Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конверсия окиси углерода без давления

    Очищенный газ подогревается в теплообменнике 4, смешивается с необходимым количеством водяного пара, имеющим температуру 380—400 °С, и поступает сверху в печь (конвертор) 7, в которой происходит конверсия углеводородов в водород и окись углерода. В конверторе имеются вертикальные двухходовые реакционные трубы (рис. 5) из хромоникелевого сплава, в которых помещен катализатор. Тепло, необходимое для проведения эндотермической реакции конверсии, получают сжиганием природного газа в инжекционных горелках печи 7 (см. рис. 4). Отходящие газы имеют температуру около 850 °С и их тепло используется в котле-утилизаторе 8 для получения пара давлением 40 ат. В катализаторной зоне температура достигает 750—800°С. [c.30]


    Теоретически производство метанола из природного газа — легко осуществимый процесс, однако на практике это оказалось весьма трудным делом. Природный газ в условиях повышенного давления и при температуре около 800—820°С подвергается разложению паром с целью получения смеси окиси углерода и водорода. Избыток водорода удаляется, иначе говоря, соотношение водорода и окиси углерода тем или иным способом подгоняется к отношению 2 1, водород и окись углерода взаимодействуют в присутствии катализатора, образуя метанол, в соответствии с последовательно протекающими реакциями, приведенными ниже паровая конверсия метана [c.221]

    Полученные из метана смеси окиси углерода и водорода переводят реакцией с избытком водяного пара в смесь двуокиси углерода и водорода. Двуокись углерода отмывают водой под давлением 25 ama или раствором этаноламина промытый газ затем компримируют до рабочего давления и удаляют окись углерода промывкой аммиачным раствором формиата одновалентной меди-. После этой обработки остается водород, пригодный для проведения синтеза аммиака. Азот получают двумя способами. По первому способу азот выделяют ректификацией ожиженного воздуха в этом случае кислород можно использовать для частичного сожжения метана. По второму способу сначала проводят конверсию метана с водяным паром при 700°, с тем чтобы в продуктах реакции осталось значительное количество непрореагировавшего углеводорода. Затем к горячей газовой смеси добавляют воздух в таком количестве, чтобы достичь нужного для синтеза аммиака [c.51]

    Реакция (а) имеет различные технические применения. Равновесие водяного пара по (а) с добавкой не участвующего в реакции азота создается при газификации угля. Через раскаленный уголь продувают последовательно воздух и водяной пар. Вследствие высокой температуры часть двуокиси угле -рода диссоциирует, но вместе с тем происходит и догорание окиси углерод а в двуокись углерода. В то же время окись углерод а образуется и вследствие неполного сгорания углерода по реакции (б), в которой одновременно от распада водяного пара образуется водород. В зависимости от цели конверсии (т. е. переработки газов для изменения их состава) стремятся обогатить равновесную смесь водородом или окисью углерода. Очистку от СОз производят поглощением водой или щелочными растворами под давлением. Смесь СО -f На является сырьем для синтеза спиртов, бензина и т. д. Избыток водяного пара используется при подготовке смеси водорода с азотом воздуха для синтеза аммиака. Эффективность действия избытка массы водяного пара возрастает при понижении температуры, когда константа равновесия превышает единицу. Вычисление, аналогичное выполненному выше, показывает, что при Кр — 1,375 (Г 1000° К) десятикратный избыток водяного пара обеспечивает полноту реакции 97%. При высоких температурах эффективность действия избытка массы одного из исходных веществ становится меньше при Кр ж 0,5 Т ж 1350° К) полнота реакции для того же значения у = 10 составляет 84%. [c.327]


    Основным фактором, который необходимо учитывать при выборе варианта с непосредственным впрыском или с установкой котла-утилизатора, является назначение пара высокого давления потребляется ли он только для использования в качестве технологического непосредственно на установке или имеются другие потребители пара, не связанные с производством синтез-газа. На установках производства тоннажного водорода окись углерода, содержащаяся в синтез-газе, конвертируется на специальном катализаторе путем взаимодействия с водяным паром для получения добавочного водорода с одновременным образованием двуокиси углерода. На таких установках весь вырабатываемый пар высокого давления потребляется на ступени конверсии окиси углерода для последующей очистки целевого водорода и удовлетворения других энергетических потребностей. [c.184]

