Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотно-основные и некоторые другие свойства растворителей

    По влиянию на кислотно-основные свойства растворенного вещества растворители подразделяют на нивелирующие и дифференцирующие. В нивелирующих растворителях сила некоторых кислот, оснований и других электролитов становится примерно одинаковой, а в дифференцирующих — разной. Уравнивание силы электролитов в нивелирующих растворителях имеет не всеобщий характер нельзя считать, например, что в нивелирующих растворителях все кислоты становятся сильными или все слабыми. Многие минеральные кислоты — хлорная, хлороводородная, бромоводородная, азотная и др. в водном растворе Диссоциированы нацело с образованием Н3О+ как продукта взаимодействия кислоты с водой. Вода оказывает нивелирующее действие на силу сильных кислот. [c.35]


    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    Изложенные представления имеют значение для решения некоторых практических задач. Так, исследование неводных растворов позволило установить на основании ПЭГ определенные закояомерности в изменении кислотно-основных свойств в зависимости от положения элементов в Периодической системе, степени окисления элементов, ионных радиусов и физико-химических свойств растворителей (рис. 15). Например, установлено, что нитраты, хлориды, иодиды, перхлораты бериллия, магния, кальция, стронция, бария и некотарые другие соединения проявляют в неводных растворах различные по силе кислотно-основные свойства. Это позволило разработать новые методы дифференцированного титрования многокомпонентных смесей указанных солей [238, 325, 549] (рис. 16, 17). [c.160]

    Глава 6 содержит несколько эмпирических соотношений между скоростями реакций и различными свойствами растворителя и растворенного вещества. Последние включают такие свойства, как кислотность, основность, свойства заместителей, индуктомерный эффект, электромерный эффект, ионизирующую силу растворителя, электрофильность, нуклеофильность. Эти эмпирические подходы не заменяют теоретического рассмотрения (например, электростатическую или другие теории), а могут быть дополнением к другим подходам и могут объяснять некоторые специфические эффекты, которые не объяснены теоретически. [c.317]


    К 20-м гг. было твердо установлено, что кислотно-основные свойства обусловлены как участием иона Н+, так и взаимодействием с растворителем и проявляются не только в водных растворах. Отмечалось, что некоторые растворители обладают амфотерными свойствами, что приводит к их ионизации. Налицо были необходимые предпосылки для теории, которая позволила бы дать такие определения кислоты й основания, которые ...логически связывали понятия кислоты и основания друг с другом, освещали причину исключительного положения этих веществ и, наконец, позволили бы определять кислоты и основания, сво йства которых проявляются универсально в различных растворителях (Бренстед). [c.589]

    Протолитическая теория рассматривает в качестве растворителя не только БОДУ, но и другие протонсодержащие вещества. В общем случае, вголекулы растворителей обладают способностью не только принимать протоны, но и отдавать их, т. е. обладают и кислотными, и основными свойствами. Кислотные и основные свойства молекул не находятся в обратной зависимости относительно друг друга. Изучение основности этилового и метилового спиртов показало, что она составляет соответственно 2,5 10 и 1,0- 10" от основности воды. Кислотность этилового спирта равна 0,95 от кислотности воды, а метилового спирта в 3,5 раза больше ее кислотности. Эти данные свидетельствуют о соизмеримости кислотных и основных свойств для молекул воды, метилового и этилового спиртов. Однако для некоторых растворителей может наблюдаться резкое преобладание какого-либо одного свойства — основного или кислотного. Некоторые растворители не проявляют в заметной степени ни кислотных, ни основных свойств. Поэтому оказывается возможным классифицировать растворители по кислотно-основным свойствам на четыре группы  [c.182]

    КИСЛОТНО-ОСНОВНЫЕ и НЕКОТОРЫЕ ДРУГИЕ СВОЙСТВА РАСТВОРИТЕЛЕЙ [c.34]

