Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы определения структуры органических соединений

    СПОСОБЫ ОПРЕДЕЛЕНИЯ СТРУКТУРЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.23]

    Рассматриваются методы определения чистоты и способы идентификации органических соединений путем анализа и хроматографии-, затем некоторые методы, используемые при установлении структуры, иллюстрируются на примере алкалоида никотина. Наконец, будет затронута проблема номенклатуры органических соединений — вопроса, который в некоторых отношениях сух, как пустыня и превращается часто в бич для начинающего, несмотря на то что суть дела заключается в облегчении обмена идеями и информацией об органических соединениях и их реакциях. [c.13]


    Объем экспериментальных данных по величинам удерживания (около десяти тысяч анализируемых соединений, несколько сотен неподвижных фаз) уже сейчас превышает объем данных по растворимостям, измеренным классическим способом, причем, результаты, полученные с помощью газовой хроматографии, более систематичны и более точны, что дает возможность использовать их для детальной проверки положений теории растворов и выяснения самых тонких особенностей зависимости растворимости от строения растворенных веществ и растворителей. Кроме того, с помощью газовой хроматографии принципиально возможно исследовать реакционную способность и структуру органических соединений, причем величины удерживания можно использовать для оценки пространственных и полярных эффектов, корреляционных расчетов констант скоростей и равновесий некоторых реакций, определения расположения некоторых атомов в молекулах анализируемых веществ. [c.81]

    Окисление, Одним из наиболее удобных способов определения структуры того или иного органического соединения является деструкция молекулы, при которой углеродная цепь рвется на меньшие части и эти части затем идентифицируются. Реакция ненасыщенных углеводородов с озоном (озонирование) представляет собой одно из наиболее широко применяемых деструктивных превращений. В ходе этой реакции молекула подвергается деструкции по двойной углерод-углеродной связи, и в фрагментах появляются двойные углерод-кислородные связи. Идентификация этих фрагментов часто дает возможность определить структуру исходной молекулы. [c.39]

    Определение азота. При разложении органических соединений, содержащих азот, последний может выделяться в виде свободного азота, оксидов азота, дициана или аммиака. Это зависит как от структуры молекулы, так и от способа разложения. Как правило, наряду с соединениями азота образуется и свободный азот, который из-за его инертности практически невозможно количественно окислить или [c.813]

    Исследователи обычно отмечают, что причина высокой вязкости силикатных растворов по своей природе отлична от растворов высокополимерных органических соединений. Способы определения средней молекулярной массы по величине характеристической вязкости не применимы к растворам щелочных силикатов. Концентрированные растворы с высоким силикатным модулем представляют собой системы, переходные к лиофильным коллоидам. При постоянном содержании щелочи (ЫагО) увеличение силикатного модуля системы ведет к возрастанию вязкости, но, пройдя через область неустойчивых состояний, где система склонна к гелеобразованию (4< <25), высокомодульные системы снова становятся подвижными, приобретая свойства коллоидного раствора с очень малой вязкостью. Айлер [2] придерживается мнения, что кремнеземные структуры, имеющие место в безводных стеклах, очень мало или вовсе не связаны с природой кремнезема в образующихся из них водных растворах. В современной технологии использования жидкого стекла [1] отмечается недостаточность стандартизации состава, т. е. концентрации и модуля Раствора для получения заданных технологических свойств. Это [c.47]


    До недавнего времени экспериментальные методы ЯМР по способу воздействия р. ч. поля на образец условно делили на две большие группы стационарные, или методы непрерывного воздействия р. ч. поля, и импульсные методы, в которых р. ч. поле действует в форме коротких импульсов определенной длительности и последовательности. Стационарные методы служили в основном для записи спектров ЯМР высокого разрешения и для дальнейших расчетов величин химических сдвигов, констант экранирования, опин-спинового взаимодействия и получения другой информации, необходимой для установления структуры сложных органических соединений. В отдельных случаях спектрометры ЯМР попользовались для измерения времен релаксации. Импульсные спектрометры применялись только для точных измерений времен релаксации. Бурный прогресс в технической радио- и микроэлектронике (создание дешевых и компактных мини-ЭВМ) и в некоторых теоретических вопросах импульсной спектроскопии [254] привел к созданию нового экспериментального метода — фурье-спектроскопии ЯМР. Этот метод позволяет одновременно как регистрировать спектры ЯМР высокого разрешения большинства магнитных ядер химических элементов при их очень малых концентрациях (или за очень короткое время), так и измерять релаксационные характеристики всех групп ядер образца, т. е. практически стирает грани между импульсными и стационарными методами. [c.30]

