Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа основных термодинамических процессов

    Теплота, работа и внутренняя энергия участвуют в термодинамических процессах, т. е. являются термодинамическими функциями. Ранее мы изложили основные свойства последних, а теперь покажем проявление этих свойств в конкретных термодинамических процессах изохорическом, изобарическом, изотермическом и адиабатическом. [c.57]

    Работа основных термодинамических процессов [c.57]


    Экспериментально установлено, что если различные виды работы могут быть полностью обращены в теплоту и в идеальном случае могут полностью переходить друг в друга, то обратное преобразование невозможно, так как только некоторая часть теплоты превращается в работу при циклическом процессе. Здесь речь идет о закрытой системе, совершающей круговой термодинамический процесс, а не о единичном акте, так как в последнем случае согласно принципу эквивалентности преобразование тепла в работу можно произвести полностью. Такая система является, по сути дела, или тепловой машиной (система суммарно производит работу над источником работы), или холодильной машиной (источник работы суммарно производит работу над системой). Поэтому неудивительно, что изучение вопросов, связанных со вторым началом термодинамики, исторически обязано исследованию принципа действия тепловых машин, назначение которых состоит в превращении тепла в работу. В фундаментальном труде французского инженера Сади Карно Размышления о движущей силе огня и о машинах, способных развивать эту силу (1824) сделана первая, еще весьма несовершенная попытка сформулировать второе начало термодинамики. В труде Карно рассматриваются три основных вопроса 1) необходимое условие для преобразования теплоты в работу 2) условие, при котором трансформация теплоты в работу может достигнуть максимального эффекта 3) зависимость коэффициента полезного действия тепловой машины от природы рабочего вещества. В труде Карно был сделан совершенно правильный вывод, что коэффициенты полезного действия всех обратимых тепловых машин одинаковы и не зависят от рода работающего тела, а только от интервала предельных температур, в котором работает машина. [c.88]

    Термодинамические характеристики — определенные функции переменных, в качестве которых выбраны температура, давление, объем, число молей, тепловой эффект и работа. Функциональная зависимость термодинамических характеристик определяется на основе законов термодинамики. К числу основных термодинамических характеристик относят внутреннюю энергию и, энтальпию Н, энергию Гельмгольца Е, энергию Гиббса 6, энтропию 3, теплоемкость Ср, а также их изменения в процессах. [c.292]

    Четвертая глава содержит сведения о лопастных компрессорах. Основное внимание уделено центробежным компрессорам. Приводится их классификация, принцип действия, рассматриваются гидродинамические и термодинамические процессы в них. Рассматривается баланс энергии, к п д, мощность центробежных компрессоров. Кратко приводятся сведения о теории подобия, рассматриваются характеристики Особое внимание уделено режимам работы центробежных компрессоров на сеть, включая явление помпажа. Приводятся данные об особенностях эксплуатации лопастных компрессоров. [c.3]


    Состав продуктов реакции контролируется не только термодинамическим равновесием, но часто и кинетическими факторами. Алкилирование ароматических углеводородов — сложный процесс, состоящий из ряда взаимосвязанных между собой реакций, таких, как алкилирование, изомеризация, диспропорциони-рование, переалкилирование, полимеризация и т. д. Расчеты равновесия процесса с учетом побочных реакций являются сложной задачей, которая в определенной степени была решена рядом исследователей [9, 10]. Тем не менее термодинамические расчеты по упрощенной схеме процесса алкилирования, в которой, не учитывается ряд стадий и побочных реакций, целесообразно использовать для определения основных параметров процесса, необходимых для его оптимизации. Термодинамический расчет алкилирования бензола этиленом и пропиленом в газовой и жидкой фазах детально рассмотрен в работе [10] и при необходимости может быть использован читателями. Сведения для термодинамических расчетов алкилирования бензола, толуола, ксилолов и других алкилароматических углеводородов можно заимствовать из работы [11]. [c.15]

