Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количественный анализ растворителей

    Количественный анализ растворителей [c.293]

    Количественный анализ осуществлялся воздействием различных растворителей на полимерные отложения сланцевого газа. [c.194]

    С целью выяснения качественного состава активного хлора, извлекаемого из водно-солевых растворов НСЮ органическими растворителями, проведена серия экспериментов с качественным и количественным анализом исходного раствора и конечных продуктов. [c.66]


    Ко второй группе методов количественного анализа относятся методы вымывания. При хроматографировании нисходящим способом зоны хроматографируемых веществ вымывают с бумаги растворителем, раствор собирают отдельными порциями, в которых содержание анализируемых компонентов определяют обычными аналитическими методами. [c.224]

    Выделение одного из компонентов в жидкую фазу, не смешивающуюся е водой, применяется в количественном анализе в двух формах экстрагирование органическими растворителями и электролиз с ртутным катодом. В обоих с.чучаях, как было отмечено в 5 и 6, важным преимуществом экстрагирования является малая поверхность раздела и отсутствие кристаллической решетки. Таким образом избегают соосаждения, из-за которого реакции осаждения часто не приводят к полному количественному разделению ионов. [c.113]

    Метод градуировки. Целью количественного анализа является определение содержания какого-либо элемента или соединения X. Поэтому необходимо точно знать функциональную зависимость между измеряемой величиной у и содержанием х (рис. Д.194). Желательно, чтобы эта зависимость не была многозначной (а). В случае двузначной зависимости, например для активной составляющей метода осциллометрии, нужно определить, в какой области должно находиться значение у для получения правильных результатов для х (б). Даже однозначная функциональная зависимость не всегда является идеальной (в), так как при наличии кривизны функции существует сильная зависимость чувствительности измерений от содержания компонента. Такая ситуация возникает, напр/ мер, при подавлении максимумов первого рода в постояннотоковой полярографии при определении содержания примесей поверхностно-активных веществ в воде. В таких случаях используют специальные приемы, например измеряют объем пробы, при добавлении которого сигнал уменьшается наполовину. Фиксируют значение у и определяют X при соответствующем разбавлении пробы. Как правило, для аналитических определений необходимо наличие однозначной линейной функциональной зависимости (г). Тогда градуировочный график можно описать уравнением у = ув+Ъх. При х =0, т. е. в отсутствие определяемого компонента, у=ув, поэтому ув называют сигналом фона. Причинами возникновения сигнала фона могут служить примеси определяемых компонентов в реактивах и растворителе, а также наложение сигналов, перекрывающих сигналы определяемых компонентов. Сигнал фона стараются в каждом конкретном случае уменьшить (при- [c.455]


    Для проведения количественного анализа смесей различного рода (растворитель и растворенное вещество, смеси изомеров, включая оптические изомеры, изотопомеров, реакционные смеси) используются интегральные интенсивности сигналов, которые пропорциональны концентрациям компонент. При этом, конечно, важно, чтобы сигналы были достаточно смещены друг относительно друга, т. е. чтобы компоненты были спектрально разрешены , [c.39]

    Требования к пробе. Проба должна содержать около 1 % каждого из определяемых веществ. Эта концентрация является контрольной. На бумагу наносят 5—50 мкг, т. е. 0,5—5 мкл пробы. В работе применяют микропипетки для качественного анализа лучше пользоваться тонкими капельницами или трубочками, применяемыми для определения температуры плавления веществ. Пробу наносят на бумагу в заранее отмеченное место, находящееся на расстоянии около 2 см от нижнего (или верхнего при получении нисходящей хроматограммы) края, в виде точек или полос. Иногда при проведении количественного анализа предпочитают наносить пробу в виде полос. Перед проведением хроматографии необходимо удалить растворитель, нанесенный вместе с определяемыми веществами, высушивая бумагу горячим, воздухом. [c.354]

    СаНа используют в количественном анализе для определения малых количеств воды в органических растворителях, а также в твердых кристаллогидратах, взаимодействующих с СаНз в среде пиридина. [c.255]

