Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение фосфат-иона в фосфате натрия

    Назвать наиболее пригодную форму осаждения при определении а) кальция б) бария в) свинца г) железа д) магния е) меди ж) кадмия з) висмута и) цинка к) кремния л) калия м) натрия н) сульфат-иона о) фосфат-иона. [c.53]

    Определение фосфат-иона в фосфате натрия [c.198]

    Мешающие вещества. Определению мешает свободный хлор, его можно восстановить, добавляя 0 05 мл 0,5 %-ного раствора арсенита натрия на каждую 0,1 мг свободного хлора. При определении фторид-ионов в концентрации 1 мг/л возникает ошибка, равная 0,1 мг/л в присутствии 1800 мг/л хлорид-ионов, 0,2 мг/л алюминия, 5 мг/л железа (III), 5 мг/л фосфат-ионов или 1 мг/л гексаметафосфата натрия. Сульфат-ионы приводят к той же ошибке при их содержании 400 мг/л. [c.219]


    Определение сульфат-ионов в присутствии сульфоназо III проводят в среде 40%-ного ацетона. Переход окраски из красно-фиолетовой в голубую. Влияние на реакцию оказывают хлорид калия и перхлорат натрия в количествах выше 0,1 ммоля, фосфат калия в количествах выше 0,01 ммоля [727]. [c.141]

    Другие металлы можно маскировать путем осаждения гидроокисей, например железо (П1), титан (IV), цирконий или олово (IV), но опять-таки возникают осложнения, связанные с соосаж-дением титруемого металла, поскольку гидроокиси почти всех металлов труднорастворимы и склонны к взаимному соосаждению. Более селективным осадителем является Р -ион, который используют для маскирования кальция и магния [54 (74), 61 (81), 62 (89)] и алюминия [54 (74)]. Железо (III) в известных условиях тоже можно маскировать Р -ионом [61 (109), 62 (23)]. Малые количества алюминия маскируют кремнекислым натрием в щелочном растворе [61 (64)]. Фосфат-ион выделяет титан (IV) даже из его комплексоната, что используют для непрямого определения титана, так как комплексы PeY и A1Y в такой реакции не участвуют [54 (42)]. Еще более избирательно действует сульфат-ион, которым можно осаждать свинец при титровании В1 +-ионов [60 (95)], а также маскировать барий. Очень селективно действует сульфид-ион, но из-за темной окраски образующихся осадков его можно применять только для маскирования следов металлов. При определении жесткости природных вод сульфид-ион прибавляют для удаления обычно присутствующих следов тяжелых металлов (железа, меди) с целью избежать блокирования индикатора (эриохрома черного Т). Для той же цели применяют диэтилдитиокарбамат. [c.136]

    ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ФОСФАТ-ИОНА В РАСТВОРЕ ГИДРОФОСФАТА НАТРИЯ  [c.219]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]


    Содержание анионов Р0 можно определять в различных объектах. Однако в том случае, когда в анализируемом веществе присутствуют катионы, образующие с анионом РС нерастворимые осадки, проведение анализа значительно осложняется и требует специальной методики. Рассмотрим метод гравиметрического определения фосфат-иона в растворе гидрофосфата натрия Na2HTO4. [c.290]

    Определению мешают ионы Li, К, взаимодействующие с осадите-лем, арсенаты, оксалаты, большие количества фосфатов, реагирующие с отдельными компонентами осадителя [1219]. Метод применяли для определения натрия в морской воде. [c.81]

    В ЭТИХ случаях колориметрическое титрование можно применять только при условии, если в качестве стандарта использовать не раствор, содержащий определяемый ион, а готовый окрашенный продукт реакции или подходящий имитирующий раствор. Так, при определении марганца. в виде перманганата нельзя применять для приготовления стандартного раствора соль двухвалентного марганца, так как для ее окисления требуется некоторое время и нагревание в присутствии катализатора. Поэтому в качестве стандарта применяется раствор перманганата калия. Для определения кремния в виде кремнемолибденовой кислоты никогда не применяют в качестве стандарта раствор кремнекислоты (или силиката натрия), так как образование окрашенного комплекса идет медленно. Обычно используют приготовленный заранее раствор кремнемолибденовой кислоты или имитирующий раствор хромата калия (для которого по подобию окраски определен коэффициент пересчета на кремений). По одному из методов определения фосфора (или кремиия) необходимо сначала перевести весь фосфор в фосфорномолибденовую кислоту, а потом прибавить восстановитель и, для образования синего продукта восстановления, выждать некоторое время. Таким образом, применение в качестве стандарта раствора, содержащего фосфат-ион, невозможно необходимо применить приготовленный заранее раствор молибденовой сини или заменить его имитирующим раствором подходящего красителя, например, метиленовой сини. [c.102]

