Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роль РНК в синтезе белков

    Известно два матричных процесса биосинтеза синтез нуклеиновых кислот и синтез белка. Между ними есть существенная разница при очень большом подобии — при синтезе нуклеиновых кислот роль матрицы выполняет также нуклеиновая кислота гомологичная система), при синтезе белка матрицей является нуклеиновая кислота, а продуктом синтеза — белок гетерологичная система). Если в первом случае передача информации о последовательности соединения оснований в цепи вновь синтезируемой нуклеиновой кислоты достигается непосредственно путем подбора комплементарных оснований, то при синтезе белка на нуклеиновой матрице должен существовать какой-то промежуточный механизм, позволяющий переводить последовательность оснований матрицы на язык аминокислотной последовательности белка. [c.485]


    Буквально все имевшиеся тогда факты убеждали меня в том, что ДНК служит матрицей, на которой образуются цепочки РНК. В свою очередь, цепочки РНК были вполне вероятным кандидатом на роль матриц для синтеза белка. Какие-то неясные данные, полученные на морских ежах, истолковывались как доказательство превращения ДНК в РНК, но я предпочитал доверять другим экспериментам, свидетельствовавшим о том, что образовавшиеся молекулы ДНК весьма и весьма стабильны. Идея бессмертия генов была похожа на правду, и я повесил на стену над своим столом листок с надписью ДНК->РНК->Белок. Стрелки обозначали не химические превращения, а перенос генетической информации от последовательности нуклеотидов в ДНК к последовательности аминокислот в белках. [c.89]

    Учитывая огромный объем информации, подлежащий хранению (например, тип организма, физические свойства, химические превращения и т. д.), следует ожидать, что это будет биополимер. Возможно ли, чтобы в качестве такой молекулы выступал белок Вероятнее всего, нет, поскольку белки и так играют важную роль структурных и функциональных (ферментативный катализ) компонентов клетки. Столь важная функция как хранение информации должна выполняться уникальной макромолекулярной структурой, которая, скорее всего, не участвует в обычных клеточных процессах. Можно ожидать, что этот специфический биополимер имеет весьма однородную структуру, поскольку он должен выполнять исключительно важную роль. Не следует думать, что для него характерно такое же структурное разнообразие, как для белков, поскольку последние способны участвовать в очень многих химических реакциях. В то же время он должен состоять из разнородных компонентов, чтобы нести различную информацию. Следует ожидать, что этот биополимер обладает жесткой, вполне определенной структурой, так как он должен взаимодействовать с клеточным аппаратом при передаче хранимой информации. Свободно висящая молекула, состоящая из ациклических полимерных цепей и принимающая одну из множества возможных конформаций, вряд ли будет соответствующим образом взаимодействовать, даже кооперативно, с упорядоченными структурами клеточных компонентов. Специфическая информация должна передаваться соверщенно точно. Напомним, что синтез белков, например, происходит на матрице упорядоченно и последовательно, а не статистически в растворе (разд. 2.5). [c.105]

    Вулканическая деятельность во всех ее проявлениях играла в этом отношении выдающуюся роль. Обогащая обширные зоны поверхности, в том числе и те, которые граничили с водоемами, соединениями металлов, вулканы способствовали развитию каталитических реакций. Вещества, выбрасываемые во время извержений, получаются в активном состоянии это, например, оксид кремния (IV) в форме высокопористой массы —пемзы, образующейся при застывании кислых лав (ее пористость достигает 80%) и др. Другой важной породой, которая могла функционировать и как адсорбент, фиксирующий на своей поверхности разнообразные частицы, и как катализатор, является глина. Глины относят к числу древнейших пород. Глинистые минералы (например, монтмориллонит) имеют пластинчатое строение силикатные слои, максимальное расстояние между которыми равно приблизительно 1,4 нм, разделены слоями молекул воды толщина этих слоев может изменяться в широких пределах. Глины обратимо связывают катионы и таким образом могут служить в качестве регулятора солевого состава окружающей водной среды. Скопление органических веществ на поверхности глинистых минералов, возможно, сыграло решающую роль в появлении предбиологических структур и возникновении жизни (Д. Бернал). По Акабори, из формальдегида, аммиака и циановодорода в абиогенную эру образовался амино-ацетонитрил, который подвергался гидролизу и полимеризации на поверхности глин, образуя вещества, близкие к белкам. Акабори показал, что нагревание аминоацетонитрила с кислой глиной ведет к появлению продукта, дающего биуретовую реакцию (реакция на белок). Твердые карбонаты, которые входят в большом количестве в состав земной коры, вероятно, катализировали процесс образования углеводов. Гидроксид кальция также может служить катализатором в таких процессах. Исходным веществом для синтеза углеводов служит формальдегид. Прямым опытом доказано (Г. Эйлер и А. Эйлер), что гликолевый альдегид и пентозы получаются из формальдегида в присутствии карбоната кальция. Схему образования углеводов из простейших соединений предложил М. Кальвин. [c.377]