    Уровень знаний о составе атмосферного воздуха всегда был точным мерилом развития и состояния естественных наук. Периоды стремительного прогресса и революционных преобразований в науке сопровождались фундаментальными открытиями в области состава атмосферы. Так, открытие основных компонентов воздуха — кислорода и азота — ознаменовало химическую революцию XVIII века и положило начало современной химии. Открытие в атмосфере инертных газов завершило структуру Периодической системы Д. И. Менделеева и стало одним из самых ярких научных достижений конца XIX века. Научно-техническая революция второй половины XX века породила столь эффективные методы исследования, что следует говорить о начале новой эры познания окружающей нас атмосферы. Стало возможным определение множества органических соединений, не поддававшихся обнаружению существовавшими ранее способами. В 70-х годах нашего века были, в сущности, заложены основы новой научной дисциплины — органической химии земной атмосферы. Роль и значение органических компонентов атмосферного воздуха несоизмеримы с их концентрациями, и они привлекают быстро возрастающий интерес в связи с изучением метеорологических явлений, проблемами охраны внешней среды и ее воздействия на живые организмы. [c.3]

    ЧУК (СКС, Буна-З и др.) — продукт сополимеризации бутадиена и стирола, осуществляющейся эмульсионным методом. Б.-с. к. производят с различным содержанием стирола. Средняя молекулярная масса СКС-30, определенная по вискознметрическому методу, 200— 300 тысяч. Б.-с. к. имеет нерегулярную структуру и потому не кристаллизуется. Получают его холодным и горячим способами (при 5 и 50° С) полимер, образующийся при 5 С, имеет меньшую степень разветвленности и лучшие свойства, его обозначают СКС-ЗОА. Для инициирования реакции полимеризации применяют персульфаты, пербора-ты, пероксид водорода, органические пероксиды и гидропероксиды. Для обеспечения полимеризации при низкой температуре применяют активаторы (сульфиты, сахара) в комбинации с окислителями и восстановителями, из которых создаются так называемые окислительновосстановительные (редокс) системы. Для получения менее разветвленного полимера с желаемой молекулярной массой применяют регуляторы (меркаптаны, дисульфиды и др.). Значительная часть Б.-с. к. вырабатывается в виде маслонаполненного каучука. Минеральное масло, содержащее до 30% ароматических соединений, вводится в полимер (20,— 30% от его массы). Б.-с. к. является универсальным видом каучука, из которого изготовляют автомобильные шины, транспортерные ленты, резиновую обувь, различные резиновые детали и др. СКС-10 отличается высокой морозостойкостью, приближаясь по своим свойствам к натуральному каучуку. [c.49]

    В это же время были разработаны способы интерпретации данных по дифракции рентгеновских лучей молекулярными кристаллами сначала для плоских ароматических молекул, а затем для трехмерных органических и неорганических молекул. В наши дни использование автоматических дифрактометров и мощных электронно-вычислительных машин позволяет с большей или меньшей степенью надежности определять все большее число структур неорганических соединений. И, действительно, сейчас нередко сообщается структура соединения, получение и свойства которого еще не описаны. По всей вероятности, косвенные методы определения структуры будут использоваться в дальнейшем лишь для изучения строения соединений в растворе, где дифракционные методы малоэффективны. [c.10]


