Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуктуации в непрерывных системах

    Теория флуктуаций является ключом к пониманию ряда физических явлений. Малые флуктуации в системе происходят непрерывно и имеют определенные физические следствия. Так, наличие микронеоднородностей в системе, обусловленных флуктуациями плотности, флуктуациями ориентации (если молекулы полярные), а в случае двух- и многокомпонентных систем — также флуктуациями концентрации, сказывается на рассеянии света данной системой. [c.127]


    ФЛУКТУАЦИИ В НЕПРЕРЫВНЫХ СИСТЕМАХ [c.312]

    Первая проблема— термодинамические основы жизни. Отличие живого организма от тел неживой природы состоит в исключительно высокой упорядоченности организма, подобного в этом смысле апериодическому кристаллу , к способности этой упорядоченности поддерживать себя и производить упорядоченные явления. Речь идет о саморегуляции и самовоспроизведении организмов и клеток. Шредингер объяснил эту особенность тем, что организм — открытая система, существующая в неравновесном состоянии благодаря потоку энтропии во внешнюю среду. Организмы непрерывно создают порядок из порядка , извлекают упорядоченность из окружающей среды в виде хорошо упорядоченного состояния материи в пищевых продуктах . Шредингер отвечает на вопрос о причине макро-скопичности, многоатомности организма. В системе, состоящей из малого числа атомов, флуктуации должны уничтожать упорядоченность. Именно благодаря многоатомности организм существует в соответствии с законами термодинамики. [c.16]

    Следует отметить, что в изолированной системе могут протекать только самопроизвольные процессы, которые приводят неравновесную систему в равновесное состояние. Равновесная система не может самопроизвольно выйти из этого состояния. Например, газ не может самопроизвольно подвергаться сжатию от равновесного до более высокого давления. Это определяется тем, что равновесное состояние газа в заданном объеме является наиболее вероятным, а отклонения от равновесия в макрообъеме маловероятным процессом. В то же время в открытой системе процессы могут проходить с различными по величине флуктуациями, и эти флуктуации не могут обеспечить переход к равновесию. В открытых системах действует закон одновременного и непрерывного протекания самопроизвольных и несамопроизвольных процессов. [c.10]

    Лазер как диффузионная система 307 Глава 12. Флуктуации в непрерывных системах 312 [c.4]

    Блок-схема системы регистрации, использованная в работе [684], приведена на рис. 21. Одновременно со счетом импульсов происходит их регистрация осциллографом, работающим в режиме временной развертки. Регистрирующую аппаратуру настраивают таким образом, что она реагирует только на импульсы, амплитуда которых превышает некоторый заданный уровень дискриминации. Это уменьшает вероятность счета ложных импульсов, вызываемых флуктуациями непрерывного фона. Оптимальные условия регистрации в сцинтилляционном методе обеспечиваются также частотной селекцией, отделяющей сигнал от высокочастотных компонентов шумов источника и фотоумножителя. Полоса пропускания регистрирующего устройства должна соответствовать [c.68]


    Важной особенностью режима с неоднозначно определяемыми концентрациями является возможность неполного превращения исходных и промежуточных реагентов на выходе системы. Такой срыв режима возможен в результате выхода непрерывно изменяющихся концентраций (например, под действием флуктуаций в стехиометрической подаче исходных реагентов в систему) за пределы допустимого диапазона. Возврат на исходный режим путем изменения величины рецикла оказывается невозможным и необходимо изменение соотношения исходных реагентов в сырье по специальной программе. [c.132]

    Полагают также, что и в галактическом диске Млечного пути, к которому принадлежит наша Солнечная система, элементы, первоначально рассеявшиеся в космическом пространстве при взрыве сверхновых звезд, повторно сгруппировались и стали первичным веществом неподвижных звезд. На рис. 1.3 схематически изображен этот процесс. Водород и прочие частицы находятся в космосе в газообразном состоянии и содержатся в чрезвычайно малой концентрации, при этом следует отметить, что на долю протонов приходится почти всей массы звезды. Возникающие между частицами такого разреженного газа флуктуации плотности развиваются, усиливаются и приводят к скоплениям, обладающим высокой плотностью. Часть их эволюционирует до неподвижных звезд, освободившаяся в результате сжатия энергия гравитации превращается в тепловую энергию, и температура внутренних областей сильно возрастает. Когда температура достигнет 10 К, начинаются процессы, изображенные уравнениями (1.1) —(1.3). Образующаяся при этом энергия испускается в пространство, проявляясь в виде непрерывного яркого свечения. В системе Млечного пути можно во множестве наблюдать различные фазы описанного цикла. В звездах, отличающихся от звезд главной после- [c.20]