    Основные реакции процесса обычно проводят при условиях термодинамического равновесия, которое при низких температурах благоприятствует конверсии оксида углерода. Действительно, в течение нескольких последних лет мы видим применение низкотемпературных катализаторов конверсии, обычно состава СиО-ZnO-АЬОз [47], которые работают при 200—250 °С, т. е. на 150 градусов ниже, чем работали старые железные или цинкхромовые катализаторы. После восстановления медные катализаторы состоят из тонкодисперсной меди (ж4 нм), стабилизированной против термической деградации оксидами цинка и алюминия [47]. Основная сложность в применении медных катализаторов связана с их повышенной, по сравнению с высокотемпературными катализаторами, чувствительностью к ядам, таким как сера и хлор. Таким образом, в данном случае важнее повысить их стойкость к ядам, чем увеличить активность. [c.78]

    При кратком рассмотрении основных термодинамических процессов нас помимо прочего будет интересовать работа затрачиваемая на сжатие и перемещение газа. В термодинамике работу, совершаемую газом, принято считать положительной, а работу, совершаемую над газом, — отрицательной. Это означает, что для работы компрессора, требующего для сжатия и перемещения газа подвода энергии от внешнего источника, мы стали бы получать отрицательные величины, а это создает неудобство при практических расчетах. Поэтому условимся впредь работу, получаемую газом в компрессоре, считать положительной, а возвращаемую газом, — отрицательной. [c.15]

    Для расчетов теплот и работ термодинамических процессов пользуются выражениями (19), (20) и (23) в сочетании с уравнениями состояния рассматриваемого тела. Наиболее простыми являются основные процессы идеального газа. Важнейшие выражения для расчетов этих процессов приведены в [I, табл. П..1]. [c.45]

    В целом подход к исследованию эффекта растворителя в реакциях фторирования, развитый в работах [232-235], представляется плодотворным, и информация, которую он несет, имеет многосторонний характер. Этот подход позволяет получить основную термодинамическую характеристику процесса - тепловой эффект реакции, на основе которого строится количественная шкала фторирующей способности переносчиков фтора в различных растворителях определить величины теплот сольватации всех партнеров реакции (исходных веществ и продуктов) оценить путем сравнения теплот реакций масштаб различий в скоростях фторирования разными реагентами в разных растворителях. [c.145]

    Все геохимические и металлургические процессы суть процессы химические. Поэтому геолог, инженер-металлург и инженер-химик-технолог обязаны знать и использовать в своей работе основные законы химической термодинамики, которые позволяют предсказывать возможность протекания различных процессов, устанавливать пределы их протекания, оценивать влияние различных факторов на выход полезного продукта, рассчитывать тепловые эффекты реакций, минимальные затраты тепловой и электрической энергии на единицу продукции и т, п. Сегодня разработка любого технологического процесса, любое серьезное научное исследование в области химической технологии или металлургии должны предваряться термодинамическим обоснованием принципиальной возможности их осуществления. [c.303]

    Количественные зависимости, описывающие влияние температуры на основные характеристики процесса кристаллизации, сформулированы в работах [1, с. 247 6]. В соответствии с приведенным в них термодинамическим анализом кристаллизации полимеров присуща сильная зависимость критических размеров зародыша от степени переохлаждения. Для прямоугольного зародыша, подобного изображенному на рис. VI. 6, справедливы следующие соотношения  [c.192]

    Нернст предложил следующую формулировку принципа положительной работы ( Теоретическая химия , 5-е изд., 1907) в природе сами собой могут происходить только такие процессы, при которых может быть получена положительная работа. Здесь содержание принципа положительной работы передано уже в более точном виде, но все же еще не безупречно, так как возможны различные толкования приведенного утверждения и, в частности, такие, которые могут привести к неправильным результатам. Ниже будет показано, в каких коррективах нуждается процитированное утверждение Нернста и как оно может быть выведено из теоремы возрастания энтропии или непосредственно из основного, термодинамического, неравенства. [c.101]