    Сущность одной из них состоит в том, что конвертированный газ направляется на разделение методом короткоцикловой адсорбции на молекулярных ситах [37]. В результате получают отдельно окись и двуокись углерода и технический водород. Применение такой схемы предпочтительно, когда наряду с водородом требуется получить окись углерода. К недостаткам ее следует отнести сложность управления, снижение выхода водорода, а также то, что водород получают при давлении, близком к атмосферному (так как десорбция осуществляется сбросом давления). Перечисленные недостатки отсутствуют при получении водорода по схеме III, которая заключается в поглощении углекислоты окисью кальция на стадии конверсии углеродов. Поглощение углекислоты позволяет сдвинуть равновесие реакций (5) и (8) вправо, что дает возможность получить конвертированный газ с малым содержанием окислов углерода и направить его на стадию метанирования, минуя другие стадии. Другим преимуществом этой схемы является более высокая равновесная степень превращения метана, достигаемая вследствие вывода углекислоты из зоны реакции [38]. [c.249]

    Синтез метанола из окиси углерода и водорода температура 400°, давление ат Окись меди с окисью магния на 1 г-экв этих соединений добавляют 0,05 г-экв закиси кобальта в качестве добавок можно применять фосфат кобальта, борат кобальта, сульфид кобальта и селенид кобальта сульфид кобальта дает наиболее высокую конверсию окиси углерода в этиловый спирт сульфиды железа и молибдена менее активны, никель не активен 3301 [c.55]

    При производстве азотной кислоты под давлением 7,3 ат отходящие из абсорбционной колонны газы, пройдя сепаратор, поступают в узел каталитической очистки от окислов азота. Здесь нитрозные газы на катализаторах из палладированной окиси алюминия восстанавливаются до элементарного азота. Газом-восстановителем являются продукты конверсии метана — водород и окись углерода. [c.69]

    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]

    Условия работы. Характерным для реакции гидроформилирования является влияние температуры и концентрации катализатора [135]. При температуре ниже 100° С, атмосферном давлении и молярном соотношении окись углерода водород, равном 1 1, реакция протекает медленно, по с хорошей конверсией при температуре 130—150° С и давлении от 150 до 200 ат реакция протекает очень бурно. [c.460]

    Газ после двухступенчатой конверсии на водород содержит 2— 4 объемн. % 00. Ее извлекают водными растворами аммиачных комплексов солей одновалентной меди (формиатов или ацетатов). Под давлением и при обычной температуре комплексы поглощают окись углерода в количестве 1 моль на 1 г-атом меди  [c.127]


    Смесь газа и реакционной жидкости выходит с верха колонны I, охлаждается водой в холодильнике 9 и попадает в сепаратор 10 высокого давления. В нем окись углерода и водород отделяются от жидкости, а непрореагировавший пропилен (степень конверсии более 90%) и пропан остаются главным образом в жидкой фазе. Газ циркуляционным компрессором 6, компенсирующим потери давления в аппаратуре, снова подают на реакцию, но часть его выводят из системы во избежание чрезмерного накопления инертных примесей. Жидкость из сепаратора 10 проходит редукционный клапан 11. где ее давление снижается почти до атмосферного, и попадает в сепаратор 12 низкого давления. Там отделяются растворенные газы (в том числе пропилен и пропан) и происходит частичное разложение карбонилов кобальта с выделением окиси углерода. Так как с газом уносится значитель- [c.754]

    Поэтому представляется целесообразным при осуществлении двухстадийного синтеза метанола смесь водорода и окиси углерода, получаемую конверсией метана и находящуюся под давлением 10—15 ат (при этом давлении проводится конверсия метана), подавать сначала на стадию гидрирования метилформиата без дополнительного сжатия. На этой стадии имеющийся в газе водород следует возможно полнее использовать, а отходящий газ, содержащий в качестве основного компонента окись углерода, сжимать до 50 ат и направлять на стадию образования метилформиата. При таком осуществлении процесса сжатию (до 50 ат) будет подвергаться всего около Vз газа, расходуемого на синтез метанола. [c.156]