    Одно из девяти сочетаний Г/Г в обычных условиях не может образовать коллоидной системы, так как газы при любых соотношениях дают истинные растворы. Однако и газы могут проявлять некоторые свойства коллоидных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе. Ближе к коллоидным системам жидкие растворы, в которых молекулы растворителя и растворенного вещества значительно отличаются по размерам и природе. К таким растворам относятся растворы сильно ассоциирующих веществ и растворы полимеров, которые при определенных условиях могут образовывать ассоциативные и молекулярные гетерогенные дисперсные системы. Размеры молекул (ассоциатов) растворенного вещества иногда превышают размеры обычных коллоидных частиц. Эти системы обладают многими свойствами, характерными для типичных гетерогенно-дисперсных систем. Они как бы связывают в единое целое все дисперсные системы и указывают на непрерывность перехода от истинных растворов к истинным гетерогенным дисперсным системам. [c.14]

    Так как возникновение -поверхности раздела фаз сопровождается затратой энергии, то для образования зародыша кристаллизации необходимо преодоление определенного энергетического барьера. Местное увеличение свободной энергии, обусловливающее возможность образования областей новой фазы, может происходить вследствие появления в гомогенной системе флуктуаций, т. е. сгустков с иным значением свойств и степени упорядочения в результате непрерывного движения ионов или молекул жидкости. [c.220]

    Система подачи растворителя состоит из резервуаров для растворителей, насосной системы для создания потока растворителя с определенной скоростью и фильтров. Основными требованиями являются следующие система не должна вносить каких-либо загрязнений в подвижную фазу должна обеспечивать непрерывную подачу растворителя без флуктуаций расхода и давления, гарантировать отсутствие подачи пузырьков воздуха. [c.47]

    Изучение броуновского движения позволяет сделать еще один важный вывод. Если из всей исследуемой коллоидной системы выделить микроскопически малый объем и наблюдать за ним с помощью ультрамикроскопа, то можно видеть, что одни частицы будут проникать в этот объем, другие же будут из него выходить. Таким образом, число частиц в данном микроскопическом объеме будет непрерывно изменяться, колеблясь то в сторону уменьщения, то в сторону увеличения. Такое явление называется флуктуацией. [c.27]

    Однако, решив задачу механики, мы еще не решим термодинамическую проблему. Найденное решение позволит определить импульсы и координаты частиц в любой момент времени на основании данных о начальных координатах и импульсах. Однако, имея подобный набор величин, мы окажемся в большом затруднении при сопоставлении теории с опытными данными. Это объясняется качественным отличием параметров, входящих в молекулярную и в макроскопическую теорию. Например, температура и энтропия вообще не используются при динамическом описании свойств системы. Более того, для макроскопических систем, построенных из огромного числа частиц, нас совсем не интересуют первичные данные молекулярной механики от импульсах и координатах частиц, а требуются только сведения о некоторых усредненных параметрах системы или их средних отклонениях (флуктуациях). Это связано с тем, что в макроскопическом эксперименте все системы ведут себя в среднем одинаково, хотя расположение отдельных молекул и их скорости непрерывно изменяются. Поэтому для сопоставления теории с опытом решение определенной задачи механики требуется усреднить по времени и по всем начальным конфигурациям системы. В аналитической механике такая задача вообще не имеет решения, если число частиц больше или равно трем. Макроскопические системы содержат неизмеримо большее число частиц. Тем не менее решение подобной задачи, долгое время казавшееся чисто символической операцией, в настоящее время стало привлекать большое внимание. Развитие вычислительной математики позволило численно проинтегрировать уравнения механики для достаточно большого числа частиц, когда совокупность молекул уже можно рассматривать как малую часть макроскопической системы. В ряде случаев систему моделируют путем периодического повторения специально подбираемого блока молекул. Определяемые для этой модели средние значения, конечно, не являются точными аналогами измеряемых на опыте вели- [c.187]