    Отбирают пробы следующих веществ исходного вещества, меченного Р (вещество Б), оставшегося после дистилляции в перегонной колбе (вещество В), дистиллята (вещество Г). Эти пробы обрабатывают раствором гидроксида натрия при нагревании. Образующиеся фосфат-ионы осаждают в виде фосфата маг-ния-аммония, перекристаллизовывают и сушат. Точные навески трех полученных осадков растворяют и доводят растворы до определенного объема. Затем измеряют радиоактивность трех растворов и вычисляют удельную радиоактивность фосфатов (на единицу массы вещества).  [c.234]

    Как было установлено, возраст водного раствора хлорида бария, содержащего этанол и дипропиленгликоль, влияет на характер образующегося сульфата бария. Это наблюдается в том случае, если растворы хлорида бария готовить с применением реагентов, содержащих следы серы. Ионы аммония, натрия, калия, кальция, трехвалентного железа, хлорида, нитрата и фосфата практически не влияют на результаты. Метод очень удобен для определения серы в нуклеопротеинах. [c.341]

    Характерная особенность всех изложенных опытов — работа с искусственно приготовленными системами, для которых метод приготовления в значительной мере предопределяет химический результат. Возникает естественный вопрос, как все это применимо к генезису катализаторов в обычных условиях в отсутствие таких химически активных агентов, как металлоорганические соединения, сильные минеральные кислоты и т. д. Экспериментальные работы в этой области очень трудны, так как дело идет о захвате очень небольших количеств обычных веществ высокодисперсными твердыми телами, анализ которых представляет сам по себе трудную задачу. Из работ в этой области следует упомянуть работы Левиптова по спектральной методике определения металлоидов в твердых телах, использование полярографии Жабровой и другими. Однако па этом пути результаты будут получены не так скоро, так как мало обнаружить по линиям спектра или по полярографической волне наличие определенных примесей следует узнать, какие из них влияют на активность, какие — нет. Весьма перспективен другой путь введения в генетическую систему веществ в виде меченных молекул, за которыми можно следить непосредственно в сколь угодно сложной обстановке. Разведочные работы в этом направлении мы вели в 1940—1941 гг., и они оказались успешными. Ограничимся упоминанием о наблюдениях Брежневой и Озиранера над захватом и промотированием металлической платины и палладия следами фосфата. Для этого из серы нейтронным облучением приготовляли высококонцентрированный препарат радиофосфора, который в виде фосфат-иона вводили в раствор муравьинокислого натрия, применявшегося для выделения платины и палладия из их хлоридов. Концентрацию фосфат-иона легко было при этом менять в очень широких пределах, а захват наблюдать по р-изпучению катализатора. [c.42]


    Определение фосфат-ионов и натрия в фосфате хрома весовщ методом очень длительно и трудоемко, а определение малых количеств натрия в присутствии большого количества хрома, кроме того, недостаточно надежно. [c.180]

    Хроматографические методы позволяют сравнительно легко отделять калий от анионов, мешающих его определению хпми-чрскнми методами Для отделения калия от сульфатов и фосфатов пропускают исследуемый раствор через колонку с анионитом в хлоридной форме При этом сульфат- и фосфат-ионы количественно обмениваются на ионы хлора, в фильтрате содержится калий в виде хлорида После промывания колонки водой в полученном растворе определяют содержание калия гравиметрическим способом в виде перхлората [1285]. Исследуемый раствор пропускают через колонку с катионнтом в Н-форме, калий (и натрий) полностью задерживается, а мешающие анализу анионы проходят в фильтрат в виде соответствующих кислот Колонку промывают затем водой, фильтрат и промывные воды отбрасывают Калий (и натрий) вытесняют из колонки промыванием соляной кислотой. В фильтрате содержится теперь калий (и натрий) в виде хлорида [2410]. Для отделения калия (и натрия) от анионов-окислителей нельзя пользо- [c.143]

    Нередко приходится применять буферные растворы и при анализе, а именно во всех тех случаях, когда нужно провести какую-либо аналитическую операцию (например, разделение ионов) при определенной и возможно менее меняющейся концентрации ионов Н+. Так, например, при отделении от 5г++ ионов Ва в виде хромата очень важно создать определенный pH раствора, близкий к 5, так как при большей кислотности осаждение Ва++ будет неполным, а при меньшей — будет осаждаться также ион Чтобы избежать указанных осложнений, мы вели осаждение Ва" из уксуснокислого раствора в присутствии ацетата натрия, т. е. применяли буферную смесь, НСНзСОО 4-Ч- ЫаСНзСОО, которая и поддерживала нужный pH раствора. Подобно этому при осаждении катионов II группы карбонатом аммония, а также иона фосфатом натрия мы применяли буферную смесь ЫН40Н -f ЫН4С1, создавая тем самым pH —9, при котором гидроокись магния не осаждается. [c.147]