    А. А. Лурье [148] предложил также способ количественного анализа одного осаждающегося вещества по первичной круговой зоне, в котором используется очень простая техника. Для определения концентрации раствора опускают фитилек импрегнированной бумаги в исследуемый раствор и затем прерывают впитывание раствора в любое удобное время. После высушивания бумаги замеряют соотношение радиусов фронта растворителя и зоны осадка (или соотношение площадей соответствующих кругов). Как показал математический анализ, прямолинейные калибровочные графики получаются в координатах квадрат отношения радиусов (или отношение площадей кругов) — обратная величина концентрации. [c.213]

    Количественный анализ осадочно-хроматографическим методом оказался настолько простым и удобным, что его стали применять для аналитического окончания в комбинированном хроматографическом эксперименте. Например, в некоторых случаях сочетают распределительную и осадочную хроматографию, используя первый метод для разделения ионов, а второй — для их количественного анализа. Анализ проводится после того, как отдельные компоненты смеси с помощью соответствующих растворителей будут переведены с расчлененной хроматограммы на бумагу, импрегнированную осадителем. [c.216]

    Получение проявленной (промытой) хроматограммы. Для полного разделения веществ первичную хроматограмму промывают чистым растворителем. При этом в результате различной сорбируемости компоненты анализируемой смеси продвигаются в слое сорбента с различной скоростью, вследствие чего происходит образование зон отдельных компонентов и их постепенное раздвижение (рис. 1, б). Аналогично предыдущему промытые хроматограммы можно использовать для качественного, а иногда и количественного анализа. [c.11]

    При получении хроматограмм для прямого количественного анализа необходимо придерживаться определенных условий. Это обусловлено тем, что площадь пятна данного растворенного вещества на проявленной хроматограмме зависит от полярности растворителя, использованного для приготовления образца, который подлежит хроматографированию, расстояния, пройденного пятном на хроматограмме, близости других пятен и т. д. [c.139]

    Очень часто, особенно в препаративном методе разделения, количественный анализ проводят после разделения и вымывания вещества с пластинки. Для этой цели снимают (соскабливают) пятна с пластинки и из адсорбента растворителем элюируют вещество. Затем проводят определение веществ наиболее удобным методом. [c.140]

    Растворимость веществ — важное-свойство для аналитической химии. Так, на различной растворимости одного и того же вещества в двух несмешивающихся растворителях основано экстракционное разделение. Изменение растворимости в результате химических реакций использовано в таком методе разделения, как осаждение, и в гравиметрическом методе количественного анализа. Схемы классификации органических веществ основаны на их растворимости в некоторых растворителях и т. д. Кроме того, это свойство используется в ряде препаративных методов синтеза и очистки препаратов от загрязнений. [c.32]

    Количественный анализ полимерных соединений включает определение содержания основного вещества, пластификатора, наполнителя, стабилизатора, красителя. Для этого полимерные соединения специально подготавливают пластификатор выделяют методом экстракции наполнитель отделяют обработкой растворителем, в котором он не растворяется, после чего полимеры осаждают. В табл. 18.4 приведены растворители и осадители для некоторых видов пластмасс. [c.355]


    Наибольшее распространение имеют петлевые инжекторы (петлевые краны). Пробу вводят в петлю заданной вместимости при давлении, близком к атмосферному, с помощью микрошприца или шприца. Затем поворотом крана петля сообщается с линией подачи растворителя от насоса и входом колонки, проба вымывается из петли и попадает в колонку. Схема работы одного из петлевых инжекторов представлена на рис. 8.9. В положении заполнение петли поток растворителя от насоса идет непосредственно в колонку, а петля соединяется с линиями сброс и ввод пробы и находится при атмосферном давлении. В этом положении петля промывается чистым растворителем с помощью шприца вместимостью 2—5 мл от остатков предыдущей пробы, затем с помощью микрошприца в петлю вводится определенный объем пробы. Проба может вводиться либо с полным заполнением петли, либо с ее частичным заполнением. Первый способ является предпочтительным при количественном анализе и позволяет получить наиболее воспроизводимые результаты анализа. Он требует для полного заполнения петли подачи в нее объема пробы, в 5—6 раз превышающего вместимость петли. Это необходимо для полного вытеснения из петли растворителя пробой. Частичное заполнение петли удобнее, так как позволяет, не меняя петли вместимостью, например, 50 мкл, вводить пробы от 1 до 40 мкл. При этом объем пробы, попадающий в петлю, не должен превышать примерно 4/5 вместимости петли. Так как объем пробы, попадающий в петлю в этом случае, не точно равен тому, который подан микрошприцем (так как часть пробы остается в подводящих каналах от конца микрошприца до начала петли), то точность количественного анализа в этом случае будет ниже, чем при полном заполнении петли. [c.147]