    Если выражение в левой части (VI.45) отрицательно, состояние равновесия системы неустойчиво при заданных внешних условиях ему отвечает не максимум, а минимум вероятности [минимум функции / (X)]. Следовательно, флуктуационные процессы выведут систему из заданного состояния, система придет в другое состояние, обладающее наибольшей вероятностью при заданных условиях. Привести систему в состояние устойчивого равновесия может процесс разделения однородной системы на фазы. Состояние однородной системы, неустойчивое относительно флуктуаций или, как еще говорят, относительно непрерывных изменений, называют лабильным. Неравенство (VI.45) в термодинамике называют условием устойчивости системы относительно непрерывных изменений состояния. При отрицательном знаке выражения в левой части происходит разделение системы на фазы. [c.137]

    Классификация систем по дисперсности условна в том отношении, что последняя может меняться непрерывно, так что качественное различие имеет место лишь вдали от границ и исчезает при приближении к ним. Дисперсные системы могут быть классифицированы по агрегатному состоянию дисперсной фазы и дисперсной среды. Примеры соответствующих двухфазных систем приведены в табл. 12.1. Отметим только невозможность случая Г—Г, так как смеси газов представляют собой, вообще говоря, гомогенные системы. Тем не менее даже и в этом случае иногда приходится принимать во внимание флуктуации плотности. Именно их наличием, например, и связанным с этим светорассеянием объясняется голубой цвет неба если бы атмосфера была совершенно однородна, она была бы оптически пуста, и цвет неба был бы черным. [c.257]

    Таким образом, в системах типа Лотка — Вольтерра имеется непрерывный спектр частот вращения по бесконечному множеству циклов, каждый из которых реализуется при подходящих начальных условиях (см разд. 14.5 и 14.7). Каждый цикл является состоянием на границе устойчивости, т. е. таким состоянием, для которого даже малого возмущения достаточно для изменения движения системы — движения по новому циклу с соответствующей частотой. Иначе говоря, в системах типа Лотка — Вольтерра нет механизма, обеспечивающего распад флуктуаций, следовательно, нет и никакой средней орбиты, в окрестности которой могла бы находиться система. Эта ситуация иллюстрируется рис. 14.2 на плоскости X, У. [c.211]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]

    Конденсационное пылеулавливание (растворение, кристаллизация, истирание и т. д.) рассматривается как процесс эволюции во времени большой системы дисперсных частиц. Рост одиночной частицы шаровой формы из переохлажденного пара или газа, пересыщенного парами жидкости, подчиняется общим законам гидродинамики и тепло-массообмена в сплошных средах, которые позволяют достаточно точно предсказать скорость ее роста. Если анализировать усредненное поведение ансамбля одинаковых частиц, то можно говорить о среднем непрерывном изменении размера частиц на фоне флуктуаций этого изменения. Скорость изменения объема частиц в ансамбле можно представить как сумму средней непрерывной скорости роста (т1( 0) и случайной функции времени п (т), отражающей колебания мгновенной скорости роста относительно среднего значения [98]  [c.685]

    Современные представления о взвешенном слое строятся на предположении о том, что слой можно рассматривать как сложную диссипативную структуру, которая возникает в результате диссипации части энергии, подводимой к системе сплошной фазой. Гидромеханическая неустойчивость системы, как правило, связана с неравномерным подводом энергии, что и приводит к возникновению различного рода флуктуаций. Причинами флуктуаций могут быть неравномерность скорости жидкости на входе в слой, пристеночные эффекты, каналообразование — все эти факторы претерпевают непрерывное изменение во времени. По существу, мы имеем дело со статистическими диссипативными структурами. Однако рассматриваемые системы являются статистически стационарными, то есть случайные процессы изменения во времени основных гидродинамических параметров относятся к классу стационарных в широком смысле случайных процессов [36]. [c.195]

    Известно, что такие изменения, называемые флуктуациями, происходят внутри каждой термодинамической системы и необходимо присущи любому термодинамическому равновесию. Каждое такое состояние равновесия включает в себя кинетические процессы прямого и обратного переноса молекул и энергии от одного места системы к другому. И как раз этот непрерывный обмен необходим для того, чтобы равновесие устанавливалось вслед за любым изменением макроскопических параметров состояния. Каждое такое изменение, вызываемое внешними силами, в первый момент нарушает равенство прямого и обратного потоков и приводит к одностороннему переносу молекул или энергии, который сохраняется до тех пор, пока возросший обратный перенос вновь не сравняется с прямым. С этой игрой молекулярных обменов необходимо связаны флуктуации плотности и энергии в микроскопических областях. [c.83]