    Известны еще много других растворителей, свойства которых являются промежуточными между крайними случаями, рассмотренными выше. Например, есть растворители умеренной основности типа амидов или ацетонитрила, растворители, обладающие только основными свойствами, как эфиры, растворители умеренной кислотности типа фенолов. Существуют еще так называемые апротонные растворители, такие, как углеводороды, которые не обладают заметными кислотными или основными свойствами и не принимают поэтому непосредственного участия в кислотно-основных равновесиях. С некоторыми из них мы встретимся позже в связи с обсуждением относительной силы кислот и оснований в различных растворителях. [c.65]

    Подробное обсуждение значений констант ионизации на основании изменений энергии и энтропии в этом процессе более уместно проводить в книге, специально посвященной вопросам термодинамики, а не структурной органической химии. Однако и в настоящей книге нелишне остановиться на некоторых факторах, относящихся к этому вопросу. Так, установлено, что очень важную роль играет природа растворителя, чего и следовало ожидать, поскольку растворитель может быть основанием или акцептором протонов. Однако роль воды в кислотно-основных равновесиях не определяется исключительно ее основными свойствами. Вода является очень хорошим ионизирующим растворителем по двум другим причинам она обладает высокой диэлектрической проницаемостью (80) и довольно высокой поляризуемостью. Влияние первого из этих свойств приводит к тому, что при возникновении взаимодействия кислота — основание электростатическое протяжение между катионами и анионами, которое определяет возможность их обратной рекомбинации в кислоту и основание, снижается настолько, что ионам обеспечивается возможность независимого существования в течение более длительного времени. Высокая поляризуемость молекул воды приводит к тому, что участвующие в сольватации молекулы воды стабилизируют ионы, обеспечивая дисперсию их избыточного заряда. Поэтому, если воду заменить другим растворителем с меньшей сольватирующей способностью или менее основным, то величины Ка для данной кислоты в этих двух разных растворителях будут существенно отличаться. Так, показано, что степень ионизации уксусной кислоты в смеси метанол — вода уменьшается по мере роста содержания мета- [c.411]

    При гидрировании карбонильных соединений в растворе следует учитывать возможность образования водородной связи [199]. Она приводит к ассоциации молекул карбонильных соединений, может облегчить переход протона в кислотно основных реакциях, может влиять на скорость процесса, повышая основные или понижая кислотные свойства реагирующих веществ. Водородная связь может затруднять процессы, связанные с отрывом атома водорода от молекулы, она препятствует некоторым внутримолекулярным перегруппировкам, фиксируя реагирующие группы на данном расстоянии друг от друга [199]. Существенную роль в кинетике реакций в растворах играет образование водородной связи между молекулами реагирующего вещества и растворителя. [c.332]


    В течение последних 4—5 лет в практику аналитической химии был введен ряд новых органических растворителей, обладающих ценными свойствами. К ним кроме грег-бутилового спирта относятся диметилсульфоксид, тетраметилгуанидин и некоторые другие растворители. Диметилсульфоксид [141, 305, 391] обладает высокой растворяющей способностью в отношении многих органических соединений он нетоксичен и не имеет запаха. Наличие в молекуле диметилсульфоксида семиполярной связи между серой и кислородом придает ему протофильный характер и ведет к увеличению силы растворенных в нем слабых органических кислот. Этот растворитель, характеризующийся достаточно большой шкалой кислотности (р/(з=18) и высоким значением диэлектрической проницаемости (е = 40), обладает такими же дифференцирующими свойствами, как диметилформамид, но в отличие от него не содержит кислых и основных примесей, поэтому не требует предварительной очистки. В диметилсульфоксиде можно титровать сильные и слабые кислоты. [c.103]

    Высокие температуры плавления аминокислот, их плохая растворимость в органических растворителях, нелетучесть и некоторые другие нетипичные для органических соединений свойства связаны с особенностями строения их молекул. В молекуле свободной аминокислоты аминогруппа, обладающая основными свойствами, "вступает во внутримолекулярное взаимодействие с кислотным карбоксилом, образуя внутреннюю соль. Строение ее может быть описано следующей формулой  [c.183]