    Успехи, достигнутые в формальном обосновании предельных термодинамических закономерностей также определяют и развитие теории термодинамических процессов в электролитах. Здесь мы впервые сталкиваемся с отклонением от равновесного распределения. Основы теории необратимых процессов впервые были заложены Онзагером [74]. Дебай и Фалькенгаген [123] распространили представления Онзагера на случай проводимости переменного тока. Современные теории необратимых процессов в электролитических растворах исходят, в принципе, нз тех же основных уравнений, которые были использованы в ранних работах [74] и [123]. Объясняется это тем, что общая молекулярная теория необратимых процессов находится еще в стадии разви-гия. Кроме того, электролитический раствор представляет собой сложную систему, точное описание которой требует преодоления очень больших математических трудностей. Тем не менее оказывается возможным путем введения ряда общих допущений и использования концепции ионного диаметра значительно расширить область применимости предельных закономерностей. Успехи, достигнутые в этом направлении, рассматриваются ниже. [c.59]

    В книге излагается разработанная автором, общая термодинамическая теория влажного газа. Дается характеристика основных параметров влажного газа, а также приводятся общие зависимости в основных тепловых процессах влажного газа и изучаются отдельные термодинамические процессы с выводом зависимостей между параметрами формул для определения работы влажного газа и количества сконденсированной или испарившейся жидкости. [c.2]

    Исследование высокоэластической деформации каучука и резины, как обратимого изотропного процесса при малых скоростях деформации, приводит к установлению зависимости напряжений и деформации в так называемых равновесных условиях, когда за время деформации успевают пройти основные релаксационные процессы. В реальных же условиях, вследствие релаксационной способности высокомолекулярных материалов, проявляется то или иное из названных выше физических состояний, как следствие соотношения между временем действия внешних сил и временем, необходимым для достижения равновесия их с внутренними силами, и сказываются несовершенною упругостью резин. Изучение термодинамической и кинетической сущности высокоэластической деформации, проведенное в СССР А. П. Александровым, П. П. Кобеко, Я. И. Френкелем, В. А. Каргиным, Б. А. Догадкиным и продолжаемое другими исследователями, внесло значительную ясность в освещение явлений, происходящих при деформации резин. Успехи этих работ, а также исследования механических свойств резиновых и текстильных изделий дают широкую основу для создания учения о прочности и сопротивлении как высокоэластических, так и структурных материалов и изделий из них. Практическим следствием является возможность осуществления рациональных инженерных расчетов в области и резино-текстильных конструкций. [c.247]

    Основная термодинамическая концепция в процессах разделения состоит в представлении о переводе системы из начального состояния в заданное граничное состояние через последовательный непрерывный ряд равновесных состояний. Эта простая и очевидная концепция в теории процессов массообмена незаслуженно получила название постулата о теоретической тарелке . В результате ошибочного подхода к этой концепции она неоднократно третировалась в литературе 13, 4], и некоторые авторы добиваются полной ликвидации в теории представления о теоретической тарелке. Оставляя в стороне необоснованную критику этой концепции, напомним только, что еще в 1947 г. в малоизвестной работе Гухмана [5] была строго доказана возможность реализации особого рода квазистатического процесса, протекающего при конечной разности потенциалов. [c.191]

    Термодинамическая теория фазовых равновесий между жидкостью и паром и теория процессов открытого испарения в случае систем без химических реакций, как известно [1], тесно связаны между собой и дополняют друг друга. Фазовые равновесия определяют характер протекания процессов открытого испарения, а изучение процессов открытого испарения в свою очередь позволяет установить основные структурные закономерности диаграмм равновесия жидкость — пар. В связи с изложенным в задачу настоящей работы входит термодинамическое рассмотрение равновесия жидкость — пар и процессов открытого испарения в таких формах, которые наиболее полно сочетаются между собой при наличии нескольких химических реакций и которые в то же время позволяют распространить результаты, известные ранее для систем без реакций на случай систем с химическими реакциями. В практическом отно-щении сформулированная задача связана с исследованиями дистилляционных и ректификационных методов разделения реагирующих веществ и смещения химического равновесия. [c.35]