    Точные количественные измерения проводят в изократическом режиме. Градиентное элюирование применяют, когда провести изократическое разделение невозможно. Хотя при градиентном режиме получают воспроизводимые результаты, но при градиентном элюировании иногда наблюдается смещение базовой линии и появление ложных пиков из-за наличия в растворителях воды. Кроме того, градиентное элюирование удлиняет время анализа. При количественном анализе в режиме градиентного элюирования необходимо тщательно контролировать скорость потока, если измеряют площади пиков, и соблюдать постоянство градиентного изменения состава подвижной фазы, если измеряют высоты пиков. Для анализа смесей компонентов, характеризующихся широким диапазоном значений к, предпочтение следует отдавать изократическому разделению с переключением колонок, а не градиентному. [c.179]

    К основным областям использования пиролитической газовой хроматографии относятся качественная идентификация полимеров путем сравнения пирограмм и масс-спектров исследуемых и известных полимеров, определение стереорегулярности полимеров, количественный анализ сополимеров и их структур, т. е. определение различий между статистическими и блок-сополимерами установление отличий полимерных смесей от истинных сополимеров, изучение термостойкости и деструкции полимеров, кинетики деструкции их, в том числе и термоокислительной деструкции, оценка остаточных количеств мономеров, растворителя, добавок и сорбированной воды в полимерах, идентификация растворителей, содержащихся в клеях и растворах покрытий, изучение процесса сшивания в полимерах. [c.200]

    Теплота образования обычной межмолекулярной водородной связи составляет 3 — 10 ккал/моль. Очень широкие полосы поглощения часто состоят из нескольких перекрывающихся полос, соответствующих равновесным концентрациям димеров, тримеров и других полимеров (рис. 5.12). Относительные количества различных ассоциатов зависят от концентрации растворенного вещества, растворителя и температуры. Только при разбавлениях 10 — 10 моль/л концентрация полимерных частиц становится пренебрежимо малой. Из-за сильной зависимости интенсивности от внешних факторов полосы поглощения ОН и КН нельзя использовать для количественного анализа, кроме особых случаев. [c.171]

    Другим хорошо известным примером является концентрационная зависимость полосы гидроксидной группы. Часто бывает необходимо измерять спектроскопическими методами концентрацию либо самой гидроксидной группы, либо молекул, содержащих эту группу. Иногда это можно сделать, используя один из методов, обсуждаемых ниже. Одиако из-за тенденции гидроксидных групп к образованию водородной связи с кислородом и другими электроотрицательными атомами (стр. 168 — 174) ИК-спектроскопия в данном случае не столь полезна для количественного анализа, как в других. Если растворитель или другие находящиеся в растворе вещества, достаточно инертны, то относительные интенсивности полос ассоциированных и неассоциированных групп ОН определяются концентрацией и температурой раствора  [c.268]

    При правильном проведении непосредственного ввода пробы в колонку получают наиболее точные и воспроизводимые результаты. Полностью устраняется дискриминация компонентов пробы, обусловленная использованием шприца. Как известно, дискриминация компонентов пробы за счет шприца является основным источником погрешностей при проведении количественного анализа проб, содержащих вещества с сильно различающимися молекулярными массами. Более того, поскольку проба вводится в колонку в виде жидкости, устраняется дискриминация компонентов за счет различного испарения в камере испарителя. На рис. 3-31 приведена хроматограмма смеси углеводородов С — С40 в гексапе. Пробы вводили при температуре 60 С, т. е. ниже точки кипения растворителя. За счет эффекта растворителя происходит концентрирование углеводорода, а размывание зоны углеводородов Сп — С40 пренебрежимо мало. В табл. 3-1 приведены данные. Характеризующие воспроизводимость полученных результатов для двух смесей углеводородов различной концентрации. [c.53]