    Ответственная роль в биохимическом синтезе белков принадлежит нуклеиновым кислотам, которые определяют его специфичность, В самой структуре нуклеиновых кислот заключены основы точного их воспроизведения и направленного синтеза белковых молекул, а также передачи наследственных признаков организма. В то же время белок-фермент способствует синтезу нуклеиновых кислот, полисахаридов и других высокомолекулярных соединений. Сложный комплекс веществ белков, нуклеиновых кислот, углеводов и регуляторов их химических превращений, а именно ферментов, гормонов, витаминов, составляет основу жизненного цикла организма. [c.18]

    Коллаген — это наиболее распространенный белок позвоночных на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В биологических системах коллаген встречается в виде пучков линейных волокон, которые по прочности иа растяжение почти не отличаются от стальной проволоки. В свете столь важной роли коллагена не удивительно, что многие серьезные заболевания связаны с нарушением его синтеза. Пожалуй, наиболее известна цинга, которая вызывается дефицитом витамина С. При этом нарушается синтез коллагена, так как в отсутствие витамина С пролин не окисляется до 3- и 4-оксипролина. Оксипролины содержатся только в коллагене поэтому их анализ в тканях отражает концентрацию коллагена в этих тканях. [c.410]

    Читатель может и сам поразмыслить, какая механика нужна для того, чтобы расщепить АТР и произвести сокращение. При этом небесполезно взглянуть и на структуру самого АТР. Прежде всего обратите внимание на то, что три-фосфатная группа содержит много отрицательных зарядов, взаимно отталкивающих друг друга. Представьте далее, что должно произойти, когда молекула АТР вытеснит ADP и Pi из связанной с актином миозиновой головки. При этом может нарушиться связь белок—белок вероятнее всего в какой-то определенной точке а поверхности их контакта индуцируется электростатическое отталкивание. Подумайте об образовании АТР в процессе окислительного фосфорилирования и о возможной роли протонов в синтезе АТР (разд. Д, 9,в). Не могут ли протоны оказать какое-то влияние на белок, окружающий молекулу АТР, в обратном процессе Подумайте о действии Mg +, связанного в комплексе с полифосфатной группой АТР, а также о том, что может случиться, если с соседней группой белка свяжется ион Са . Примите во внимание данные о возможном фосфорилировании боковых цепей белка на промежуточных стадиях процесса. Что произойдет, если будет фосфорилирована боковая цепь гистидина, связанная водородной связью с пептидным остовом в концевом участке спирали Автор этой книги не смог соединить все эти соображения в цельный механизм работы мышцы, но, может быть, кому-то из читателей удастся это сделать  [c.418]

    Само существование фиксированной первичной структуры у белковой цепи доказывает, что в клетке должна быть заложена программа построения этой структуры. Текст не может возникнуть в результате случайных встреч аминокислот — подобно типографскому тексту он должен набираться на некоторой матрице. Это понимал уже Кольцов задолго до открытия роли нуклеиновых кислот. Он считал, что роль матрицы, ответственной за синтез белка, играет также белок. Сейчас мы знаем, что матрицами служат молекулы ДНК и РНК. Для набора текста необходим генетический код. Матричный принцип биосинтеза белка является основным для молекулярной биологии и молекулярной биофизики. [c.262]

    Биохимические функции. В репродуктивных тканях андрогены отвечают за их дифференцировку и функционирование. Образовавшийся в семенниках тестостерон и его активный метаболит ДГТ проникают в клетки-мишени методом простой или облегченной диффузии и взаимодействуют с одним и тем же белковым рецептором. Образовавшиеся гормон-рецепторные комплексы перемещаются в ядро, связываются с хроматином и стимулируют процессы синтеза белка (гл. И). В репродуктивных органах эти процессы реализуются в половой дифференцировке, основные этапы которой представляют собой хромосомы—гонады—фенотип. Кроме того, андрогены стимулируют сперматогенез, половое созревание и по принципу обратной связи контролируют секрецию гонадотропинов. Помимо влияния на функционирование репродуктивной системы, андрогены участвуют в контроле клеточного метаболизма многих других тканей и органов. Независимо от типа ткани андрогены проявляют анаболические эффекты, связанные со стимуляцией процессов транскрипции и увеличения скорости синтеза белка. Более всего андрогенных клеток-мишеней находится в скелетных мышцах, причем под действием гормонов происходит резкое увеличение мышечных белков и наращивание мышечной массы. Стимуляция белок-синтетических процессов под действием андрогенов отмечена в почках, сердечной мышце, костной ткани. Андрогены образуются не только в семенниках, но и в яичниках. Их роль в организме женщин или самок животных заключается в формировании поведенческих реакций, а также в контроле за синтезом белка в репродуктивных органах. [c.161]