    Можно проводить прямое определение фосфата титрованием раствором нитрата серебра или электрогенерируемым (кулонометрический вариант) из серебряного анода (в 80%-ном этаноле, 0,1 М по ацетату натрия) ионом Ag+ [173]. Конечную точку титрования определяют потенциометрически до 2-10 М фосфата или амперометрически до 1,7-10 М фосфата. Галогениды, со-осаждаясь с фосфатом серебра, мешают определению. Эквимо-лярные концентрации сульфата могут присутствовать в анализируемом растворе, ионы кальция (И), алюминия (П1) и железа (П1) должны отсутствовать. [c.469]

    Мешающие вещества. Вместе с хлоридами титруются броми-ды и иодиды. Их можно определить отдельно соответствующими методами и содержание их вычесть из результатов титрования. Сульфит-, тиосульфат-, сульфид-, роданид- и цианид-ионы, мешающие определению, следует предварительно окислить кипяче нием с пероксидом водорода в щелочной среде. Органические ве щества в большой концентрации мешают определению. Их сле-> дует предварительно удалить, как описано в разд. 7.14.7.1, или окислить перманганатом калия в щелочной среде с последующим восстановлением пероксидом водорода и отфильтровыванием осадка водного диоксида марганца. Мешает железо(III) в концентрациях, превышающих 10 мг/л его следует связать добав-лением нескольких капель 5 %-ного раствора фосфата натрия. Мешают ионы цинка, свинца, алюминия, никеля и хрома(III) в концентрациях, превышающих 100 мг/л, а хромат ионы в концентрациях выше 2 мг/л. [c.224]

    Определение фосфат и юв с Р селективным электродом основано иа реакции образования труднорастворимых фосфатов и фторидов натрия в (чнч и л.им ги. ф1)[)мами,л вода [31. Из зависимости содержания различных форм фосфата от pH (рис. 2.6) можно сделать вывод о том, что при определенных значениях pH 99,8% фосфата находится в виде определенного иона (РО4 , НРО4 или Н2Р04 ) и в этих же условиях образуется [c.43]

    Через колонку пропускают определенный объем 1 М. раствора азотной кислоты (от 20 до 1000 мл в зависимости от содержания примеси серной кислоты) со скоростью 3 м/ч. Затем промывают колонку дистиллированной водой до pH = 2, контролируя pH по универсальной индикаторной бумаге. Далее десорбируют сульфат-ионы 0,5 М раствором фосфата натрия, подкисленного фосфорной кислотой до pH = 2. Скорость пропускания элюирующего раствора примерно 3 м/ч. Объем элюата, который необходимо собрать, зависит от содержания серной кислоты в анализируемом растворе при содержании 1,5-10- мг/л — 20 мл, а при содержании 1 мг/л — 60 мл. В полноте вымывания сульфат-ионов из колонки можно убедиться, если к нескольким каплям элюата добавить 1 каплю 0,005 М раствора хлорида бария и 1 каплю индикатора нитрохромазо. Появление голубой окраски указывает на отсутствие в элюате сульфат-ионов. [c.331]

    По аналогии с методом, применяемым для титрования бора , при определении германия также рекомендуют нейтрализовать раствор, до введения маннита, и последующее титрование маннитогерманиевой кислоты проводить до одинаковой величины pH. Отмечено, что в этих условиях менее-сказывается влияние посторонних ионов и на холостой опыт расходуется меньшее количество едкой щелочи, что особенно важно при определении малых количеств германия. Титрование проводят следующим образом. К 80 мл слабокислого раствора соли германия прибавляют 7 капель бромкрезолового пурпурного и нейтрализуют приблизительно 0,02 н. свободным от карбоната раствором едкого натра до pH = 6,2, что определяется сравнением окраски анализируемого раствора с окраской буферного раствора (33,9 мл 0,1 М лимонной кислоты и 66,1 мл 0,2 М раствора двузамещенного фосфата натрия), содержащего такое же количество индикатора. Затем прибавляют 10 г маннита и титруют раствором едкого натра до pH = 6,2. [c.351]

