая Гант-махер и Медведевым [22, 23], основана на акцепторно-донорных свойствах кислот Льюиса и ненасыщенных мономеров, приводящих к возникновению л -комплексов инициирование, согласно этой точке зрения, осуществляется за счет ионной пары, образующейся при взаимодействии такого комплекса с повой молекулой мономера. Факт существования я-комплексов мономер—катализатор в ряде случаев доказан по характерным полосам поглощения в ультрафиолетовой области (например, для систем с участием йода, ЗпС , СС1зС00Н и мономеров ряда стирола и простых виниловых эфиров [20, 24, 25]). Тем не менее участие я-комплексов в стадии инициирования нельзя считать доказанным. [c.307]

    Существуют реакции двух типов с участием больших хмоле-кул — реакции, ведущие к их образоваш1Ю, и реакции, ведущие к их распаду. К реакциям первого типа относятся процессы полн-конденсации и полимеризации здесь рассмотрены только последние. Среди многочисленных работ в области высокополимеров в течение последних десятилетий были проведены обпшрные исследования по механизму и кинетике цепных реакций, происходящих при полимеризации в настоящей главе в общих чертах описаны результаты этих работ. Речь идет об образовании длинных цепей, содержащих сотни или тысячи звеньев поэтому стадия роста цепи будет сравнительно быстрой, а первоначальное образование активных частиц, радикалов или ионов, — относительно медленным и чувствительным к условиям реакции. По этой причине после описания кинетики и экспериментальных значений констант скорости рассмотрены различные механизмы инициирования реакции, т. е. возникновения активных частиц. Имеется два способа инициирования — образование свободных радикалов и образование ионов. Эти частицы получают при помощи инициаторов, т. е. веществ, которые связываются химически с конечным продуктом реакции, или при помощи катализаторов в собственном смысле слова. Радикалы, конечно, могут быть также получены посредством радиации. [c.169]

    Казанский и Розенгарт [96] изучали полимеризацию изобутилена над гидросиликатными катализаторами. Они делают вывод, что гидросиликаты металлов — носители кислотных свойств — являются активными компонентами катализаторов полимеризации, приготовленных но методу Гайера. Ионы оснований деактивируют катализаторы. Способность гидроалюмосиликата катализировать полимеризацию олефинов авторы приписывают его кислотной природе. Было найдено, что получаемые при этом продукты полимеризации очень близки по составу к получаемым дри полимеризации в присутствии фосфорной кислоты. Исследователи указывают, что полимеризация протекает через образование сложных эфиров или через промежуточное образование ионов особого тина путем присоединения водородного иона по месту двойной связи (как предполагал Уитмор). [c.346]

    Но нельзя исключить ионный механизм, аналогичный механизму образования поверхностно-активного полимера метилметакрилата по Мельвиллю(стр. 211), поскольку Циглер и его сотрудники показали, что в этой реакции алкилы металлов также могут действовать как катализаторы полимеризации. Использование металлических катализаторов имело прежде техническое значение для получения синтетических каучуков из стирола, бутадиена и других диолефинов, но сейчас оно вытесняется применением перекисей, позволяющих лучще контролировать течение реакции. [c.226]

    В случае полимеризации виниловых соединений щелочными катализаторами карбанионный механизм не согласуется с наличием влияния природы металла на структуру полимера и влиянием полярности связи углерод — металл на состав сополимеров стирола и бутадиена. Механизм ступенчатого присоединения мономера к связи углерод — металл не согласуется с наличием индукционного периода, отсутствием зависимости скорости полимеризации изопрена при высоких концентрациях бутиллития от концентрации последнего. Кроме того, мономеры, обладающие примерно равной полярностью и поляризуемостью (например, стирол и бутадиен), сополимс-ризуются со скоростями, характерными для раздельной полимеризации. На основе приведенного экспериментального материала выдвигается гипотеза о том, что активными центрами при полимеризации виниловых соединений, вероятно, являются малоустойчивые комплексные образования ион-дипольного характера, сольватированпые молекулами мономера, а полимеризация виниловых соединений катализаторами щелочного типа относится к особому случаю цепного катализа. [c.536]

    Рост и ограничение роста цепей. В простейшем случае рост цепи при полимеризации можно рассматривать как последовательность одностадийных актов присоединения мвлекул мономера к первичным инициирующим центрам. В случае ионных систем такой механизм возможен, напр., для свободных ионов. Для более сложных ионных активных центров, в частности для анионных типа Н ...В +,у к-рых компонент В координационно ненасыщен, следует учитывать возможность образования при росте цепи координационного комплекса активного центра с мономером за счет его двойной связи или электронодонорного атома функциональной группы (см. Координационно-ионная полимеризация). [c.74]

    Гриценко и Медведев [88] исследовали кинетику полимеризации акрилонитрила в водных растворах при 40—75° с инициатором — гидроперекисью кумола и показали, что с ростом концентрации инициатора скорость полимеризации сначала растет, а затем становится практически независимой от нее. Порядок реакции относительно концентрации мономера равен 3/2, полная энергия активации — 19,6 ккал/моль. Авторы предполагают, что акрилонитрил и гидроперекись кумола образуют окислительно-восстановительную систему, причем окислительным компонентом является гидроперекись, а восстановительным — ионизированная форма акрилонитрила. При добавке в систему восстановителей (Ре304, НагЗОз, ЫаН804 К4ре(СЫ)в и других) скорость полимеризации значительно возрастает, наблюдается значительное снижение суммарной энергии активации процесса. Авторы считают, что при окислительно-восстановительном инициировании эмульсионной полимеризации влияние водной среды состоит в том, что она создает условия для протекания быстрых, требующих малой энергии активации, ионных процессов образования начальных активных центров, вследствии чего интенсифицируется и весь процесс в целом. [c.561]

    Непременное условие цепной полимеризации — образование активных центров, однако обычные мономеры (этилен, винилхлорид, стирол) не могут разорвать двойную связь только под действием света или тепла. Для.этого обычно необходима перекись бензоила (радикальная полимеризация) или катализатор Циглера — Натта А1(С2Н5)з + Т1С1з (ионная полимеризация). [c.165]

    К образующемуся иону могут присоединяться следующие молекулы мономера, так что активный ионный центр не разрушается, а это значит, что рост цепи, обрыв и передача могут происходить так же, как и при свободнорадикальной полимеризации. Аналогичным образом растворенный в жидком аммиаке натрий или калий вызывает образование иона ЫНг, способного присоединять молекулы некоторых мономеров и давать карбанионы  [c.684]

    Существуют различные способы классификации полимеризационных процессов. Так, в завийимости от природы агента, вызывающего образование начального активного центра, различают [11] процессы радикальной полимеризации и ионной, которая, в свою очередь, делится на катионную и анионную. Кроме того, в процессах ионной полимеризации следует различать полимеризацию на [c.12]


Смотреть страницы где упоминается термин Полимеризация образование ионных активных: [c.331]    [c.255]    [c.632]    [c.48]    [c.240]    [c.223]    [c.376]    [c.296]    [c.311]   
Синтетические каучуки Изд 2 (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активность ионная

Активность ионов

Ионная полимеризация

Ионная полимеризация Полимеризация

Ионные образование

Ионов образование

Ионы образование



© 2025 chem21.info Реклама на сайте