    Инсулин играет основную роль в лечении диабета — болезни, по распространенности занимающей третье место после сердечно-сосудистых заболеваний и рака. Получение этого гормона генно-инженерным способом представлялось весьма перспективным и было выполнено в начале 80-х гг. XX столетия. В качестве компетентной клетки использовали Е. соИ, гены обеих цепей молекулы человеческого инсулина были получены методом химического синтеза. Эти гены присоединяли к З -концу гена, кодирующего белок р-галакто-зидазу, и вводили в векторную плазмиду Трансформированные клетки Е. соИ [c.501]

    Аспарагин и глутамин играют также важную роль в качестве резервных NHj-групп для синтезов аминокислот. Так, если зародыши люпина выдерживать на свету, то аспарагин начинает исчезать и одновременно синтезируется белок за счет азота аспарагина. [c.396]

    Гетероцепные соединения представляют класс веществ, весьма разнообразных по строению и многочисленных по числу представителей. Помимо большого числа природных соединений этого типа, уже в настоящее время известно очень много гетероцепных синтетических соединений, отличающихся рядом интересных свойств и нашедших практическое применение. Несмотря на то, что синтетические методы получения веществ этого класса еще только начинают развиваться, и сейчас уже можно предвидеть в недалеком будущем огромный прогресс в области синтеза различных видов гетероцепных соединений. Для полной характеристики значения гетероцепных соединений необходимо отметить ту исключительную роль, которую они играют в жизни живой клетки, являясь то скелетным материалом (целлюлоза), то запасом питательных веществ (крахмал, инулин), то составляя основу материального субстрата живой клетки (белок). [c.167]

    Если бы в биологической системе образовался белок неправильной конформации, он был бы в большей степени подвержен протеолизу, чем белок, имеющий правильную структуру. Продукты его разложения (которые также подверглись бы гидролизу) сыграли бы роль строительного материала при синтезе биологически активных белков. В процессе получения белка производится выделение и очистка активного материала и удаление неактивного, как это, например, имеет место при выделении фермента. Не удаляется ли при этом вместе с белком, инактивированным в процессе выделения, тот самый неактивный белок, о котором мы только что говорили Подобные спекуляции не лишены интереса. Не исключено, что возможность выделения активных белков с помощью довольно жесткой процедуры определяется тем, что хотя последний и теряет свою активность, однако она восстанавливается при помещении его в более мягкие условия, поскольку первичная структура обеспечивает возвращение к активной конформации. [c.281]

    Допустим, что речь идет о необходимости создать ферменты для некоторой последовательности реакций, заканчивающейся образованием продукта Р. Пусть для этой последовательности нужно три фермента. Тогда по схеме Моно и Жакоба этот продукт вступает в реакцию с одним из белков, производимым на особом участке ДНК, называемом геном-регулятором. Это соединение, так называемый репрессорный белок, в свою очередь, действует на систему, состоящую из участка ДНК, называемого оператором (ген-оператор), и участков, называемых структурными генами. На структурных генах и получается м-РНК, непосредственно используемая для синтеза требуемых белков-ферментов. Роль гена-оператора заключается в контролировании скорости использования структурных генов для синтеза белка. Если репрессор соединился с геном-оператором, блокировал его, то работа соответствующих структурных генов прекращается. В нашем примере ген-оператор должен контролировать деятельность трех участков ДНК, производящих нужные м-РНК и, следовательно, и ферменты для данной сложной реакции. Выключение оператора в результате фиксации на нем белка репрессора, связанного с продуктом реакции Р, прекращает и производство ферментов для реакции. Если концентрация продукта Р понизилась, оператор освободился от блокады, то синтез ферментов возобновляется и вся биохимическая машина запускается вновь. [c.189]