    Органический осадитель всегда добавляют в растворенном состоянии, предпочтительно в виде водного раствора. Плохо растворимые в воде, но обладающие кислотными или основными свойствами органические реагенты используют в виде водных растворов солей щелочных металлов или ацетата. Другие нерастворимые реагенты обычно растворяются в смешивающихся с водой органических растворителях, таких как некоторые спирты и кетоны, диоксан и др. [c.152]

    По своим свойствам растворители сильно различаются. Поэтому для тех растворителей, амфотерность которых гораздо слабее, чем у воды, выражение кислотно-основных возможностей в этих простых терминах может иметь ограниченную ценность. Например, закономерности, установленные для водных растворов, могут оказаться слабо выраженными или совсем не выполняться в других растворителях. В отсутствие хорощо выраженной самодиссоциации растворителя некоторые основные компоненты раствора могут взаимодействовать с данной кислотой по-разному, что приводит к крайне специфическому поведению, которое не может быть отражено с помощью лищь одной шкалы измерений. Растворители с диэлектрическими постоянными значительно меньшими, чем у воды, благоприятствуют ассоциации противоположно заряженных ионов, что также приводит к отклонению от поведения, ожидаемого на основе кислотно-основного равновесия в воде. Эти сложности поведения хорошо иллюстрируются данными, полученными для ледяной уксусной кислоты — растворителя с диэлектрической постоянной, близкой к 6 при 20 °С [7, 8]. [c.309]

    Однако во многих случаях это формальное сходство становится более глубоким. Например, соли аммония (КН4+С1 ) в жидком аммиаке и ионы гидроксония (НдО+С ) в воде ведут себя как кислоты. Отсюда следует, что кислотный или основной характер некоторых соединений в одних растворителях остается скрытым, тогда как в других он четко проявляется. Характерным примером может служить мочевина, которая в воде является очень слабым основанием, в уксусной кислоте — более сильным основанием, а в жидком аммиаке приобретает кислотные свойства [c.11]

    Как уже упоминалось, вследствие большого разнообразия стероидов невозможно привести общую методику приготовления образца. Тем не менее можно сделать несколько полезных замечаний. Поскольку большая часть стероидов является веществами нейтральными, можно рекомендовать использование распределения экстракта из природного объекта между органическим растворителем (как правило, толуолом, бензолом, хлороформом, хлористым метиленом, диэтиловым эфиром и этилацетатом) и водным раствором щелочи с целью удаления органических кислот и других кислотных продуктов, в тех случаях, когда органический экстракт содержит алкалоиды или другие примеси основного характера, полезна обработка экстракта разбавленной соляной кислотой. Однако при разделении между неполярным растворителем, например толуолом или хлороформом, и водным раствором сильной щелочи некоторые высокополярные нейтральные стероиды проявляют кислотные свойства [3]. К ним относятся экстрогены, имеющие слабокислый характер вследствие присутствия в них фенольного гидроксила, или желчные кислоты. В этом случае фильтрация образца через колонку, заиол-ненную ионообменной смолой, приводит к его обогащению [4, 5]. За исключением сложных эфиров стеролов и некоторых практически неполярных стероидов, сырые органические экстракты, содержащие стероиды растительного и в особенности животного происхождения, могут быть предварительно очищены перед вводом в колонку распределением экстракта между петролейным эфиром (или м-гексаном, -гептаном, а также другими углеводородами) и 90—95%-ным метанолом. Обычные стероиды остаются в полярной фазе, в то время как парафины, жиры и вышеупомянутые исключения — в углеводородном растворителе. В случае применения техники противоточного распределения обогащение более эффективно. [c.213]

    Значение протонной теории кислот и оснований состоит в том, что эта теория расширила область кислотно-основных реакций, внесла ясность относительно роли растворителя в кислотно-основных реакциях, показала, что сила кислот и оснований зависит от природы растворителя. Основным недостатком данной теории является то, что она исключает возможность проявления кислого характера веществами, не содержащими водорода. Этим исключаются из класса кислот некоторые вещества, например, ЗпС14, ЗОг, А1С1з и другие, кислотные свойства которых давно известны. [c.14]