    На схеме 9 показано получение технологического газа газификацией каменного угля (или других видов твердого топлива). Газ, полученный в результате переработки этого вида сырья, подвергают многоступенчатой очистке от пыли в циклонах, скруббере, орошаемом водой, и мокропленочном электрофильтре. Затем с помощью раствора моноэтаноламина газ очищают от сероводорода и частично от двуокиси углерода. Эта очистка предшествует стадии конверсии окиси углерода. Газ после конверсии СО очищают известными абсорбционными способами двуокись углерода поглощается водой, окись углерода — медно-аммиачным раствором. Для окончательного удаления СО2 после медно-аммиачной очистки газ промывают раствором аммиака при давлении 302,8-10 —313,6-10 Па (310— 320 кгс/см2). Чтобы обеспечить требуемую степень чистоты азоте-водородной смеси, перед синтезом аммиака проводят каталитическое гидрирование кислородсодержащих примесей в аппаратах пред-катализа (давление процесса 294-10 —313,6-10 Па 300— 320 кгс/см ). [c.20]

    Этот метод находится еще в стадии разработки (бывш. 1G, Оппау, Саксе). Тепло, требуемое для образования ацетилена, выделяется непосредственно в процессе сжигания метана, который сжигают при недостатке воздуха. Исходным сырьем может служить газ, поступающий с коксовых заводов, или метан, получаемый по способу Лурги газификацией под давлением (стр. 90) с предварительным отделением метана на установке Линде. При этом получаются водород с примесью азота (который может быть использован для синтеза аммиака), окись углерода (которую можно подвергнуть конверсии) и, наконец, насыщенные и ненасыщенные углеводороды. [c.186]

    Теоретически для полного окисления одного объема метана в водород и окись углерода требуется один объем водяного пара. Однако на практике для достижения максимальной степени конверсии природного газа и предотвращения отложения углерода на поверхности катализатора расход пара приходится значительно увеличивать. В производственных условиях соотношение между природным газом и водяным паром поддерживают в пределах от 1 3 до 1 3,5 (иногда и выше). Подача пара в смеситель 5 автоматически регулируется расходомером. Давление водяного пара на входе в смеситель поддерживается на уровне 0,3 МПа. Пар поступает из котельной или из котла-утилизатора 7. [c.127]

    Обычный процесс, в котором цикл превращения водяного газа используется для попеременного окисления и восстановления закиси — окиси железа (магнетита), теперь заменен каталитическим процессом конверсии окиси углерода. В обоих случаях углекислый газ можно удалить поглощением под давлением в водяных скрубберах, а остающуюся окись углерода — промывкой аммиачным раствором закиси меди, каталитическим гидрированием в сравнительно малоактивный метан или селективным низкотемпературным сожжением до углекислого газа. При окислении и восстановлений магнетита имеют место следующие приближенные [c.237]

    Газ, содержащий окись углерода, водород и двуокись углерода, может быть получен почти из всех видов сырья, которые используются при производстве водорода (например, для процесса синтеза аммиака). В связи с этим промышленный синтез метанола базируется на тех же сырьевых источниках, что и вся азотная промышленность. Это кокс, уголь, коксовый газ, природный газ, мазут, нефть, синтез-газ производства ацетилена окислительным пиролизом. Первые промышленные методы получения газов, содержащих СО, основывались на применении кокса, или другого твердого топлива (антрацит, сланцы, бурые угли). В одном из наиболее старых, но крупных производств для получения исходного газа еще используются кокс и полукокс. В этом случае твердое топливо подвергается газификации при атмосферном или повышенном давлении. В качестве окислителя используют водяной пар (паровое дутье) или смесь пара и кислорода (паро-кислородное дутье). Процессы получения водяного газа на основе газификации твердого топлива подробно описаны в литературе и здесь не рассматриваются. Отметим лишь, что практически при любом режиме газификации отношение Нг СО в получаемом газе меньше 2, поэтому перед использованием состав газа регулируют путем конверсии окиси углерода водяным паром и очисткой конвертированного газа от двуокиси углерода. [c.69]