    Предлагается использовать для целей концентрирования следовых количеств органических соединений при их определении в воде экстракционную хроматографию — модифицированный динамический способ распределения в системе жидкость—жидкость, в котором органический растворитель используется в виде гранулированной фазы. В качестве носителя органического растворителя используют сополимеры стирола с дивинилбензолом сетчатой структуры. Такие сополимеры, являющиеся полупродуктами при синтезе ионитов, нерастворимы в органических растворителях (хлороформ, бензол, дихлорэтан, толуол, хлористый метилен), но способны набухать в них. Ранее подобные сополимеры были использованы в качестве гидрофобных носителей и для выделения природных веществ из растительных экстрактов [1,2]. [c.169]

    Вопроса об идентификации веществ мы частично уже касались выше в гл. 14, где речь шла об установлении структуры неизвестных соединения с использованием, в частности, понятия о характеристичности спектральных полос. Между тем в практической работе химик-исследователь достаточно много знает об изучаемых им системах, что позволяет во многих случаях предвидеть появление в ходе опыта тех или иных веществ. В этих условиях спектроскопические методы весьма полезны при идентификации получающихся соединений, которые, как ожидается, должны представлять собой вещества с уже известными спектрами, причем это достигается простым сопоставлением измеренного и известного спектров. Естественно, что такой способ идентификации веществ, как правило, значительно быстрее и дешевле элементарного анализа. Аналогичное положение имеет место зачастую и при необходимости определения примесей в образцах. Так, метод инфракрасных спектров поглощения весьма эффективен при установлении содержания воды в системах органического и неорганического происхождения. Чрезвы- [c.124]

    Полимеризация под влиянием этих катализаторов менее чувствительна к наличию примесей при образовании микроструктуры цепи, чем системы на основе лития. Следует отметить, что в определенных условиях проведения процесса, исключающих возможность попадания в систему кислородсодержащих и других соединений, литий и его органические соединения также обеспечивают возможность получения цыс-полиизопрена, аналогичного по структуре натуральному каучуку. В табл. 64 приведены физико-механические свойства ненаполненных резин из полиизо-ирена в зависимости от способа получения и структуры цепи.  [c.528]

    А. Г. Пасынским [216] для определения сольватации неэлектролитов. Именно таким способом на основании измерения скоростей ультразвука были изучены сольватации спиртов, жирных кислот, углеводов, аминокислот и некоторых других органических соединений. Измеряя скорости звука и плотности растворов разной концентрации и вычисляя соответствующие значения сольватации, можно экстраполяцией найти предельное значение сольватации, соответствующее бесконечно разбавленному раствору. Как показал опыт, величина предельной сольватации характеризует определённые группы, входящие в молекулы неэлектролитов, часто вне зависимости от структуры остальной части молекулы. Этот вывод иллюстрирует таблица 34, в которой данные о предельной сольватации, полученные на основании акустических измерений отнесённые к определённым группам в молекулах, сопоставлены с данными, полученными на основании иных физикохимических методов [217] (последние величины приведены в скобках). [c.216]

    Перед химиками, изучавшими вопрос об атомности элементов, возникла также задача выяснения способа, которым атомы связаны между собой в молекуле Только Кольбе, который так много внес в развитие органической химии и многое сделал для установления правильного состава различных соединений, превосходя своих современников широтой интуиции, проявил скептическое отношение к этой проблеме. Но период около 1860 г. был для химии поистине вулканическим он изобиловал молодыми химиками, одаренными критическим умом и относившимися с энтузиазмом к исследовательской работе. К длинному списку уже упомянутых химиков следует добавить Бутлерова, который понял важность определения строения соединений, ввел термин структура для обозначения взаимной связи между атомами и утверждал, что структура вместе с составом определяет физические и химические свойства соединений. Он нашел в теоретических взглядах Жерара богатый материал для разработки своей структурной теории, однако довольствовался изображением строения простыми формулами, не вникая в слишком сложную для того времени проблему установления расположения атомов в нространстве. Продолжая свои исследования и опираясь на идеи Кольбе и Кекуле, сходство между которыми он отметил, Бутлеров вывел различные изомеры для диброммасляной кислоты, различие которых заключается в том, замещается ли водород галогеном в метильной или в двух метиленовых группах Аналогичным способом он вывел формулы четырех бутиловых спиртов, придя таким образом к формуле третичного бутилового спирта или триметилкарбинола, который он синтезировал, обрабатывая диметил-цинк хлористым ацетилом (1864)  [c.285]