    В предыдущих разделах основное внимание уделялось водоподобным растворителям — алифатическим спиртам и смешанным растворителям, в которых вода — основной компонент. Эти растворители амфотерны, обладают как кислотными, так и основными свойствами, однако ни в одном из них (за исключением диоксана) эти свойства не выражены отчетливо. Это не относится к некоторым другим обычным амфотерным растворителям, кислотно-основные свойства и аналитическое применение которых подробно изучены [80]. [c.347]

    Некоторые другие ацетофеноны проявляют интересные структурные эффекты. Например, п-метоксиацетофенон значительно менее основен, чем можно было бы ожидать на основе корреляции величины р/Со с параметром 0+. Считают [328], что это обусловлено сильной водородной связью с кислотным растворителем, который уменьщает электронодонорные свойства метоксигруппы. Протонирование здесь не может идти по метоксигруппе, так как известно, что анизол менее основен, чем ацетофенон, и можно ожиг дать, что п-ацетиланизол еще менее основен, чем анизол. Примером совместного действия стерического и резонансного ингибирования сольватации может служить низкая основность 2,6-диметилацетофенона [300] по сравнению с ацетофеноном. [c.256]

    Типы растворителей. Для того чтобы вещество, растворенное в данном растворителе, вело себя как кислота, сам ра творитель должен быть основанием, т. е. акцептором протонов. Такие растворители называют протонофильными примерами протонофильных растворителей являются вода и спирты, ацетон, эфир, жидкий аммиак, амины и, до некоторой степени, муравьиная и уксусная кислоты. С другой стороны, растворители, в которых проявляются основные свойства растворенного вещества, должны быть способны отдавать протоны, т. е. являются веществами кислотного характера такие растворители по своей природе протоногенны. Примерами подобных растворителей могут служить вода и спирты, однако наиболее типичными протоногенными растворителями являются вещества с резко выраженными кислотными свойствами, например чистые уксус-11 а , муравьиная и серная кислоты, а также жидкий хлористый и жидкий фтористый водород. Некоторые растворители, в частности вода и спирты, являются амфипротонными, поскольку они могут и отдавать и получать протоны. В этих растворителях могут проявляться как кислотные, так и основные свойства веществ, в то время как в чистом протонофиль-ном растворителе, например эфире, или в чистом протоногенном растворителе, например фтористом водороде, могут проявляться либо кислотные, либо основные свойства. В дополнение к уже рассмотренным типам растворителей можно указать на другой класс растворителей, которые не способны ни получать, ни" отдавать протоны. Такие растворители можно назвать [c.413]

    За исключением некоторых различий в физико-химических свойствах, три протонных растворителя, рассмотренные выше (вода, аммиак и серная кислота) имеют сходство в кислотно-основном поведении. Они подвергаются ав-тоионизированию, причем процесс происходит посредством переноса протона от одной молекулы растворителя к другой с образованием сольватированного протона (кислота по Брёнстеду. кислота по теории сольво-систем) и депрото-нированного аниона (основание по Брёнстеду. по Льюису и по теории сольво-систем). [c.230]

    Теория таутомерного равновесия как равновесия кислотно-основного про-толитического была разработана М. И. Кабачником и сотрудниками [1] в Институте элементоорганических соединений АН СССР. В основу теории положены, с одной стороны, качественные ионные представления о таутомерии, развитые химиками английской школы и Арндтом и Эйстертом, а с другой стороны, количественная теория кислотно-основного равновесия Бренстеда—Измайлова. Таким образом удалось вывести и впоследствии подтвердить экспериментально основные количественные закономерности, связывающие кислотные или основные свойства таутомерных форм с положением (константой) таутомерного равновесия в различных средах, учесть влияние растворителя и — в некоторых принципиальных случаях — строение таутомерных форм. [c.315]