    Из представленных в табл. 5 данных видно, что окись углерода почти полностью переходит в метан и воду, в то время как двуокись углерода в гораздо меньшей степени реагирует с водородом. Если сделать баланс по СО, то можно увидеть, что конверсии подверглось примерно 80% исходного количества, в то время как СО2 преимущественно перераспределяется — обладая относительно высокой растворимостью, переходит в рафинат и выводится в сбросной газ из сепаратора низкого давления и стабилизационной колонны. [c.40]

    Термодинамические расчеты показывают, что уже при 25°С равновесие реакции сдвигается вправо. При 250°С конверсия метанола должна проходить почти до конца. В области температур 25—300°С наряду с основной реакцией возможны другие процессы, приводящие к образованию побочных продуктов в газовой смеси окиси углерода, формальдегида и пр. Основной опасной примесью будет окись углерода, содержание которой растет с увеличением температуры и уменьшением парциального давления водяного пара. [c.106]

    Смесь газа и реакционной жидкости выходит с верха колонны 8, охлаждается водой в холодильнике 9 и попадает в сепаратор 10 высокого давления. В нем окись углерода и водород отделяются от жидкости, а непрореагировавший пропилен (степень конверсии более 90%) и пропан остаются главным образом в жидкой фазе. Газ циркуляционным компрессором 6, компенсирующим потери давления в аппаратуре, снова подают на реакцию, но часть его выводят из системы во избежание чрезмерного накопления инертных примесей. Жидкость из сепаратора 10 проходит редукционный клапан И, где ее давление снижается почти до атмосферного, и попадает в сепаратор 12 низкого давления. Там отделяются растворенные газы том числе пропилен и пропан) и происходит частичное разложение карбонилов кобальта с выделением окиси углерода. Так как с газом уносится значительное количество летучих масляных альдегидов, его промывают в абсорбере 18 высшими спиртами и затем используют в качестве топлива. Раствор альдегидов из абсорбера 13 направляют на разделение или на гидрирование. [c.652]

    Двуокись углерода удаляется при растворении в холодной воде под давлением, а окись углерода — по реакции конверсии (стр. 31 ), ведущей к образованию водорода и двуокиси углерода. Оставшиеся следы окиси углерода растворяются в аммиачном растворе хлорида меди(1), образуя комплексное соединение. [c.310]

    С увеличением отношения О 2 СН4 в исходной смеси (в интервале 0,3 1—0,8 1) содержание метана в конвертированном газе уменьшается примерно но линейной зависимости. При этом удельный выход восстановителей при давлении 10 ат снижается, а при 20 и 40 ат остается без изменения и даже несколько возрастает Последнее объясняется тем, что при малом остаточном содержании метана в газе водород и окись углерода сгорают с кислородом. Когда же содержание непрореагировавшего метана еще велико, увеличение количества добавляемого кислорода способствует не только сгоранию восстановительных газов, но и дополнительному образованию их вследствие повышения степени конверсии метана. [c.97]

    Описание процесса (рис. 50). Водород, окись и двуокись углерода получают конверсией углеводородного сырья с водяным паром под давлением около 2,1 ат изб. [c.97]

    В практических условиях конверсии метана с водяным паром вследствие одновременного протекания приведенных выше реакций образуется газовая смесь, содержащая метан, водяной пар, окись и двуокись углерода и водород. Состав такой газовой смеси определяется состоянием равновесия конверсии СО по реакции (1.2). Изменение равновесного состава газовой смеси, получаемой в результате конверсии метана при атмосферном давлении, различных температурах и разных соотношениях водяного пара и метана, представлено в табл. 1-2. [c.24]

    В результате конверсии окись углерода окисляется до углекислого газа, который затем отмывается под повышенным давлением водой. Регулированием соотношений объемов генераторного и водяного газов получают азотводородную смесь с отношением, соответствующим условиям синтеза аммиака. [c.95]