    В настоящем издании собраны все основные работы Андрея Владимировича Фроста по кинетике и механизму каталитических превращений углеводородов. Эта группа исследований занимала основное место в научной деятельности А. В. Фроста, особенно в последнее десятилетие его жизни. Тесно сочетая эти работы с термодинамическими экспериментальными исследованиями и расчетами, А. В. Фрост одновременно связывал их с процессами каталитической переработки нефтепродуктов, стремясь к более глубокому их пониманию с целью дальнейшего совершенствования промышленных методов, в развитии которых он принимал непосредственное участие. Особенно большое внимание в работах А. Б. Фроста уделялось каталитическим превращениям органических соединений на искусствен-пых алюмосиликатах и природных глинах эти исследования имели целью теоретическое обоснование промышленных процессов и служили одновременно основой для развития оригинальных взглядов А. В. Фроста на проблему происхождения нефти. Труды А. В. Фроста по этому вопросу также включены в настоящий, том. [c.3]

    Как и в обычных растворах, способность растворяться определяется в первую очередь тепловым движением частиц ( 125). Возрастание энтропии, происходящее при растворении, является в термодинамическом отношении наиболее общим фактором, благоприятствующим процессу растворения. При этом основную роль играет не передвижение всей макромолекулы полимера, а движение отдельных звеньев цепи. В системах, в которых молекулы жидкости (растворителя) достаточно интенсивно взаимодействуют со звеньями макромолекул полимера, энергетический эффект этого взаимодействия также благоприятствует процессу растворения. Противодействует же ему главным образом необходимость затраты работы на раздвижение смежных звеньев макромолекул и на преодоление взаимного притяжения между молекулами растворителя. [c.599]

    Основным методом изучения равновесия в химических системах и процессов, протекающих равновесно в таких системах, является метод термодинамических функций, развитый работами Г. Гельмгольца и Дж. В. Гиббса. Рассмотрим кратко сущность 3-х законов термодинамики. [c.6]

    Для определения диапазона основных рабочих параметров процесса газификации проводились предварительные термодинамические расчеты по методике, изложенной в работе [5]. [c.116]

    Эксергетический анализ технологических схем. При исследовании химико-технологической (ХТС) и энерготехнологической схемы (ЭТС) хорошие результаты дает применение эксергетического метода термодинамического анализа, который позволяет учитывать как количество, так и качество произведенных и затраченных потоков вещества и энергии. Эксергетический анализ дает возможность расстетать степень териоди-намического совершенства процесса, основные источники потерь и возможности их устранения Эксергия, или техническая работоспособность, характеризует максимальную полезную работу (т.е. работу, получаемую в обратимом процессе), которая может быть получена при переходе рабочего тела от параметров системы к параметрам окружающей среды. [c.295]

    Реакция термического алкилирования парафинов олефинами долгое время не была известна. Процессы, протекающие при этом, в основном были освещены в работах Фрея с сотрудниками в лаборатории Филиппе петролеум компани (СВ.1А) [54]. Они нашли, что парафины могут реагировать с олефинами при повышенной температуре в условиях, в которых крекинг еще не происходит. Из термодинамических расчетов, сделанных позже, также следовало, что вполне возможны реакции, обозначаемые в настоящее время как процессы термического алкилирования. Как показали тщательные исследования, эти реакции протекают особенно хорошо под высоким давлением при этом ИЗО и к-парафины превращаются с одной и той же скоростью, [c.314]