    Применение двойного коллектора имеет преимущество даже при работе с ионными источниками с электронной бомбардировкой [167], которые намного стабильнее искровых источников. Обычно при системе с двойным коллектором непрерывно регистрируется отношение двух пиков. Это фактически исключает ошибки, связанные с флуктуациями полной интенсивности ионного пучка, Используя такой метод, Нир, Ней и Инграм смогли сравнивать относительные распространенности изотопов в двух образцах с очень близким изотопным составом. Величины отношения распространенностей были порядка 100. Оказалось, что возможно сравнение этих отношений с точностью приблизительно 0,05%. [c.97]

    ФЛУКТУАЦИИ В НЕПРЕРЫВНО ВЫРОЖДЕННЫХ СИСТЕМАХ [c.153]

    Во многих системах параметр упорядочения — многокомпонентная величина ф(х), обладающая симметрией по отношению к непрерывной группе преобразований в пространстве ф. Непрерывно вырожденные системы обладают той особенностью, что флуктуации в них не малы при всех температурах в упорядоченной фазе. В этой главе обсуждаются особенности поведения различных непрерывных вырожденных трехмерных систем. [c.153]

    В дальнейшем было установлено, что светорассеяние не является особым свойством гетерогенно-дисперсных систем. Оно характерно также для газов, чистых жидкостей и истинных растворов. Рассеяние света в этих системах обусловлено флуктуациями плотности и концентрации — непрерывным возникновением и исчезновением ассоциатов. В совершенно однородной среде свет не должен рассеиваться. В соответствии с принципом Гюйгенса каждую точку среды, до которой дошел фронт волны, можно рассматривать как новый источник колебаний. Вторичные колебания усиливают друг друга в направлении распространения волны и гасятся в других направлениях. Расс.матривая таким образом распространение волнового фронта, можно заключить, что в однородной изотропной среде он всегда остается геометрически подобным себе, например, плоская волна будет оставаться плоской. Если же на пути распространения плоской волны появляется локальная неоднородность (с другим показателем преломления), то каждая точка неоднородности станет [c.295]

    Причины нестабильности размеров могут быть различными. Основная причина появления отклонений типа а заключается в непрерывных флуктуациях температуры, давления и состава (при экструзии композиций) расплава. Отклонения в размерах типа б обычно связаны с дефектами конструкции головки. В разд. 7.13 отмечалось, что способность системы к демпфированию поступающих на вход композиционных неоднородностей определяется видом функции распределения времен пребывания (РВП). Трудно ожидать, что узкие функции РВП, типичные для существующего в головках, потока под давлением будут существенно уменьшать концентрационную или температурную неоднородность за счет смешения. Следовательно, на входе в головку необходимо обеспечить достаточно высокую стабильность температуры и давления, которая определяется конструкцией установленного перед головкой пластицирующего и транспортирующего расплав оборудования. Неправильно организованная транспортировка твердых частиц полимера, разрушение пробки, неполное плавление, малоэффективное смешение или его отсутствие вследствие чрезмерной глубины канала в зоне гомогенизации, отсутствие смесительных или фильтрующих устройств может привести к значительным колебаниям температуры и давления поступающего к головке расплава. Примеры допустимых и недопустимых колебаний температуры и давления расплава ПЭНП на входе в головку приведены на рис. 13.3. [c.462]

    Сводный график на рис. 1 дает представление о характере рассеяния света в СО2 выше и ниже критической точки. Рассеяние и вызывающие его флуктуации плот- ности сильнее выражены в Ш области закритических состояний вещества, чем в докритической. Это хорошо щ видно, если в координатах Т—р построить линии равного рассеяния. Получаются языки, асимметричные относительно критической точки. Они сильно вытянуты за [ Рассеяние спета в СО критическую точку. Асимметрия языков связана с тем, что на закритических изотермах реализуется вся последовательность однородных состояний с непрерывно меняющс 1ся плотностью, а при Т<сТр, существуют участки метастабилыгых и лабильных состояний, включающие критическую плотность, через которые система перескакивает при равновесном фазовом переходе. Гомогенная нуклеация в метастабильной фазе является механизмом, который ограничивает уровень флуктуаций в системе. [c.297]

    Первый постулат о термодинамическом равновесии приводит не только к нижнему пределу применимости термодинамики (системы с малым число.м частиц Л - 1), но и ограничивает ее применение к реальным системам сверху, так как для систем галактических размеров этот юстулат не имеет места не учитываемое обычно в земных условиях гравитационное взаимодействие между частицами в случае очень больших систем приводит к качес1венно. новому их поведению — возникновению непрерывно сменяющих друг друга больших флуктуаций. Такие системы одинаково часто как приближаются к некоторому среднему равновесию, так и удаляются от него. [c.18]