    Опыты со всей убедительностью показали, что рибонуклеиновая кислота не только обладает способностью делать самое себя, но и направлять синтез белка таким образом, что получается белок, необходимый именно ей для производства ВТМ. Значит, в РНК заложена вся необходимая информация для размножения вируса, и она обладает чудесной способностью передавать ее из поколения в поколение, то есть по наследству. Для ВТМ рибонуклеиновая кислота является наследственным веществом. Какую роль играет белок в молекуле ВТМ, сейчас неясно. Многие, правда, думают, что он выполняет защитные механические функции, одевая РНК и предохраняя ее тем самым от внешних воздействи . [c.95]

    Обмен меди. Медь входит в состав ферментов, например цитохромоксидазы (перенос е на 1/2О2). Медь присутствует в активном центре лизилоксидазы — фермента, осуществляющего формирование поперечных сщивок между полипептидными цепями коллагена и эластина. Недостаток меди приводит к образованию дефектного коллагена. В хранении и транспорте меди главную роль играет белок церулоплазмин, синтезирующийся в печени. Он участвует в образовании трансферрина. При нарушении синтеза церулоплазмина происходит патологическое накопление меди в печени и мозгу, что приводит к нарущению функции ЦНС (гепатолентикулярная дистрофия, болезнь Вильсона—Коновалова). [c.432]

    На первых порах (-Ь)нити выполняют роль мРНК они направляют образование вирус-специфических белков. После накопления достаточного количества этих белков начинается формирование субвирусных частиц. При этом в одну субвирусную частицу, содержащую некоторые из вирус-специфических белков, включается полный набор, т. е. 10 разных видов, молекул (+)РНК. Механизм такого избирательного и организованного белок-нуклеинового взаимодействия пока не понятен. Вирус-специфическая РНК-полимераза является интегральным компонентом субвирусных частиц и осуществляет синтез двухнитевых РНК-геномов, используя в качестве матрицы находящиеся в этих же частицах (-Ь)нити РНК. После того как РНК субвирусной частицы переходит в двухнитевую форму, может опять начаться синтез однонитевых (+)РНК. Но если к этому времени в клетке накопилось достаточно много белков, необходимых для построения наружной оболочки вируса, то формируются зрелые вирионы, в которых дальнейший синтез РНК блокируется. [c.329]

    В связи с рассмотрением РНК фага MS2, следует указать также на другой способ размещения разных кодирующих последовательностей в одной мРНК. Дело в том, что MS2 РНК кодирует еще и четвертый белок, названный белком лизиса, или L-белком (он, повидимому, участвует в лизисе хозяйской клетки на завершающей фазе инфекции). Этот белок закодирован участком РНК, начинающимся в конце С-цистрона, захватывающим всю 36-нуклеотидную вставку между С-цистроном и S-цистроном и заканчивающимся в пределах S-цистрона рамка считывания этого перекрывающегося L-цистрона сдвинута вправо на один остаток (+1 сдвиг), так что никакие его участки не транслируются при синтезе С-белка и S-белка. L-цистрон имеет свой инициаторный кодон AUG, не в фазе с кодонами С-цистрона, и, соответственно, свой терминаторный кодон UAA, не в фазе с кодонами S-цистрона. Эта ситуация изображена на рис. 7. Использование перекрывающихся кодирующих последовательностей в пределах одной мРНК встречается, однако, не часто и свойственно, по-видимому, в основном вирусным системам, где экономия места для размещения цистронов играет особенно важную роль. [c.21]

    Репликационная система вируса полио.миелита изучена менее детально тем не менее здесь имеются явные отличия от только что рассмотренной фаговой системы. Так, на 5 -концах вновь синтезируемых (+) и (—)цепей полиовирусных РНК всегда присутствует низкомолекулярный вирус-специфический белок (VPg). Тирозино-вый остаток VPg соединен фосфодиэфирной связью с 5 -концевым уридиловым остатком вирус-специфических РНК (обе комплементарные цепи начинаются с уридилового остатка Большинство исследователей приписывают этому белку (или его комплексу с уридиловой кислотой) роль затравки при синтезе обеих нитей РНК Бо этой точке зрения, VPg функционально аналогичен терминальному белку аденовирусов (см. раздел 1 этс л главы). [c.320]

    Более подробно выяснено значение витамина А в процессе свето-ощущения. В этом важном физиологическом процессе большую роль играет особый хромолипопротеин—сложный белок родопсин, или зрительный пурпур, являющийся основным светочувствительным пигментом сетчатки, в частности палочек, занимающих ее периферическую часть. Установлено, что родопсин состоит из липопротеина опсина и простетической группы, представленной альдегидом витамина А (ретиналь) связь между ними осуществляется через альдегидную группу витамина и свободную -КН,-группу лизина молекулы белка с образованием шиффова основания. На свету родопсин расщепляется на белок опсин и ретиналь последний подвергается серии конформационных изменений и превращению в транс-форму. С этими превращениями каким-то образом связана трансформация энергии световых лучей в зрительное возбуждение—процесс, молекулярный механизм которого до сих пор остается загадкой. В темноте происходит обратный процесс—синтез родопсина, требующий наличия активной формы альдегида—11-г<ис-ретиналя, который может синтезироваться из -ретинола, или транс-ретиналя, или транс-формы витамина А при участии двух специфических ферментов—дегидрогеназы и изомеразы. Более подробно цикл превращений родопсина в сетчатке глаза на свету и в темноте можно представить в виде схемы  [c.211]