    Реакции, идущие в газопенераторе типа Лурги , типичны для процесса сухой перегонки угля, а именно возгонка летучих углеводородов из угля и соответствующий крекинг их до метана и низших углеводоров, взаимодействие синтез-газа с образующимися при парокислородной карбонизации коксом или полукоксом, в результате чего образуются окись углерода и водород, и, наконец, реакция метанизации окиси углерода водородом под давлением. Газы, образующиеся на разных уровнях реактора, соединяются и по трубопроводу направляются в отделение очистки. Перед подачей на очистку газ охлаждается в котле-утилизаторе с получением пара, расходуемого на нужды всей установки. Охлажденный газ проходит через реактор прямой конверсии окиси углерода, в котором часть ее реагирует с избытком пара и образует двуокись углерода и водород. Смола и концентрат аммония удаляются из конденсата как в котле-утилизаторе, так и в холодильнике после реакции конверсии окиси углерода. [c.157]

    После первой стадии газы охлаждают до 175-350 , поскольку бопее низкие температуры благоприятствуют более высоким степеням превращения СО. Реакцию проводят в присутствии более активных окисных медноцинковых катализаторов, в которых отношение 2п Си обычно изменяется от 0,5 1 до 3 1. В этом случае величина давления также подбирается с учетом остальных параметров и может достигать 30-40 атм. Среднечасовая скорость подачи газа 300-4000 степень превращения составляет 95-99%, Как и на первой стадии, процесс проводится в адиабатическом реакторе. Концентрация СО в продукте составляет 0,05-0,5%. После низкотемпературной конверсии СО 2 извлекают из газа. Если непрореагиров вшая окись углерода может оказывать отрав- [c.164]

    Взаимодействие с парами воды. Опытами ряда исследователей (Мейер, Мартин и Мейер, Сивонен, Дольх) в 1932—1938 гг. установлено, что в результате реакции Н2О с твердым углеродом образуются только СО и На и притом в эквимолекулярных количествах. Дольх пришел к выводу о том, что первичное взаимодей-йтвие углерода с паром протекает по уравнению С- -Н20 = = С0-1-Н2. Возникающая окись углерода подвергается гомогенной реакции конверсии С0+ Н20 = С02 + Н2. При достаточно высоких парциальных давлениях Нг и НгО и низких температурах образуется метан С + 2Н2=СН4. При этом, согласно [122], на угле сначала адсорбируется водород, а затем возникший комплекс раа-рушается молекулой воды  [c.213]

    На Баденских заводах газ, после удаления углекислоты промывкой под высоким давлением, сжимается до 200 аг и пропускается через длинные абсорбционные колонны высокого давления по которым сверху вниз течет аммиачный раствор формиата меди. После очистки водород может содержать около 0,01—0,1% СО, следы аммиака, 0,03% водяных паров и 1% метана, аргона и др. Далее газ пропускается через брызгоуловитель для удаления частиц жидкости, увлекаемых с газом, и поступает наконец в башни, содержащие 25%-ный раствор едкого натра при 260°, для удаления последних следов окиси углерода . Отработанный аммиачно-медный раствор, по выходе снизу башен и после снижения давления, направляется на регенерационную установку, где окись углерода непрерывно удаляется при нагревании. Комплекс окиси углерода и аммиачной закиси меди (вероятно ujiiNHs) СО3 2СО 4HjO) распадается при 70° С и выделившаяся СО собирается. Раствор может быть вновь использован окись углерода возвращается на установку конверсии водорода. [c.167]

    Восстановление угольной кислоты при атмосферном давлении температура выше 300° выход жидких углеводородов 16,7% и газообразных углеводородов 46,4% механизм реакции сводится к 1) восстановлению углекислоты в окись углерода и 2) конверсии ее в углеводороды аналогично синтезу бензина по Фишер-Тропшу Железо с медью (только сильно подщелоченное) 5 молей кобальта -f 5 молей железа 4- 0,5 моля меди и 1% углекислого калия на кизельгуре 21Ш [c.146]

    Описание процесса (рис. 10). Газ для синтеза аммиака получают конверсией газообразных углеводородов под давлением с последующей одноступенчатой конверсией окиси углерода и абсорбцией двуокиси углерода процессом гирботол. Остаточные окись и двуокись углерода удаляются на ступени метанирования. предшествующей сжатию. [c.20]