    Как уже говорилось ранее, нефтяные системы в точках структурных фазовых переходов становятся аномально чувствительным к флуктуациям технологических параметров и внешним воздействиям. Поэтому, определив ме-стоположение таких точек для конкретного термического процесса, можно подобрать соответствующие малые воздействия, положительно влияющие на характеристики целевого продукта. Современные технологические процессы являются непрерывными, либо полунепрерывными. Их можно модифицировать путем врезок в схему оборудования, осуществляюп5его непрерывное воздействие на движущийся поток сырья в точках структурных фазовых переходов. Число таких врезок зависит от количества реализуемых в данном процессе фазовых переходов, а тип дополнительного оборудования - от характера предполагаемого эффекта. Например, принципиальная схема модифицированной таким образом установки производства нефтяного пека будет выглядеть так, как показано иа рис. 10. Как и в случае с нагревательными печами на этапе проектирования технологических схем необходимо проводить расчет местоположения точек фазовык переходов. [c.23]

    Мезофазные сферы в момент их возникновения и при последующем росте, по данным световой микроскопии в поляризованном свете, а также дифракционного и рентгеноструктурного анализов, являются оптически одноосными положительными кристаллами гегсагональной системы. Показанные на рис. 2-4, а изгибы слоев приводят к тому, что на краях они перпендикулярны к касательной поверхности сферы. Это, по-видимому, способствует начальной коалесценции. В условиях относительно низкой подвижности мезофазы и случайной взаимной ориентации коалесцирующих сфер образования простой слоистой структуры не происходит. При этом возникают структуры, отличающиеся множеством дефектов упаковки слоев линейных, изгибов, нарушений непрерывности. Исследования профилей рефлексов (002) рентгенограмм мезофазы с учетом эффектов гьбсорбции и поляризации рентгеновских лучей, а также фактора рассеяния атомов углерода показывают, что средние значения межслоевого расстояния 002 равны примерно 0,350 нм [2-89]. Отдельные пачки слоев с разными значениями межслоевого расстояния имеют размеры до 2 нм. При нагревании сферы мезофазы могут расщепляться и приобретать относительно плоскую конфигурацию. То же происходит и при графитации мезофазы. Флуктуация межслоевых расстояний у графитирующейся мезофазы наивысшая. [c.46]

    Наблюдение за процессом формирования должно сопровождаться выделением временного интервала, превышаюш,его время формирования зародыша новой фазы и время фазового разделения. Важно, чтобы в этот интервал попадал монотонный характер поведения спинодального распада. Следовательно, вхождение в область неустойчивости должно быть быстрым, но неглубоким по степени пресьщения. Но малость степени пересьщения ограничивается уровнем среднеквадратичных флуктуаций. Кроме того, в процессе наблюдения не должен развиваться конвективный поток. В работе приведены конкретные оценки условий отсутствия конвекции, а также сформулированы требования, которым должны удовлетворять параметры системы для регистрирования изменений в структуре жидкости. Согласно динамической перколяционной модели капельки образуют непрерывный кластер. Если считать, что максимальное смещение 5=(Вт) , приводящее к [c.8]

    Проведенный анализ, конечно, нельзя считать исчерпывающим Одно из дополнительных возможных объяснений основано на рассмотрении метода нриготовления образцов. В связи с тем, что температуры стеклования исходных полимеров различаются более чем на 100 °С, при температурах приготовления образцов (от 280 до 330 °С) ПС представляет собой относительно маловязкую жидкость. Поэтому можно предположить, что сначала полистирол образует непрерывную фазу, в пределах которой диспергируется ПОФ. Далее процесс смешения протекает по механизму взаимной диффузии, однако после охлаждения остаются все же области, обогащенные тем или иным компонентом. С другой стороны, в смесях 75% ПОФ — 25% ПС первый компонент присутствует в таком избытке, что уже он образует непрерывную фазу. Далее следует дополнительно предположить, что объяснения различных механизмов потерь следует искать только в поведении непрерывной фазы, поскольку полимерные кластеры, образующие дисперсную фазу, слишком малы, чтобы оказать заметное влияние на потери в образце, по крайней мере в тех случаях, когда наблюдается З-образный характер кривых. В подобного рода представлениях предполагается, что размеры композиционных флуктуаций намного меньше, чем в обычных системах с непрерывно дисперсной фазой. Если это не так, то не должно было бы наблюдаться никакого совмещения (по любым критериям) для всех смесей вне зависимости от их состава и обнаруживались бы две температуры стеклования, характерные для отдельных компонентов. [c.139]