    Еще сравнительно недавно протеиназы традиционно связывали только с процессами переваривания. В настоящее время появляется все больше данных о более широкой биологической роли протеолитических ферментов органов и тканей в регуляции ряда вне- и внутриклеточных процессов. Некоторые протеиназы выполняют защитную функцию (свертывание крови, система комплемента, лизис клеток), другие генерируют гормоны, токсины, вазоактивные агенты (ангиотензин, кинины). Ряд протеиназ регулирует образование пищеварительных ферментов, взаимодействие между клетками и клеточными поверхностями, процессы фертилизации (хитин-синтетаза) и дифференциации. Регуляция в большинстве случаев предусматривает превращение неактивного предшественника в активный белок путем отщепления ограниченного числа пептидов. Этот процесс, впервые описанный К. Линдерстрем-Лангом еще в 50-е годы, в последнее время называют ограниченным протеолизом. Значение его очень важно для понимания сущности биологического синтеза в клетках неактивных пре-и пробелков. Кроме того, этот процесс нашел широкое практическое применение в лабораториях и промышленности. В регуляции действия протеолитических ферментов участвуют также ингибиторы протеиназ белковой природы, открытые не только в поджелудочной железе, но и в плазме крови, курином яйце и т.д. [c.423]

    Эти опыты открыли возможность для экспериментальной расшифровки всего генетического кода, при помощи которого информация от РНК передается на синтезируемый белок. Последовательность нуклеотидов РНК реализуется в специфической последовательности аминокислот синтезируемой полипептидной цепи. Опыты М. Ниренберга свидетельствуют также о том, что не рибосома и не рибосомная рРНК являются матрицей, на которой синтезируются специфические белки, а эту роль выполняют поступающие извне матричные РНК. Итак, ДНК передает информацию на РНК, которая синтезируется в ядре и затем поступает в цитоплазму здесь РНК выполняет матричную функцию для синтеза специфической белковой молекулы. Матричная гипотеза белка, как и других полимерных молекул ДНК и РНК (см. ранее), в настоящее время получила подтверждение. Ее правомочность была доказана в экспериментах, которые обеспечивали точное воспроизведение первичной структуры полимерных молекул. Этот [c.519]

    Аналогичные белковые факторы инициации обнаружены также в эукариотических клетках. Открыто около 10 эукариотических белковых факторов инициации (см. табл. 14.1), их принято обозначать elF. Все они, по-видимому, важны для инициации, однако только три из них абсолютно необходимы и существенны для белкового синтеза eIF-2, eIF-3 и eIF-5. Они получены в чистом виде eIF-2 состоит из а-, 3- и у-субъединиц (мол. масса 38000, 47000 и 50000 соответственно), eIF-3 (мол. масса 500000—700000) и eIF-5 (мол. масса 125000). Укажем также, что в синтезе белка их роль тождественна роли инициаторных белков у прокариот. Отличительной особенностью синтеза белка у эукариот является, кроме того, наличие среди 10 белковых факторов инициации еще одного белка, названного кэп-связы-вающим. Соединяясь с 5 -участком кэп мРНК, этот белок содействует образованию комплекса между мРНК и 40S рибосомной субчастицей. Необходимо отметить, что до сих пор не раскрыты тонкие молекулярные механизмы участия белковых факторов инициации как у про-, так и у эукариот в сложном процессе синтеза белка. [c.526]