    Согласно прежним воззрениям, считалось, что реакции могут происходить и без катализатора, но облегчаются в его присутствии. Постепенно накапливались доказательства в пользу того, что многие реакции кислотно-основного катализа совсем невозможно осуществить при отсутствии катализаторов, а реакция, кажущаяся самопроизвольной , часто происходит под каталитическим действием молекул кислотного или основного растворителя либо кислоты (или основания), находящейся в виде примеси. Это показывает, что катализатор, повидимому, принимает химическое участие в реакции. Вскоре открыли, что существенным свойством кислот и оснований является их способность терять или соответственно присоединять протон. Дальнейшие исследования показали, что вещества, подвергающиеся кислотному катализу, всегда имеют некоторые o noBHi.ie свойства, тогда как вещества, реагирующие при ос[Ювном катализе, могут в принципе действовать как кислоты, хотя кислотно-основные свойства тех и других веществ бывают настолько слабы, что их нельзя распознать обычными средствами. Это привело к предположению, что при кислотноосновном катализе между катализатором и субстратом происходит реакция между кислотой и основанием. Такая реакция часто называется [c.18]

    Следовательно, путем сольватации анионных оснований протонными растворителями можно ослабить или уничтожить свойства, характеризующие класс (а), и усилить свойства класса (б). Для любой данной кислоты степень выраженности свойств класса (а) в газовой фазе будет определять, перейдет ли это соединение в класс (б) в растворе [130J. Эффекты сольватации, которые крайне важны, не объясняют, почему некоторые кислоты предпочтительно взаимодействуют с мягкими основаниями, а другие — с жесткими. Это можно объяснить, учитывая взаимодействия в кислотно-основном комплексе. Такие взаимодействия включают ионно-ковалентный характер а- и я-связей, а также эффекты корреляции электронов и играют определенную роль в создании тех свойств соединения, по которым его относят к классу [c.109]

    Растворители можно разбить на доноры электронной пары (ДЭП) и акцепторы электронной пары (АЭП) в зависимости от их химического строения и химических свойств [65]. К сожалению, некоторые растворители нельзя отнести ни к той, ни к другой категории например, алифатические углеводороды не обладают свойствами ни ДЭП, ни АЭП. Растворители-ДЭП преимущественно сольватируют молекулы или ионы, являющиеся акцепторами электронной пары. Обратное справедливо для растворителей-АЭП. В этом отношении большинство взаимодействий растворенного вещества с растворителем можно рассматривать как обобщенную реакцию льюисовой кислоты с льюисовым основанием. Полярные молекулы растворенного вещества всегда 1 еют основный центр с повышенной электронной плотностью и кислотный центр с пониженной электронной плотностью. Для количественной оценки донорной и акцепторной эффективности растворителей Гутманн предложил так называемые донорные числа ОМ и акцепторные числа ЛЛ [65] см. разд. 2.2.6 и табл. 2.3 и 2.4. Благодаря способности образовывать координационные связи растворители-ДЭП н растворители-АЭП в общем случае хорошо ионизируют растворенные вещества (разд. 2.6). [c.111]

    Таким образом, кислотные или основные свойства обнаруживаются только в присутствш другой кислоты или оспования. Таковым часто является растворитель. Некоторые растворители, например серная кислота, яв- [c.206]