    Леггетг анализировал динамику перехода между начальными < / и конечными состояниями квантовой системы, находящейся в диссипативном равновесном окружении (термостат, физический вакуум). Окружение авторы представляют виде сообщества гармонических осцилляторов, образующих почти непрерывный частотный (т. е. энергетический) спектр. Осцилляторы окружения взаимодействуют с уровнями энергии квантовой системы через равновесные флуктуации окружения. Это взаимодействие приводит к расщеплению и смещению уровней квантового состояния и уровней соответствующих осцилляторов. Это означает, что совокупность гармонических осцилляторов должна содержать все состояния, соответствующие любому квантовому состоянию исследуемой системы. Оценка вероятности перехода проводится при предположении о том, что переход происходит из статистически усредненного уровня начального состояния на все уровни конечного состояния. Чем больше разница между энергиями начального и конечного уровней, тем меньше вероятность перехода. Поэтому [c.125]

    Книга посвящена систематическому изложению современной теории фазовых переходов. В ней изложены теоретические представления, необходимые для описания взаимодействующих критических флуктуаций (гипотеза подобия, алгебра флуктуирующих величин, конформная инвариантность, ренормгрушха). Теория применяется для описания конкретных явлений. Проводится сопоставление с экспериментом. Особое внимание уделено системам с непрерывной группой симметрии (сверхтекучая жидкость, гейзенберговский магнетик), свойства которых при всех температурах ниже точки перехода определяются сильными гидродинамическими флуктуациями. Книга содержит много оригинальных результатов. Большинство вопросов, затронутых в книге, никогда не излагалось в систематической форме. [c.2]

    В псевдоожиженных системах частицы непрерывно меняют взаимное расположение, что может приводить к образованию отдельных полостей, свободных, как обычно считают, от твердых частиц. Причина таких флуктуаций с падающими иw и неподвижно закрепленными частицами показана во многих работах. Так, П. Н. Роу и Д. А. Хинвуд [1], И. Хаппель и Р. Пфеффер [2], М. С. Смолу-ховский [3] и другие [4—6] установили, что суммарное сопротивление двух последовательно падающих сфер менее удвоенного сопротивления единичной, если эти сферы достаточно близки одна к другой. По X. Факсену [5], две последовательно расположенные и равные по размеру соприкасающиеся сферы падают на 55% быстрее, чем единичная сфера. Если сферы расположены на небольшом расстоянии одна от другой, то последующая сфера догоняет предыдущую [6], если только первоначальное расстояние не очень велико, или не очень малы значения критерия Рейнольдса [2]. Таким образом, сведение двух сфер в один агрегат приведет в псевдоожижен-Н0Л1 слое к удалению этого агрегата от расположенных выше частиц, создавая условия для возникнове1Шя элементарной полости. [c.22]

    Энтропия является величиной аддитивной и пропорциональна числу частиц в системе. Поэтому для систем с большим числом частиц даже самое ничтожное относительное изменение энтропии существенно меняет ее абсолютную величину изменение же энтропии, стоящей в показателе экспоненты в ур-нии (2), приводит к изменению вероятности W в огромное число раз. Именно этот факт является причиной того, что для системы с большим числом частиц вероятностная природа В. 3. т. не проявляется и его следствия практически имегот характер достоверности. Крайне маловероятные процессы, сопровождающиеся сколько-нибудь заметным уменьшением энтропии, требуют столь огромных вре.мен ожидания, что их реализация является практически невозможной. В то же время малые части системы, содержащие небольшое число частиц, испытывают непрерывные флуктуации, сопровождающиеся лишь небольшим абсолютным изменением энтропии. Средние размеры этих флуктуаций являются таким же достоверным следствием статистич. термодинамики, как и сам В. з. т. [c.335]


Смотреть страницы где упоминается термин Флуктуации в непрерывных системах: [c.45]    [c.529]    [c.145]    [c.160]    [c.113]    [c.294]    [c.16]   
Смотреть главы в:

Стохастические процессы в физике и химии -> Флуктуации в непрерывных системах

Стохастические процессы в физике и химии -> Флуктуации в непрерывных системах




ПОИСК





Смотрите так же термины и статьи:

Система непрерывная

Флуктуации



© 2025 chem21.info Реклама на сайте