    Помимо молекулярной формулы вещества одной из наиболее полезных величин при определении структуры органических веществ является молекулярная масса. По величине молекулярной массы вещества во многих случаях можно сделать вполне квалифицированные заключения о его молекулярной формуле. Классическим способом определения молекулярной массы в течение длительного времени был метод Раста (понижение температуры замерзания растворов). Однако в настоящем издании описание Метода Раста опущено, так как этот метод не дает точных результатов для довольно широкого круга органических соединений. Для очень большого числа органических веществ удобно получать молекулярные массы с помощью метода масс-спектрометрии (разд. 3.5.2). Однако этот метод может оказаться доступным да-, леко не во всех учебных лабораториях. Простым методом, позволяющим получить сведения о молекулярной массе веществ, является осмометрия (разд. 3.5.1). Однако следует опасаться получения ошибочных слишком высоких значений молекулярной массы вследствие склонности определяемого вещества к образованию молекулярных агрегатов. Молекулярные массы или величины, находящиеся с ними в простых кратных отношениях, можно определить на основе эквивалентов нейтрализации или чисел омыления. Ввиду того что эти показатели связаны с наличием специфических функциональных групп (кислотных или аминогрупп и сложноэфирных групп соответственно), их определение описано в гл. 6. Для некоторых классов органических соединений применение масс-спектрального анализа затруднительно, и поэтому более целесообразно применять другие методы определения молекулярной массы. [c.31]

    Структура органического соединения определяется наиболее легко в том случае, если можно показать, что его физические свойства (температура плавления, температура кипения, показатель преломления, плотность, растворимость, спектры поглощения электромагнитного излученця, масс-спектр, дифракция рентгеновских лучей и т. д.) или его химические свойства идентичны свойствам ранее полученного вещества с известной структурой. Отсюда следует, что при идентификации соединений путем сравнения их свойств со свойствами известных соединений чистота имеет первостепенное значение. О чистоте данного вещества часто судят по его температуре кипения или плавления и растворимости — температура плавления обычно оказывается наиболее чувствительной к примесям и наиболее легко определяемой. В целом, однако, малые количества примесей часто оказывается трудно определить этими способами. В настоящее время становится обычным определение чистоты путем применения различных методов сверхочистки (или сверхразделения ) при этом выясняется, могут ли быть отделены какие-либо примеси и изменяются ли при этом свойства образца. [c.24]

    Показано, что МСС можно рассматривать как статистический ансамбль квазичастиц (псевдокомпонентов), средние энергетические характеристики молекулярных орбиталей которых определяют реакционную способность, термостойкость и другие свойства. Химическая активность нефтяных систем обусловлена особыми квазичастицами, включающими в определенной статистической пропорции все компоненты системы. Реакционная способность системы в целом обусловлена характеристиками электронной структуры этих частиц. Для углеводородных систем можно эмпирически определить параметры реакционной способности. Предложены способы определения энергии этих псевдомолекулярных орбиталей, основанные на установленной взаимосвязи интефальных показателей поглощения молекул органических соединений с их усредненными по составу эффективным потенциалом ионизации (ПИ) и сродством к электрону (СЗ). Установлено, что энергии псевдомолекулярных фаничных орбиталей определяют реакционную способность МСС в процессах полимеризации и олигомеризации, реакционную способность ароматических фракций в процессах карбонизации, растворимость асфальтенов. Исследованы эффективные СЭ и ПИ высокомолекулярных соединений и различных фракций, в том числе асфальто-смолистых веществ (АСВ). Доказана повышенная электронодонорная и элекфоноакцепторная способность последних. На основе представлений о поливариантности химических взаимодействий в многокомпонентных системах и образования [c.223]