    В настоящее время практически для всех газов, используемых в криогенной технике, построены термодинамические диаграммы [64, 77, 87], позволяющие с достаточной точностью проводить расчеты основных термодинамических процессов. Кроме того, в последние годы в результате работ ряда исследователей в СССР и за рубежом для большинства технически важных криопродуктов были составлены урав-вения состояния, справедливые для широкого диапазона температур и давлений, на основании которых были рассчитаны подробные таблицы значений термодинамических свойств. Эти данные в своем большинстве хорошо согласуются с наиболее надежными эксперимев-тадьными данными по теплофизическим свойствам криопродуктов, что является подтверждением высокой точности использованных для их расчета аналитических зависимостей р — У—Т. Из этих работ прежде всего необходимо отметить справочные данные по свойствам четырех технически важных криопродуктов воздуха, азота, кислорода и аргона [12, 13], в которых наряду с термическими и калорическими величинами приводятся и подробные таблицы коэффициентов переноса. Теплофизические свойства- неона, аргона, криптона и ксенона приведены в [61], двуокиси углерода - в [14], метана - в [25], этилена — в [44], гелия - в [129], природных газов - в [52]. Кроме того, данные по основным физическим свойствам криопродуктов для тех диапазонов и температур, [c.5]

    Основное назначение термодинамических процессов, протекающих в любом тепловом двигателе, состоит в том, чтобы превращать теплоту, подводимую к рабочему телу (газу), в полезную работу,, которую газ совершает в процессе своего расширения. Но построить машину, в которой бы газ только расширялся, невозможно. Поэтому во всех тепловых машинах после расширения газа происходит его сжатие и возвращешге в первоначальное состояние. [c.30]

    П1-3-27, Полоска резины может быть использована как термодинамический аналог некоторого газа. Вытягивание резины соответствует сжатию газа. Работу, производимую над резиной, можно представить как —dw = = f dl, где f — сила натяжения при сжатии резины и I — длина полоски, а) Определите по аналогии с Гельмгольцем и Гиббсом свободную энергию (F и G) полоски резины, б) Покажите, что для резины при постоянной температуре Т —dw dF ц что для процесса при постоянных Tuf —dw полез PI >dG. Сформулируйте определение полезн. Укажите основной термодинамический принцип, с помощью которого Вы начали доказательство, в) Выведите уравнение для (dUldl)j через некоторые или все величины Т, f, I и их производные, г) Для идеальной резины (dUldl)j- = 0. Покажите, что это выражение может быть выведено из уравнения состояния (связь между f, I, Т) для идеальной резины. [c.48]

    В работе рассмотрен механизм образования кокса по схеме последовательных реакций. Анализ показывает существенное возрастание потенциалов Гиббса с увеличением степени перехода исходных соединений в углерод, т. е. термодинамически процессы коксообразования возможны в большей степени, чем основной процесс. Детально рассмотрен механизм процесса коксообразования, основанный на последовательном образовании продуктов уплотнения с включением стадий поликонденсации и полимеризации. Последовательная (консекутивная) схема представляется как ряд последовательных реакций образования мономеров уплотнения и промежуточных продуктов уплотнения на основе их конденсации и полимеризации с замыканием цепей в циклы, связыванием их между собой и обеднением водородом вплоть до образования псевдографитовой структуры с одновременным выделением легких углеводородов и водорода. Сам кокс в этом случае является сложной смесью высокомолекулярных продуктов уплотнения. Отмечается роль карбониевых [c.250]

    В последнее время был проведен ряд расчетов [49, 245, 260, 386—409] констант равновесия и констант скорости химических реакций на основе теоретических молекулярных характеристик. При этом использовался один из квантовохимических методов либо эмпирический потенциал. Примеры таких расчетов собраны в табл. 14. В основном изучались процессы в газовой фазе, а при исследовании гетерогенных равновесий [387, 404] для описания твердофазного компонента использована экспериментальная термодинамическая информация. В зависимости от характера решаемой задачи были выбраны самые разные квантовохимические методы — от метода Хюккеля до точного решения соответствующей электронной задачи, В соответствии с уже упомянутыми возможностями квантовохимических расчетов для получения констант равновесия или констант скорости процессов, включающих многоатомную компоненту, использовалось в лучшем случае приближение ЖВГО. Однако иная картина наблюдается для систем, включающих не более чем двухатомные молекулы, — здесь опубликован ряд работ [260, 273, 274, 410—417], в которых корректно учитываются явления ангармонизма и нежесткости при расчетах термодинамических характеристик на основе теоретических молекулярных параметров. Это в основном ис- [c.94]