    Сопоставим определение кислот и оснований по Бренстеду с классическим определением кислот и оснований по Аррениусу. Согласно последнему определению кислотой называется вещество, которое в водном растворе диссоциирует с образованием ионов водорода. Это определение полностью вписывается в определение Бренстеда, т. е. любая кислота по Аррениусу одновременно является кислотой по Бренстеду, Действительно, диссоциация с образованием иона Н+ есть результат передачи протона молекуле воды, т. е. проявление свойств кислоты по Бренстеду. Обратное неверно. Определение понятия кислоты по Бренстеду шире, чем по Аррениусу. Кислотой по Бренстеду может быть не только вещество, но и частицы, не способные существовать в виде самостоятельного вещества, например ион аммония или анион И.2рО . Последние могут сосуществовать в виде вещества только с соответствующими противоионами, например ион аммония — в виде хлорида аммония, а анион Н2РО4- —в виде однозамещенного фосфата натрия NaH2P04. Оба последних соединения в теории Аррениуса рассматриваются как соли, а по Бренстеду они являются кислотами. [c.271]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Например, Сринивасан рассмотрел доступную информацию о роли кремния в питании растений и пришел к заключению, что силикат в почве способствует поглощению фосфора. В других исследованиях, выполненных этим же автором [128], было показано, что растворимый кремнезем (или силикат-ион) адсорбируется определенными компонентами почвы, в частности глинами. Соотношение между концентрацией и степенью удерживания силикат-иона оказывается логарифмическим, что указывает на наличие адсорбции. Было продемонстрировано, что гели оксида алюминия и оксида железа адсорбировали силикат-ионы почти так же, как и почвы, образуя адсорбционный комплекс, из которого силикат удаляется промыванием с большим трудом. Далее было показано, что в том случае, когда почва обрабатывается растворимым силикатом, фоСфат-ионы адсорбируются менее прочно. Силикагель не адсорбирует фосфат-ионы. Следовательно, ясно, что добавление силиката может привести к определенному эффекту в питании растения, поскольку силикат вытесняет фосфат-ионы, находящиеся в адсорбированном состоянии на поверхности почвы и, таким образом, делает фосфат более доступным для растения. Бастисс [129] также показал, что фосфат-ионы можно освободить из адсорбированного состояния на некоторых почвах посредством добавления растворимого кремнезема. Этот прием особенно эффективен для лате-ритных почв, на которых фосфат-ионы прочно адсорбируются. Последние становятся недоступными для растений из-за образования нерастворимых фосфатов железа и алюминия. В почвах такого типа добавление силиката ведет к вытеснению адсорбированных фосфат-ионов, так что в результате урожаи зерновых удваиваются или утраиваются, если среда щелочная, видоизмененная за счет добавления силиката, и возрастают вплоть до пятикратного размера, если среда нейтральная. Отмечалось также заметное увеличение в растении содержания 8102, Р2О5 и железа. Вытеснение фосфат-ионов из некоторого вида почв силикатом было также продемонстрировано путем измерения изотерм адсорбции [130]. Обработка почв силикатами натрия и калия вела к понижению их способности адсорбировать фосфат из раствора. Вероятно, силикат изолирует активные адсорбционные центры коллоидной системы и сам удерживается более сильно, чем фосфат-ионы. Это приводит к предотвращению адсорбции фосфата. [c.1032]

    В качестве среды рекомендуется использовать буферный раствор — 1 М раствор одно- или двухзамещенного фосфата натрия и 1 М раствор цитрата натрия. Концентрация реагента 3 ЛО- М. Закон Бера выполняется в интервале концентраций 1 -10 — 1М Ке04 в присутствии 2-10 М Ка2Мо04. Измерение оптической плотности проводят при 660 нм через 25 мин. Определению мешают КОз -ионы. Об экстракции ионного ассоциата перренат-иона с метиленовым голубым см. [303, 318]. [c.131]

    Тетраоксипарахинон по своим аналитическим свойствам близок к родизонату натрия. При pH 6 их свойства идентичны. Определение сульфат-ионов выполняют либо прямым титрованием раствором хлорида бария [ИЗО, 1190], либо обратным титрованием избытка ВаС12 раствором сульфата калия. Для более четкого перехода окраски тетраоксипарахинон смешивают с инертным голубым красителем (переход окраски из оливково-зеленой в серовато-фиолетовую). Титрование проводят при pH 8, в присутствии фосфатов — при pH 3,6. [c.90]

    Косвенные определения. Сульфаты определяли добавлением избытка стандартного раствора соли бария с последующим обратным титрованием этого избытка Путем титрования катионов из умеренно растворимых осадков можно косвенно определить другие ионы. Так, натрий определяли титрованием цинка, входящего в состав уранилацетата цинка и натрия фосфат определяли титрованием магния, входящего в состав двойного фосфата магния и аммония . Количественное образование тетрацианоникелата (II) было использовано для косвенного определения цианида Палладий (И) и серебро (I) вытесняют никель (II) из его цианидного комплекса титрование выделяющегося никеля позволяет производить косвенное определение указанных металлов [c.270]