    ДНК служит универс. хранителем и источником генетич. информации, записанной в ввде специфич. последовательности оснований и определяющей св-ва живого организма она способна к конвариантной редупликации (точному само-копированию), у нек-рых вирусов в этой роли выступает РНК. На ДНК, как на матрице, синтезируются матричные, или информационные, РНК (мРНК), служащие матрицами при синтезе белка рибосомные РНК (рРНК), образующие структурную (и, частично, функциональную) основу белок-синтезирующего аппарата клетки транспортные РНК (тРНК), участвующие в синтезе белка в кач-ве адапторных молекул-переносчиков аминокислот. [c.394]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    После очистки соответственно кристаллизации вирусы сохраняют в значительной степени способность передавать болезнь. Для этого достаточно небольшого числа молекул вируса. В случае вируса оспы и некоторых бактериофагов инфекция передается, вероятно, лишь одной молекулой вируса. Вирусы размножаются только в живых клетках содержащего их организма и не развиваются на культуральных средах, подобных применяемым для размножения бактерий, или в мертвых тканях. После того как частица впруса внедрится в клетку организма, белок этой клетки постепенно исчезает, и вместо него размножается вирус. В случае мозаики табака было найдено, что через четыре дня после прививки количество вируса превышает приблизительно в миллион раз привитое количество. Разумеется, вирус потребляет не только белок клетки-хозяина, но и энергию, вырабатываемую в результате определенных процессов в этой клетке для построения своего собственного вещества. Таким образом, вирусы ведут себя как рудиментарные паразиты с высокой способностью к воспроизведению, которые, однако, не в состоянии осуществлять метаболические сопровождающиеся производством энергии процессы, необходимые для эндэргонных синтезов, связанных с этим воспроизведением. Ввиду того что вирусы состоят главным образом из нуклеопротеидов, этот процесс воспроизведения выявляет важную роль нуклеопротеидов в синтезе белков. [c.456]

    Если к клеткам Е. соН добавить в отсутствие глюкозы какой-нибудь (3-галак-тозид типа лактозы, то они начнут синтезировать в больших количествах не только р-галактозидазу, но и два других функционально связанных с ней белка- Р-галактозиЭпермеазу и белок А. Пер-меаза-мембранный белок, способствующий транспорту р-галактозидов из внешней среды в клетку. Функция белка А не совсем ясна, однако не исключено, что он играет важную роль в процессе метаболической утилизации галактозидов. Если один индуктор вызывает синтез группы связанных между собой ферментов или белков, как это имеет место в данном случае, такой процесс называют координированной индукцией. Сегодня мы знаем, что Е. соИ и другие бактерии способны в ответ на различные специфические индукторы синтезировать большое число разных связанных друг с другом ферментов или групп ферментов. Такая способность позволяет бактериям быстро приспосабливаться к новым условиям и экономно использовать самые разнообразные питательные вещества, которые появляются в окружающей среде. [c.955]

    Нуклеопротеиды представ.ляют огромный интерес и потому, что к этой группе белков принадлежат вирусные белки, причисляемые некоторыми учеными к неклеточ-нон форме жизни. Так, выделенный из пораженного мозаичной болезнью табака специфический нуклеопротеид представляет собой вне организма белок, который может быть получен в кристаллическом состоянии, многократно перекристаллизован, очищен и т. д. По всем своим свойствам оп является определенным химическим соединением. Однако при введении в организм растения этот белок начинает вести себя, как настоящее живое патогенное начало количество его быстро нарастает, увеличиваясь в десятки и даже сотни раз. По-видимому, в основе этого размножения лежит извращенный синтез белка клетками зараженного организма, который приводит к появлению новых вирусных частиц. Растение при этом заболевает и, в конце концов, погибает. Основную роль в патогенности указанных вирусных белков, по-видимому, играют нуклеиновые кислоты. Френкель-Конрату удалось отделить нуклеиновую кислоту кристаллического вируса от белка, причем каждый компонент в отдельности был неактивен или малоактивен, однако если смешать нуклеиновую кислоту с белком, то такой искусственно изготовленный, реконструированный вирусный белок об.падает исходными патогенными свойствами. [c.54]

    Организм при диабете теряет способность нормально использовать глюкозу и откладывать ее в тканях в виде гликогена. Введенный с пищей белок в значительной степени выделяется в виде глюкозы из организма, диабетика. В опытах на собаках с экспериментальным сахарным диабетом-было показано, что свыше 50% (иногда до 80%) введенного белка превращается в глюкозу. Естественно, возник вопрос, какие аминокислоты играют в этом процессе наиболее важную роль. В настоящее время можно считать доказанным, что способностью к гликонеогенезу обладают преимущественно те аминокислоты, при распаде которых тем ил иным путем образуется пировиноградная кислота. Такого рода связь вполне понятна, если принять во внимание, что пировиноградная кислота является-нормальным промежуточным продуктом распада и синтеза углеводов. [c.380]