    Следует заметить, что, используя различные модели, можно одинаково удовлетворительно описывать основные термодинамические свойства воды. Принципиальным недостатком большинства моделей является их чрезмерная и необосиованная геометризация с исиоль-зоваиием жестких неизменяющихся конфигураций молекул воды. При этом недооценивается возможность их искажения в процессе межмолекулярного взаимодействия. В последних работах отмечается, что амплитуды [c.12]

    В ряде работ изучалась способность торфа и бурого угля сорбировать германий [1—3]. Эти работы были посвящены в основном выяснению характера связи с молодыми гумитами. Задачей настоящего исследования является определение некоторых количественных характеристик, регулирующих процесс накопления этого элемента в углях в естественных условиях (ионообменной емкости, концентрационной константы и основных термодинамических функций ионообмена в системе германий — бурый уголь). [c.171]

    Промышленная реализация любого процесса переработки углеводородов требует решения вопроса о влиянии колебаний в составе сырья на его показатели. Некоторые выводы о чувствительности процесса пиролиза углеводородов в плазменной струе к колебаниям в составе сырья можно сделать в результате анализа работы [80]. В результате рассмотрения данных термодинамических расчетов для системы углерод — водород авторы работы [80] показали, что основные показатели процесса пиролиза, и в том числе степень превращения в ацетилен, температура процесса, энергетические затраты, зависят от энергетического критерия, представляющего отношение затраченной на процесс пиролиза энергии к тепловому эффекту реакции полного разложения сырья на ацетилен и водород, взятого при стандартной температуре. Результаты экспериментов авторов работы [80] по пиролизу метана, пропана и их смесей в плазменной струе водорода, а также полученные другими авторами результаты плаз.мохимическо-го пиролиза различных углеводородов подтвердили указанный вывод. Таким образом, при любом изменении состава пиролизуемого сырья можно получать практически постоянный состав газов пиролиза соответствующим изменением энергии, вкладываемой в плазму. [c.233]

    В работах [28-39] проведены термодинамический и экологотехнологический анализы основных процессов отделки текстильных материалов и гальванического производства, предложены решения по анализу и синтезу ВХТС в данных отраслях промышленности. Исходным материалом для исследования служили результаты эколого-технологического анализа основных производственных процессов, данные о составах водных техно- [c.82]

    В, чисто расчетной работе [ ] автор анализировал опыты работы [3], сравнивая экслериментальные скорости осаз дения с расчетными скоростями диффузии при максимальной движущей силе переноса (термодинамически равновесные концентрации на поверхности). Получив значения скоростей диффузии, превышающие экспериментальные скорости осаждения более, чем в 10 раз, автор сделал вывод, что в работе [3] скорость процесса действительно определяется в основном скоростью химической реакции. Однако, результаты расчета диффузионного переноса в работе [4] существенно завышены по сравнению с работой [2], если учесть различие в диаметре проволоки. Сопоставления же с работой [2] а тор [4] не приводит, [c.240]

    Таким образом, в работе представлены основные термодинамические соотношения для канонических показателей изоэнтальпийного и изознергетического процессов (формулы (1)-(21)). В случае необходимости все дополнительные соотношения могут быть легко получены из приведенных формул. Сводка наиболее важных соотношений дана в табл.1 и табл.2. Эту сводку соотношений рекомендуется использовать при дальнейшей разработке теории неизотермического течения газа в призабойной зоне скважин, промысловых трубопроводах и технологических аппаратах. Расчетный анализ показателей изоэнтальпы и изознергетического процесса и варианты практического использования этих показателей будут представлены в последующих публикациях. По аналогии с работой [c.30]