    Сравнительно мало попыток было предпринято для сравнения основностей ароматических углеводородов по отношению к минеральным кислотам. Килпатрик и Гайман [204] сравнивали спектральные изменения бензола, мезитилена и гексаметилбензола в некоторых сильных кислотах по мере изменения кислотности растворителя, которую они считали подобной, но не идентичной функции Но- Гексаметилбензол обладает достаточно сильными основными свойствами, чтобы протонироваться концентрированными растворами серной кислоты, и несколько групп исследователей [7, 85, 204] дают сходные точки его ионизации наполовину. Наиболее систематическое исследование ароматических углеводородов в водном растворе кислоты провели Ханда и Кобаяши [175], которые опубликовали значения р/Са (очевидно, по шкале Но) для большой группы полиядерных соединений (приводятся в таблицах в конце обзора). Однако эти результаты вызывают некоторое сомнение, поскольку для случая гексаметилбензола они не совпадают с данными других авторов. Следует отметить, однако, что ряд значений основности для ароматических кетонов, приведенных в той же работе, хорошо совпадает с литературными данными. Можно было бы ожидать, что ароматические углеводороды зависят от функции кислотности Яд/, а не Но- Чтобы избежать путаницы в этом вопросе, мы приводим значения основности в виде процентного содержания серной кислоты, необходимого для ионизации наполовину. [c.226]

    Методы химического анализа красителей вкратце излагались при систематическом описании красителей в соответствии с их химической классификацией. Эти методы зависят от строения красителей и от наличия определенных активных групп. Например, азокрасители обычно можно определить титрованием треххлористым титаном. Некоторые основные и кислотные красители можно титровать друг другом или растворами, содержащими ионы с противоположным характером, для получения нерастворимых комплексов. Некоторые индигоидные красители определяют методом сульфирования и последующего титрования перманганатом. К кубовым красителям, как к классу, применим лишь один метод, а именно определение содержания кубующейся компоненты восстановлением в щелочной среде II последующим окислением. Методы непосредственного химического анализа часто оказываются неприменимыми к продажным красителям и представляют очень малую ценность. Поэтому широко используются колористические и спектроскопические методы и испытания, основанные на крашении и исследовании коло- )нстических свойств крастелей. Например, красители неизвестного строения, нерастворимые в воде и в обычных органических растворителях. а также сернистые красители можно испытывать только колористическими методами. [c.1485]

    Особую группу гликозидов составляют сапонины. При действии разбавленных кислот или ферментов сапонины расщепляются подобно остальным гликозидам и дают агликон, сапогенин и сахар. Сапонины, однако, выделяются в отдельную группу, потому что обладают особыми, только им присущими свойствами. Они способны давать коллоидные растворы со стойкой пеной и проявляют гемолитическое действие, т. е. разрушают красные кровяные тельца. Большая часть сапонинов представляет собой аморфные порошки различного цвета—от белого до коричневого лишь небольшая часть из них могла быть выделена в кристаллическом виде. Многие из сапонинов хорошо растворяются в воде, некоторые же только в щелочных растворах. Большая часть хорошо растворима в разведенном горячем спирте, но обычно снова выпадает после охлаждения. В абсолютном спирте и в обычных органических растворителях—эфире, петролейном эфире, хлороформе, бензоле—сапонины не растворяются. Многие сапонины (по мнению Кобера, сапонины кислотного характера) осаждаются из нейтральных растворов нейтральным ацетатом свинца, другие же сапонины (нейтральные сапонины)—только основным ацетатом свинца. Первые трудно растворимы или совсем нерастворимы в воде, но растворяются в разбавленных растворах щелочей и выделяются из раствора после подкисления. Вторые легко растворяются в воде и в растворах кислот. [c.382]


Смотреть страницы где упоминается термин Кислотно-основные и некоторые другие свойства растворителей: [c.244]    [c.239]    [c.16]    [c.27]    [c.459]    [c.364]    [c.256]   
Смотреть главы в:

Аналитическая химия. Ч.1 -> Кислотно-основные и некоторые другие свойства растворителей

Аналитическая химия Часть 1 -> Кислотно-основные и некоторые другие свойства растворителей




ПОИСК





Смотрите так же термины и статьи:

Другие свойства

Кислотно-основное

Кислотно-основные и некоторые другие свойства

Кислотно-основные свойства

Кислотные свойства

ЛИЗ кислотно основной

Некоторые -свойства растворителей

Растворители кислотно-основным свойства

Растворители основные

Свойства некоторых растворителей



© 2025 chem21.info Реклама на сайте