    Все многообразие химических соединений, природных минералов, изобилие органических соединений живой материи обусловлено возможностью достаточно стабильного расположения атомов огромным числом способов, зависящих от пространственной конфигурации элекгронных орбит и отражающих симметрию поля сил лгежду ядром и электронами. Силы квантовомеханического взаимодействия— межатомные химические связи — удерживают атомы в определенном порядке, что и определяет структуру вещества. Ионная связь обусловлена электростатическими силами между противополох<но заряженными частицами. Ковалентная связь — [c.26]

    Более миллиона органических соединений, описанных в настоящее время, были получены синтетическими способами, при этом одно вещество превращалось в другое, которое в свою очередь превращалось в третье и т. д. Очевидно, было проведено много миллионов реакций для того, чтобы накопить такое большое число соединений. К счастью, как органические соедипе-пия, так и реакции объединяются в классы, знание которых позволяет хими- ку предсказать с высокой вероятностью успеха, какие реакции будут идти с данным соединением нри определенных условиях. Предсказания такого рода в больпюй мере основываются па рассуждении по аналогии, которое в свою очередь покоится на широком соответствии между структурой соединений и их химическим поведением. [c.26]

    Для определения строения молекул используют не только методы рентгенографии, электронографии, нейтронографии, но и другие физико-химические и химические методы. Так, способность органических соединений к ряду химических реакций во многих случаях дает возможность чисто химическим способом предположить структуру молекул. Термохимические константы органических веществ тесно связаны с особенностями их строения (работы Свенто-славского над исследованием различных форм диазотатов). В настоящее время часто используют физико-химические методы, позволяющие быстро определить некоторые особенности структуры. К ним относятся исследования спектров поглощения в ультрафиолетовой и инфракрасной областях, спектры комбинационного рассеяния, радиоспектроскопия, определение дипольных моментов ,  [c.344]

    При благоприятных обстоятельствах с помощью рентгенографических методов можно определить расположение отдельных атомов в молекуле кристаллического вещества. В случае органических кристаллических веществ этим методом можно определить не только строение, но и относительное расположение заместителей при отдельных асимметрических атомах, а также детали общей конформации. В настоящее время, когда имеются мощные вычислительные машины, становится реальным определение структуры даже очень сложных молекул, таких, как витамин В12 или протеины (например, гемоглобин). Для того чтобы определить абсолютную конфигурацию, используют аномальный фазовый сдвиг при дифракции рентгеновских лучей по методу, разработанному Бьево I]. Этим способом была надежно определена абсолютная конфигурация смешанной патрий-рубидиевой соли винной кислоты. Этот эксперимент подтвердил, что О-(-[-)-глицериновый альдегид, выбранный несколько десятилетий назад в качестве стандарта для корреляционной серии, действительно имеет абсолютную конфигурацию, предложенную Фишером. Таким обрязом, появи.лясь возможность точной интерпретации оптической активности органических соединений. [c.72]

    Для очистки растворов органических соединений от минеральных примесей в последнее время нашли применение синтетические ионообменные смолы, обладающие жестким каркасом, т. е. слабонабухающие в воде. Такие иониты, по мнению Пэтриджа [1], являются своего рода молекулярными ситами, которые способны отделять крупные органические ионы от ионов малого размера. Принцип разделения ионов при помощи синтетических ионитов, обладающих жестким каркасом, основан главным образом на различной скорости сорбции малых и крупных ионов при контакте ионита с раствором, содержащим смесь этих ионов [2—6]. Указанный способ разделения ионов нельзя сравнивать с ситовым действием неорганических сорбентов, которые способны наиболее полно разделять ионы, так как эти сорбенты благодаря кристаллической структуре обладают строго определенным размером пор [7]. Неорганические сорбенты такого рода находят применение в основном для разделения газовых смесей органических молекул с небольшим молекулярным весом, а также минеральных ионов различного размера [8, 9]. [c.164]