    Введение фосфата натрия несколько ускоряет восстановление урана(У1) до урана(1У) и уменьшает мешающее влияние некоторых элементов и ионов, в особенности хлорид-ионов. При введении 10 г NaaHPOi-12НаО в облучаемый раствор возможно присутствие до 150 мг хлорид-ионов. Это позволяет использовать данную методику для количественного определения урана также и в солянокислотных растворах. Необходимо только, чтобы содержание хлорид-ионов в облучаемом растворе не превышало 150 мг. [c.80]

    Фосфаты часто добавляют к воде для питания котлов, чтобы предупредить образование накипи. Фосфаты осаждают ионы кальция в виде ЗСаз(Р04)2-Са(0Н)2, который не образует накипи в котлах. Необходимая концентрация редко превышает 30 мкгЫл, считая на фосфор, или 100 мкг мл, считая на фосфат. Для уменьшения жесткости воды прибавляют гексаметафосфат натрия Ыа РвОхв [или (ЫаРОз)д], который образует с ионами кальция комплексное соединение и, таким образом, уменьшает расход мыла. Фотометрическое определение фосфата в промышленных водах производится очень часто. [c.9]

    Летонов и Рейнгольд [61, 62] производили определение по интенсивной окраске, образующейся при взаимодействии Р-нафтохинон-4-сульфоната натрия с бензидином в присутствии буферной смеси борат натрия — гидроокись натрия при добавлении ацетона для подавления окраски от самого реагента. При анализе сыворотки крови и мочи рекомендуется применять ацетат уранила для удаления белков и ионов фосфата последние также осаждаются бензидином и вызывают ошибки. [c.325]

    При содержании значительных количеств циркония или когда требуется высокая точность определения, поступают следующим образом. Прокаленный остаток сплавляют с карбонатом натрия и выщелачивают плав водой. Нерастворимый остаток отфильтровывают, промывают сначала 1 %-ным раствбром карбоната натрия, затем водой и прокаливают. Сплавляют с пиросульфатом, плав растворяют в разбавленной серной кислоте, раствор кипятят и затем осаждают аммиаком. Отфильтрованный осадок от аммиака промывают горячим 2%-ным раствором нитрата аммония, прокаливают и взвешивают в виде В связи с трудностью количественного отделения фосфат-ионов сплавлением с карбонатом и выщелачиванием плава водой, а также удаления солей щелочных металлов однократным осаждением аммиаком обе эти операции целесообразно повторить. [c.642]

    Большинство фторсодержащих минералов, встречающихся в горных породах, разлагается серной или хлорной кислото11 только отчасти, а многие минералы совсем не разлагаются. Поэтому ни один из методов, основанных на отгонке фтора после разложения этими кислотами, не может быть использован неносредственно для определения фтора в породе без предварительного ее сплавления. При анализе разлагаемых кислотами фторидов или после сплавления пробы с карбонатом натрия фтор можно определить отгонкой, но если присутствует аморфная кремнекислота, ее надо предварительно удалить (стр. 824) или же собрать большее количество дистиллята, чем это необходимо, когда кремнекислота присутствует в виде порошка кварца (стр. 822). Обычно применяют метод Берцелиуса, по которому пробу сплавляют со смесью карбонатов натрия и калия и экстрагируют фтор из плава водой. Этот способ дает возможность одновременно определять и кремнекислоту. Следует, однако, отметить, что при анализе таких материалов, которые одновременно со фтором содержат большие количества кальция и фосфат-ионов например фосфатных пород, таким способом полностью экстрагировать фтор не удается. При анализе этих пород, по-видимому, единственным способом отделения фтора является его отгонка. [c.1019]


Смотреть страницы где упоминается термин Определение фосфат-иона в фосфате натрия: [c.8]    [c.128]    [c.52]    [c.185]    [c.115]    [c.269]    [c.423]    [c.269]    [c.82]    [c.220]    [c.187]   
Смотреть главы в:

Количественный анализ -> Определение фосфат-иона в фосфате натрия

Количественный анализ -> Определение фосфат-иона в фосфате натрия




ПОИСК





Смотрите так же термины и статьи:

Натрия фосфат

Определение иония

Определение содержания фосфат-иона в растворе гидрофосфата натрия

Фосфат ионы



© 2025 chem21.info Реклама на сайте