    Водород вначале получали из водяного газа, удаляя окись углерода путем сжижения, азот вырабатывали из жидкого воздуха. В 1915 г. Бош, применив каталитическую конверсию окиси углерода и водяного пара, получил водород и двуокись углерода. Требуемый для синтеза аммиака азот вводили в синтез-газ в виде воздушного таза. Очистка газа проводилась по общепринятому в настоящее время способу — отмывкой СОг водой под давлением 25 ат и поглощением СО аммиачным раствором м 1ра выино1 ислой меди иод да1влеиием 290 ат. На первой установке это давление являлось рабочим давлением в колонне синтеза. Остатки СОг отмывали раствором едкого натра. Данные о чистоте газа, поступавшего в цикл синтеза, не опубликованы. По небольшому содержанию аммиака в газе, выходящем из колонны синтеза, можно судить о низкой степени очистки газа. [c.551]

    В эти же годы большие усилия ученых и инженеров были направлены на разработку технически совершенных и экономичных методов производства чистых азота и водорода для синтеза аммиака [14—22]. Первые аммиачные заводы работали па азото-водородной смеси, получаемой из полуводяного газа методом конверсии окиси углерода с водяным паром, т. е. фактически сырьем были кокс и каменный уголь. Вскоре после первой мировой войны были разработаны промышленные методы производства водорода из коксового газа глубоким охлаждением его до температуры —200° С. При этом конденсируются все газообразные компоненты коксового газа — этилен, этан, метан, окись углерода, а остающийся нескондепсированным водород промывается жидким азотом для освобождения от следов окиси углерода. Были созданы совершенные электролизеры с униполярными электродами, а также высокопроизводительные электролизеры фильтр-прессного типа с биполярными электродами для электролиза воды, которые нашли широкое применение в Норвегии, Италии и Японии. В небольшом масштабе стал применяться железопаровой способ получения водорода, использовался побочный водород других производств, например производства хлора электролизом раствора поваренной соли. Наконец, был разработан метод производства водорода конверсией метана и углеводородов нефти с водяным паром при атмосферном давлении и под давлением 2—5,1 МПа. Последний метод оказался наиболее экономичным, получил большое распространение после второй мировой войны и начал постепенно вытеснять другие. [c.13]

    Конверсия окиси углерода всдякым парсм проводится на железохромовом катализаторе в двухступенчатом конверторе 6 Паро-газовая смесь последовательно проходит первую ступень, в которой конвертируется основное количество СО при 470— 520 °С, затем испаритель и вторую ступень. В испарителе вследствие испарения впрыскиваемого в газовую смесь конденсата происходит ее охлаждение. Во второй ступени конвертируется оставшаяся окись углерода, при этом температура газа повышается незначительно. Конвертированный газ при 390—420 °С и остаточном содержании 2,5—4% СО поступает в котел-утилизатор 7, где охлаждается до 180—200 °С. При этом в котле-утилизаторе образуется водяной пар давлением 5 ат. Выходящий из котла газ охлаждается до 80 °С в теплообменнике 8, нагревая при этом воду сатурационного цикла. Окончательное охлаждение конвертированного газа происходит в конденсационной башне 9, где он непосредственно соприкасается с водой. Далее газ направляется на очистку от СО и СО. [c.35]

    Каталитическая конверсия углеводородов. На рис. XI.2 показа на зависимость превращения бензина в метан и окись углерода о условий процесса каталитического расщепления [251]. Из рисункг следует, что с увеличением давления процесса при neHSMennoN остаточном содержании метана должны повышаться температура процесса или соотношение пар газ. [c.230]

    Выходы толуола при дегидроциклизации -гептана достигают 60% за проход при следуюш,их условиях процесса давление атмосферное, температура 550° С, объемная скорость продукта (объем объом/час) от 0,03 до 0,5 с катализатором окись хрома на окиси алюминия (6 атомных % Сг). В результате конверсии при 500° С, атмосферном давлении и объемной скорости 3,6, были получены следуюш,ие продукты (в вес. %) 12,1% толуола, 11,5% гептенов, 74,0% непрореагировавшего и-гептана, 0,17% углерода и 1,7% сухого газа (97,1% водорода).Выход низкокипяш,их фракций, образовавшихся в результате крекинга, составил только 0,5 от сырья. [c.168]