    Однако в некоторых случаях ввод пробы с делителем потока не позволяет проводить количественный анализ с высокой точностью. К сожалению, некоторые пробы невозможно анализировать без деления потока. К ним относятся прежде всего те пробы, которые нельзя разбавить разжижители, растворители, наро- и газообразные пробы. На рис. 3-9 приведена хроматограмма определения примесей в стироле. В этом частном случае результаты, полученные с использованием делителя потока, превосходят по своей правильности и воспроизводимости результаты, полученные ири ирименении других методов ввода. [c.38]

    При необходимости идентификацию растворителей проводят методом ИК-спектроскопии после разделения в условиях препаративной газовой хроматографии. Для количественного анализа растворителей применяют метод внутренней нормировки. [c.150]

    При количественном анализе растворителя определяют его симические константы (число омыления, гидроксильное, эфирное, карбонильное число и т. д.), количественное содержание ароматических углеводородов и т. д. По гидроксильному числу можно эпределить содержание того или иного спирта, по карбонильному— кетона, по числу омыления — сложного эфира. Окончатель-1ое заключение о составе растворителя следует делать после по-зторного спектрального и хроматографического анализа выделен-1ЫХ из растворителя компонентов. [c.407]

    Однако растворимость многих осадков, например таких, которые содержат анионы некоторых органических кислот (диметил-глиоксимат никеля, оксихинолинат алюминия и др.), в органических растворителях гораздо выше, чем в воде. Поэтому в количественном анализе всегда следует учитывать влияние на растворимость осадков температуры и природы растворителя. [c.84]

    Общеизвестно (например, [983]), что выход, состав и свойства смол и асфальтенов в большой степени зависят от способа их выделения, природы растворителей, использованных при осаждении асфальтенов или адсорбционном отделении смол от углеводородов, и других экспериментальных факторов. Несмотря на это, методы выделения, фракционирования и количественного анализа ВМС, реализованные в различных работах, не только не унифицированы, но неоправданно разнообразны. Так, для выделения асфальтенов, наряду с наиболее употребительными осадителями из числа н. алканов С5—0 2 [1,984—987], применялись легкий бензин [988—990], пропан [991—994], пропан-ироииленовая фракция [995], ацетон [996], метилэтилкетон [73] и другие органические растворители. В ряде работ [94, 997] асфальтены осаждались в форме их комплексов с солями различных металлов. [c.182]

    В последние годы в дополнение к адсорбционному разделению начали применять тонкослойную хроматографию. Слой алюмоси-ликатного геля толщиной 1 мм распределяют на стеклянной пластинке. Затем на нее наносят образец и пластинку погружают в растворитель. При этом компоненты образца распределяются по пластинке со скоростью, зависящей от их полярности. Тонкослойная хроматография удобна при ограниченном количестве образца, но она мало пригодна для выделения компонентов и количественного анализа. [c.33]

    В люминесцентном анализе нефтей и нефтепродуктов приходится иметь дело главным образом с растворами в органических растворителях. Яркость люминесценции зависит от способности молекулы отдавать поглощенную энергию в виде световой энергии. Выход люминесценции в растворе, в свою очередь, зависит от концентрации люминесцирующего вещества в растворе. Однако при больших кон-ценхрацпях яркость свечения растворов возрастает медленнее, чем их концентрации, а ири дальнейшем увеличении концентрации яркость свечения даже начинает снижаться. Это явление, получившее название концентрационного тушения люминесценции, следует обязательно учитывать даже при проведении ориентировочного количественного анализа. Чтобы молекула оказалась способной флуоресцировать, необходимо чтобы электронная оболочка возбужденной молекулы была защищена своей структурой от внешних влияний и при соударениях с другими молекулами не растрачивала электронной энергии молекул. [c.483]

    Общая методика алкилирования. Алкилирование галоиданизолов проводилось так же, как и галоидфенолов. Носле прибавления рассчитанных количеств олефинов реакционная смесь перемешивалась в течение 2—4 час. при температуре опыта, оставлялась стоять па 12—14 час. при комнатной температуре, смешивалась с бензолом с целью облегчить дальнейшую обработку, обрабатывалась водой, 5%-ным водным раствором соды, снова водой и в виде бесцветной ипи светло-желтого цвета прозрачной жидкости сушилась хлористым кальцием и перегонялась. При атмосферном давлении отгонялись растворитель и не вступившие в реакцию исходные галоиданизолы и олефины, а продукты алкилирования фракционировались в вакууме. Состав и строение их устанавливались количественным анализом на галоид и превращением в различные производные. [c.228]