    Русские и зарубежные химики приступили к поискам новых методов выяснения строения органических веществ, в первую очередь непредельных соединений. В Германии Гарриесом был предложен метод озонирования. В это же время один из талантливых учеников Е. Е. Вагнера, Н. А. Прилежаев, предложил и подробно разработал чрезвычайно удобный новый метод изучения строения непредельных соединений — использование действия органических перекисей для определения местонахождения кратных связей в молекуле. Замечательная монография Н. А. Прилежаева Органические перекиси в применении их для окисления непредельных соединений [119] вышла из печати в 1912 г. (книга была посвящена памяти Е.Е. Вагнера) и сыграла большую роль в усовершенствовании способов изучения структуры веществ. Отмеченные выше недостатки перманганатного метода в значительной степени устранялись при использовании гидроперекиси бензоила в качестве окислителя непредельных соединений. Н. А. Прилежаев предложил очеиь простой, доступный способ приготовления перекиси и гидроперекиси бензоила и методику его применения для определения местонахождения кратной связи в органических соединениях, по схеме  [c.191]

    Применение ионного обмена для очистки органических ионов от примеси неионизирующихся органических соединений, от минеральных веществ или в процессах разделения сложной смеси органических электролитов привело к созданию многочисленных ионитов различного состава и различной структуры. Такое многообразие ионообменных поглотителей не случайно, оно продиктовано необходимостью тщательного подбора ионита по составу, макро-молекулярному строению и даже по форме (гранулы определенного размера, пленка, волокно) в зависимости от состава исследуемой смеси, от выбранного способа ее разделения, от условий проведения этого процесса. [c.7]

    Там, где отсутствуют полные структурные данные, еще более затруднено доказательство того, что координационное соединение полимерно. В очень немногих случаях молекулярный вес определялся способом, обычным для органических полимеров, так как в большинстве случаев нет подходящего растворителя для определения молекулярного веса. Поскольку трудно определить полимерный характер многих неорганических веществ, то имеется заметная тенденция описывать многие нерастворимые и инертные или лхшкие и смолоподобные продукты как полимеры. В этом случае действовали по принципу если вещество имеет физические свойства, типичные для органических полимеров, то оно полимерно. Кроме того, для отнесения к полимерной структуре часто основываются на химическом анализе. Если состав вещества такой, что есть недостаток донорных групп вокруг координационного центра, то, как нредиолагается, для достижения обычной координационной конфигурации должна происходить полимеризация. Все эти приемы не доказывают характер структуры, хотя, взятые вместе, они могут служить признаком полимерной структуры. [c.349]

    Основные усилия органиков направлены на подробное исследование физических свойств молекул и способов их взаимодействия. Эти сслвдо вания можно разделить на три тесно примыкающие общие группы. Во-первых, это изучение структуры молекул их формы и размера, направления и напряжения связей, электронных и спектральных эффектов, присутствия или отсутствия резонанса и эффекта стабилизации резонансом. Во-вторых,. это изучение кинетики скоростей взаимодействия молекул и влияния на них структурных факторов и внешнего окружения. В-третьих, это исследование механизмов реакций — область, в значительной степени охватывающая две предыдущие. Во всех описанных в этой главе сложных превращениях — окислении спиртов, образовании амидов, ангидридов и сложных эфиров, а также при всех реакциях, представленных ка рис. 21.27, должно происходить определенное число сложных атомных перегруппировок при переходе одних соединений в другие. Важная задача органической химии состоит в разработке теорий, позволяющих понять детали многостадийных процессов, посредством которых молекулы сталкиваются и взаимодействуют с образованием новых веществ. Мы рассмотрим некоторые из них в гл. 22 и 23. [c.168]


Смотреть страницы где упоминается термин Способы определения структуры органических соединений: [c.116]    [c.117]    [c.95]    [c.196]    [c.276]    [c.19]    [c.5]    [c.406]    [c.90]    [c.165]    [c.223]    [c.7]    [c.8]    [c.157]    [c.517]   
Смотреть главы в:

Органическая химия -> Способы определения структуры органических соединений




ПОИСК





Смотрите так же термины и статьи:

Соединение определение

Структура органических соединений



© 2025 chem21.info Реклама на сайте