    Изомеризация парафиновых углеводородов на хлориде алюминия освещена в работах [1—4]. 1 Хлорид алюминия, обеспечивая термодинамически благоприятные условия протекания реакции, позволяет осуществлять ее при 50—150 °С. Эта температура способствует образованию продуктов, обогащенных разветвленными изомерами. Однако наряду с бесспорными достоинствами зтот катализатор обладал рядом отрицательных особенностей, усложняющих технологию процесса и зксплуатацию промышленных установок. Тем не менее во время второй мировой войны в связи с потребностью в алкилате для приготовления высокооктанового авиационного бензина процессы изомеризации на хлориде алюминия получили развитие, в основном для изомеризации н-бутана в изобутан. Первая промышленная установка была введена фирмой Shell в 1941 г. К концу второй мировой войны в США были разработаны пять процессов изомеризации, которые отличались либо методом введения хлорида алюминия в зону реакции, либо носителем для катализатора, либо его физическим состоянием. [c.5]

    Уравнение материального баланса вещества в слое зерен, продуваемом стационарным потоком газовой смеси, было получено на основе термодинамики неравновесных процессов в работе [23]. Необходимость учета пористой структуры слоя привела к требованиям усреднения основных параметров и характеристик при описании процессов динамики. Для этого в слое зерен выделялся небольшой объем Д1 , малый по сравнению с объемом всего слоя, но содержащий все же достаточно большое число зерен, и для него находили средние значения термодинамических локальных параметров. Для одномерной задачи вдоль осил по длине слоя уравнение баланса имеет вид [c.58]

    В книге рассмотрены результаты научно-исследовательских работ по каталитическому риформиигу бензинов и промышленные процессы риформинга, осуществляемого для получения высокооктановых автомобильных бензинов, ароматических углеводородов и технического водорода. Кратко изложены термодинамические основы риформинга, химические превращения углеводородов. Описаны технологические основы процесса риформинга и особенности проведения его в заводских условиях. Приводятся технологические схемы отечественных и зарубежных модификаций процесса риформинга, режима работы, качество продуктов и основные технико-экономические показатели заводских установок. [c.2]

    Основной реакцией высококипяших парафиновых углеводородов в условиях гидрокрекинга над бифункциональными катализаторами является изомеризация, протекаюшая наиболее интенсивно при 430—440 °С. Основное количество углеводородов изостроения сосредоточено во фракциях изомеризата, выкипающих в тех же пределах, что и исходные углеводороды. Следует учитывать, что реакции изомеризации и расщепления парафиновых углеводородов протекают без увеличения объема, т. е. давление не влияет на термодинамическое равновесие в процессе. Работами советских и зарубежных ученых установлено, что при атмосферном давлении водорода реакции изомеризации парафиновых углеводородов идут с малой скоростью, а в среде азота полностью подавляются. С повышением давления водорода скорость реакций расщепления и изомеризации возрастает. Дальнейшее увеличение давления тормозит ход этих реакций, причем более интенсивно — реакции изомеризации. Таким образом, для парафинистого сырья первостепенное значение приобретает изомеризация парафиновых углеводородов, а реакции гидрирования и гидрокрекинга второстепенны. [c.285]


Смотреть страницы где упоминается термин Работа основных термодинамических процессов: [c.228]    [c.106]    [c.100]    [c.92]    [c.82]    [c.274]    [c.57]    [c.145]    [c.103]   
Смотреть главы в:

Термодинамика физико-химических процессов -> Работа основных термодинамических процессов




ПОИСК





Смотрите так же термины и статьи:

Основные работы

Основные термодинамические процессы

Процесс термодинамический

Работа процесса



© 2025 chem21.info Реклама на сайте