    Книга рассчитана на студентов химических специальностей униыерситетов. В ней изложены теоретические основы и практические методы количественного анализа, описаны приемы работы, аппаратура, приборы, методы вычисления результатов анализа. Значительное место отведено современным методам анализа физическим, кинетическим (каталитическим), фотометрии, полярографии, потен-циометрии, амперометрическому титрованию, кулонометрии, ионному обмену, распределительной и газовой хроматографии, соосажденню и гомогенному осаждению, экстракции органическими растворителями, комплексонометрическому титрованию. [c.2]

    Образцы жидких веществ. При измерении спектров л<идкостей оптимальная толщина образца лежит в диапазоне от нескольких миллиметров до 0,02 мм, что в известной мере ослолсняет снятие спектра. Поэтому в ряде случаев, особенно при количественном анализе, снимают спектры разбавленных растворов, так как точность измерения толщин тонких слоев жидкостей, находящихся в кюветах, недостаточна. Вследствие того что в общий спектр раствора всегда входят характерные полосы растворителя, последний должен обладать как можно меньшими поглощающими свойствами в исследуемом диапазоне волновых чисел. Для получения полного ИК спектра исследуемого вещества изменяют не только концентрацию и толщину слоя раствора, но и вид растворителя. [c.59]

    Методом рентгеновской спектроскопии можно анализировать монолитные или порошкообразные твердые пробы, жидкие вещества и иногда газы. Твердые пробы можно анализировать непосредственно. Для проведения количественного анализа их разбавляют введением подходящих веществ (наполнителей) (разд. 5.2.2.4) или добавлением внутреннего стандарта. Можно также готовить таблетки сплавлением с В2О3. В таких таблетках частицы вещества пробы достаточно малы (-<50 мкм) и равномерно распределяются по их толщине. Металлы следует протравить и тщательно отполировать (максимальная глубина трещин 100 мкм). При более глубоких трещинах — особенно если они будут перпендикулярны падающему и испускаемому излучениям — интенсивность флуоресценции уменьшается. Неоднородные твердые пробы гомогенизируют растворением. В качестве растворителей используют кислоты, воду или органические растворители, такие, как ацетон, ксилол. Матричный эффект с разбавлением уменьшается. Руководствуясь аналогичными соображениями, готовят тонкие слои толщиной приблизительно 1000—2000 А. При этом взаимное влияние элементов выражено еще мало и калибровочный график — почти прямая линия. [c.207]

    Растворы полимеров. Часто на практике приходится снимать спектр исследуемого полимера в растворе. Это удобнее в тех случаях, когда исследуют не весь спектр, а лишь отдельные характерные линии, и особенно тогда, когда эти линии очень интенсивные. Например, растворами пользуются при количественном анализе вещества. Для приготовления раствора тщательно подбирают растворитель и устанавливают оптимальную концентрацию. Концентрация растворов большинства углеводородных полимеров обычно составляет 10—100 г/л. Кювету применяют с толщиной слоя 0,1 мм. При этом используют преимущественно два типа кювет постоянной толщины и разборные различных конструкций. Оба окошка кюветы делаются из прозрачного материала —кварца, КВг, LiF, Na l, K l, СаРг. [c.190]

    Для качественного анализа в колонку, заполненную на 2/3 ее высоты, вносят 2—3 капли анализируемого раствора при количественном анализе микропипеткой вносят 0,2—0,5 мл раствора. Если через 3—5 мин зоны в первичной хроматограмме недостаточно четкие, их промывают чистым растворителем, получая более четкую промытую хроматограмму. Зоны отдельных осадков можно продвинуть вниз по колонке или извлечь их растворителями, в которых отдельные осадки растворяются селективно, либо вытеснить веществом, образующим с осадителем соединение менее растворимое, чем осадки первичной (промытой) хроматограммы. [c.225]