    Пируваткиназа — фермент, катализирующий реакцию (XI.12),— также нуждается в Mg + или Мп + (Са + выступает как конкурентный антагонист этих ионов). Кроме того, для максимальной активности фермента необходимо также присутствие одновалентных катионов (К+, Rb+ или s" ), которые, вероятно, оказывают стабилизирующее действие на конформацию фермента (антагонистами являются Na и Li+). Таким образом, пируваткиназа ведет себя как типичный легко деформируемый белок, способный к аллостериче-ским взаимодействиям. Равновесие реакции (XI.12), весьма невыгодное для ее обращения (при котором роль субстрата играет пировиноградная кислота), и низкое число оборотов фермента в обратной реакции (всего 12, тогда как при образовании пировиноградной кислоты оно равно 6-10 ) обеспечивают мощную термодинамическую и кинетическую блокировку, препятствующую использованию этой реакции в синтезе углеводов. [c.290]

    Время полужизни. Стабильность молекул РНК может варьировать в широких пределах. У высших организмов она в среднем намного выше, чем у бактерий. Такое различие, очевидно, частично обусловлено тем, что биосинтез белков у высших организмов протекает более медленно (при 37° в ретикулоцитах кролика за одну секунду включаются в белок 2 аминокислоты, а.у Е. oli — 100 аминокислот). Стабильность различных молекул тя-РНК может заметно варьировать даже в пределах одной и той же клетки. Молекулы РНК некоторых РНК-содер кащих фагов могут непосредственно выполнять роль /тг-РНК, не разрушаясь в течение жизненного цикла фага в зараженной бактериальной клетке (30—55 мин при 37°). У высших организмов т-РНК еще более стабильна. Активный цитоплазматический комплекс, состоящий из ге-РНК, рибосом и s-PHK, может, вероятно, функционировать непрерывно в течение нескольких дней в некоторых случаях синтез белка на стабильных РНК-матрицах происходит даже в отсутствие ядерной ДНК (эритроциты млекопитающих) и без сколько-нибудь заметного обновления РНК. [c.504]

    Одно время считали, что роль матрицы, с которой соединяются молекулы аминоацил-РНК и на которой происходит сборка белковой молекулы, играет стабильная рибосомпая РНК. Однако нуклеотидный состав ДНК очень слабо коррелирует с нуклеотидным составом рибосомной РНК. Кроме того, известно, что если какой-либо ген поврежден, бактерии теряют способность синтезировать белок. И, наконец, при включении необычных оснований в ДНК сразу начинает синтезироваться измененный бело , а синтез нативного белка прекращается. Хотя эти данные не позволяют еще решить вопрос окончательно, однако они указывают на трудности, возникающие при принятии гипотезы о том, что роль матрицы играет стабильная рибосомпая [c.374]

    Что произойдет, если ввести синтетический рибонуклеотид в бесклеточную систему, синтезирующую белок Ниренберг и Маттеи вводили поли-У в систему, содержащую отмытые рибосомы из Е. соН, и обнаружили, что включение L-фенилаланина усиливалось при этом в 1000 раз. Для остальных 17 аминокислот никакого усилия включения не наблюдалось. Очевидно, в си-, стеме шел синтез полифенилаланина. Отсюда можно было заключить, что кодом фенилаланина служит последовательность остатков урацила. Обладая свойствами информационной РНК, большая часть поли-У после введения в систему быстро распадается. Нераспавшаяся часть поли-У (она была мечена тритием) образует комплексы с агрегатами рибосом (полисомами), в состав которых входил фенилаланин, меченный С . Эти результаты подтверждают точку зрения, согласно которой поли-У играет роль синтетической информационной РНК. При введении в эту систему также поли-А образуются сложные двух- и трехцепочечные спирали поли-(У-ЬА) и поли-(ГУ-f А), причем включение фенилаланина прекращается. Следовательно, для синтеза белка необходима одноцепочечная информационная РНК- [c.376]

    Поскольку было установлено, что синтетические сополимеры стимулируют включение аминокислот в белок, оказалось возможным поставить следующий эксперимент, позволяющий проверить гипотезу об адаптерной роли растворимой РНК-Поли-УГ стимулирует включение цистеина в полипептиды, но не стимулирует включение аланина. Цистеин, присоединенный к растворимой РНК, с помощью специальной обработки был превращен в аланин, который оставался по-прежнему связанным с цистеи-новой S-PHK. В этом случае полн-УГ стимулировал включение аланина. Таким образом, аминокислота, прикрепленная к растворимой РНК, сама по себе не влияет на процесс кодирования. Поли-УГ опознает специфическую цистеиновую транспортную РНК независимо от того, какая аминокислота к ней присоединена. Следовательно, транспортная РНК обладает характерными свойствами молекулы-адаптера, о которых говорилось выше. В одном из таких экспериментов было обнаружено включение аланина в пептидный фрагмент а-цепи гемоглобина. В обычных условиях этот пептид содержит не аланин, а цистеин. Этот результат подтверждает гипотезу об адаптерной роли растворимой РНК при синтезе белка. [c.378]