    Пром. синтез КНз з N3 и Н3 был осуществлен в результате работ Ф. Габера и К. Боша в нач. 20 в. на железных катализаторах при давлениях ок. 300 атм и т-ре 450-500 °С. В настоящее время используют более активные Ре-катализаторы, промотированные У2О5, СаО, А13О3 и др. оксидами, что позволяет вести процесс при более низких давлениях и т-рах. Водород для синтеза N143 получают путем двух последоват. каталитич. процессов конверсии СН4 или др. углеводородов (СН4-(-НзО- СО-(-ЗН3) на Н1-катализаторах и конверсии образующегося оксида углерода (СО-ь НзО-> СОз + Н2). Для достижения высоких степеней превращения последнюю р-цию осуществляют в две стадии высокотемпературной (315-480 °С)-на Ре-Сг-оксидных катализаторах и низкотемпературной (200-350°С)-на Си-2п-оксидных катализаторах. Наиб, крупный потребитель ЫНз-произ-во НЫОз окислением ЫНз до N0 на Р1 и Р1-КЬ сетках при 900-950 °С. [c.336]

    Состав смеси, поступающей на окисление, должен быть вне преде-. лов взрываемости, которые для смесей с воздухом находятся в интервале 3—29 объемн.% этилена и 3—80 объемн.% окиси этилена. В принципе процесс можно осуществить с избытком углеводорода (как при окислении пропилена в акролеин) или при его небольшой концентрации (до 3 объемн.% С2Н4 в воздухе и до, 5 объемн.% С2Н4 в рециркулирующих газах, обогащенных азотом и двуокисью углерода). Практически выгодным оказался последний вариант, когда достигается более высокая производительность и лучший выход целевого продукта. В этих условиях, если поддерживать неполную конверсию этилена, концентрация окиси в реакционных газах может составлять всего 1,5—2 объемн.%-Окись этилена очень летуча, поэтому ее выделение значительно облегчается при повышенном давлении, которое рекомендуется поддерживать от 5 до 25 кгс/см (0,5—2,5 МПа). В этом случае одновременно увеличивается производительность и снижается объем аппаратуры. [c.520]

    Вторую стадию, т. е. дегидрогенизацию смеси бутенов в бутадиен, необходимо проводить в вакууме. При атмосферном давлении бутеиы дегидрогенизируются приблизительно на 50% снижение парциального давления до 100 мм сопровождается повышением конверсии до 80 %. Поэтому смесь бутенов разбавляют водяным паром. Последний, однако, обладает тем недостатком, что довольно быстро дезактивирует катализатор. Но преимущества такого приема окупают этот недостаток процесс является безопасным, а регенерация катализатора протекает легче, поскольку углерод, образующийся в результате пиролитических реакций, реагирует с водяным паром, образуя водяной газ. Эта реакция является экзотермичной и компенсирует часть тепловой энергии, необходимой для дегидрогенизации бутенов, которая, наоборот, имеет отрицательный теп.ловой баланс. Глубокое влияние на процесс оказывает температура. Последняя не должна быть ниже 600° и не должна превышать 700°. До 600° процесс идет с более низким выходом при температуре свыше 700° имеют место потери за счет пиролитических реакций. Оптимальная температура составляет примерно 650°. В качестве катализатора лучше всего зарекомендовала себя активированная окись алюминия с осажденной на ней окисью хрома. Поскольку этот катализатор быстро дезактивируется водяным паром, в последнее время начинают применять смешанный окисный катализатор, о котором мы упоминали выше (см. стр. 65), устойчивый в описанных условиях. Оп сохраняет свою активность в течение 7 месяцев, обладает большой избирательной способностью и нечувствителен как к водяному пару, так и к катализаторным ядам. На этом катализаторе процесс идет с выходом бутадиена 70—85 %. [c.538]


Смотреть страницы где упоминается термин Конверсия окиси углерода без давления: [c.40]    [c.61]    [c.21]    [c.156]    [c.158]    [c.209]    [c.538]   
Справочник азотчика Том 1 (1967) -- [ c.142 ]

Справочник азотчика Т 1 (1967) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Давление углерода



© 2025 chem21.info Реклама на сайте