    После того, как выяснилось значение РНК для синтеза белка, в 1950 г. Гауровицем была высказана новая гипотеза, которая учитывала участие в этом синтезе РНК. Он предполагал, что роль нуклеиновых кислот 11 синтезе белка состоит в том, чтобы поддерживать белковую матрицу в растянутом состоянии в виде пленки. Таким образом, по этой гипотезе, матрицей является сам белок, а роль нуклеиновой кислоты — вспомогательная она служит как бы каркасом, облегчающим раскрытие белков ойструктуры, на базе которой происходит специфическое расположение аминокислот в синтезируемой цепи. [c.77]

    Однако по мере накопления новых данных о специфичности РНК все больше и больше стало укрепляться мнение о матричной роли самой РНК в белковом синтезе. Особенно решающими в этом отношении оказались факты, открытые в 1956 г. одновременно в лабораториях Шрамма и Френкель-Конрата. Этим исследователям впервые удалось разделить вирус табачной мозаики, который является рибонуклеопро-теидом, на белок и РНК. РНК при этом сохранила свою высокую полимерность и вообще все свои нативные свойства. [c.77]

    Образование оксипролина. Оксипролин (X) образуется в результате гидроксилирования нролина [реакция (16)] только после того, как молекулы последнего активируются и вступают в последующие реакции, ведущие к их включению в белок [64]. Свободный 4-окси-Ь-про-лин уменьшает скорость синтеза оксипролина, связанного с белком, вероятно благодаря конкурентному торможению активирования пролина. Связанный оксипролин, присутствующий в растущих клетках платана, получает атом кислорода своего гидроксила исключительно путем фиксации атмосферного кислорода [43] (см. гл. 13, дальнейшее обсуждение роли оксипролина). [c.214]

    Если в биохимии и имеются аналогичные явления и процессы, которые могли бы быть нам полезны, то, конечно, их можно встретить в области обмена липидов и углеводов, который все более интенсивно и глубоко изучается. Мы знаем, что в обмене липидов главная роль принадлежит ацетилкоферменту А. Эта основная единица, коль скоро она уже синтезирована, действует как первичный донор в реакциях ацетилирования и как акцептор ацетильных групп, образующихся в процессе обмена липидов. Недавно обнаружен белок, служащий переносчиком ацильной группы [25]. Получены данные, что синтез, окисление и восстановление высокомолекулярных жирных кислот с четным числом углеродных атомов происходят таким образом, что растущая углеродная цепь никогда не освобождается, оставаясь связанной с белком-иереносчиком. Руководствуясь этими фактами, мы можем предсказать, что вслед за начальной стадией восстановления сульфата в сульфит и нитрата в нитрит будет происходить образование промежуточных продуктов, связанных с белком. Дальнейшее восстановление этих промежуточных продуктов — их включение в аминокислоты и другие многочисленные соединения серы и азота, входящие в состав живой клетки,— будет происходить в соответствии с законами сохранения энергии химических связей и с общими закономерностями переноса грунп. [c.286]

    И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белки (актин, тро-помиозин), Для того чтобы эти белки могли осуществлять обратимое сокращение, необходимо присутствие катионов металлов, вообще активно поглощаемых мышечными белками. Для работы мышцы требуются ионы калия, кальция, магния, нужен также запас фосфатов, используемых для синтеза АТФ, Связывание ионов металлов и водорода с ионными группами белков сильно влияет на взаимодействие участков цепи и приводит к изменению ее длины. Однако механизм мышечного сокращения более сложен и, по-видимому, связан с особым расположением нитей миозина и актина в мышце, позволяющих частицам актина при работе мышцы скользить вдоль нитей миозина. Из числа растворимых белков особенно важны альбумины и глобулины. [c.62]


Смотреть страницы где упоминается термин Роль РНК в синтезе белков: [c.320]    [c.394]    [c.68]    [c.277]    [c.384]    [c.514]    [c.195]    [c.472]    [c.390]   
Смотреть главы в:

Основы органической химии 2 Издание 2 -> Роль РНК в синтезе белков

Основы органической химии Ч 2 -> Роль РНК в синтезе белков




ПОИСК





Смотрите так же термины и статьи:

Дезоксирибонуклеиновая кислота роль в синтезе белков и ферментов

Рибонуклеиновая кислота роль в синтезе белков

Синтез белков



© 2025 chem21.info Реклама на сайте