    Любая лекарственная субстанция (исходное фармакологически активное вещество для приготовления лечебных средств) и любая лекарственная форма (порошки, таблетки, драже, капсулы, растворы, суппозитории и др.), каждый лекарственный препарат не могут быть допущены для практического использования, если для них не разработаны соответствующие методики качественного определение подлинности) и количественного анализа, причем как для фармакологически активных веществ, содержащихся в лекарственных формах, так и для вспомогательных веществ, наполнителей, растворителей и др. Эти аналитические методики тщательно отрабатываются в каждом конкретном случае, многократно проверяются, включаются в Фармакопейную статью, которая после детальной экспертизы и одобрения (в России — Фармакопейным государственным комитетом, в США — Фармакопейной Конвещией и т. д.) является обязательной для всех учреждений на любом этапе производства, хранения, реализации и практического применения лекарственного средства. Таким образом, фармакопейный анализ — это контроль качества лекарственного сырья, субстанций, лекарственных форм, проводимый в соответствии с требованиями Фармакопеи или отдельных Фармакопейных статей, не включенных в Фармакот и. [c.11]

    Высокая стабильность скорости потока. Точность поддержания скорости потока в колонке во многом определяет результаты как качественного, так и количественного анализа. Для основных вариантов ВЭЖХ нестабильность потока не должна превышать 0,5—1%. В эксклюзионной хроматографии при анализе молекулярно-массового распределения полимеров требования еще выше—0,1—0,3%. Кроме того, весьма желательно, чтобы насос не давал пульсации потока и имел малый рабочий объем для быстрой смены растворителя в режиме градиентного, элюирования. [c.139]

    Пробу вводят в петлю заданной вметшости при давлении, близком к атмосферному, с помощью микрошприца или пшрица. Затем поворотом крана петля сообщается с линией подачи растворителя от насоса и входом колонки, проба вымывается из петли и попадает в колонку. Проба может вводиться либо с полным заполнением петли, либо с сс частичным запо шением. Первый способ являстся предпочтительным при количественном анализе и позволяет получить наиболее воспроизводимые результаты анализа. Он требует для полного заполнения петли подачи в нее о ьема пробы, в 5-6 раз превьппающе-го вместимость петли. Это необходимо для полного вытеснения из петли растворителя пробой. Частичное заполнение петли удобнее, так как позволяет, не меняя петли, вводить произвольный объем пробы. Точность количественного анализа в этом случае будет ниже, чем при [c.195]

    Эксперимент (от лат. experimenium — опыт) — научно поставленный опыт, позволяющий наблюдать исследуемое явление в точно учитываемых условиях. Экстрагирование (экстракция, от лат. extraho — извлекаю) — разделение смеси жидких или твердых веществ с помощью избирательных (селективных) растворителей (экстрагентов), основанное на различной растворимости в них компонентов смеси. Э. применяется в химической, нефтеперерабатывающей, пищевой, металлургической, фармацевтической и других отраслях. В аналитической химии. Электроанализ — метод количественного анализа, основанный на использовании электролиза для определения веществ. В результате электролиза на одном из электродов выделяется вещество, которое взвешивают. Э. позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ. [c.156]

    Полимеры, содержащие наполнители и пластификаторы, часто готовят к съемке экстрацией растворителем [47]. Пластификаторы могут оказаться растворимыми в мягких растворителях, таких, как S2 или этиловый эфир, и их экстрагируют из измельченного полимера в аппарате Сокслета. Экстракт в S2 можно прямо перенести в ИК-спектрофотометр. От наполнителя полимер отделяется более жестким растворителем, например о-дихлорбензолом. В этом случае из раствора можно отлить пленку полимера, а спектр наполнителя получить методом прессования с КВг или методом суспензии в вазелиновом масле. Примером такого рода является количественный анализ состава поливинилхлорида [21]. [c.267]

    Если объем пробы велик или смачиваемоеть фазы растворителем недостаточна и при этом не произошло концентрирования определяемых веществ, то размывание зоны в пространстве делает невозможным и качественный, и количественный анализ. Па рис. 3-28 показаны пики додекапа, полученные при различных объемах вводимой пробы. Видно, что ширина ников для проб объемом 0,5 и 1,0 мкл одинакова. Для пробы объемом 2 мкл уже заметен вклад размывания, однако форма пика не искажена. Искажённые и расщепленные ники получаются при объеме пробы, превышающем 2 мкл. [c.52]

    На рис. 3-35 приведена хроматограмма пиперина — основного компонента перца (и экстрактов перца), придающего ему жгз чий вкус [52]. Пробу раствора пиперина в дихлорметане объемом 0,5 мкл быстро вводили при температуре термостата 100°С. Дополнительно охлаждали первые несколько сантиметров колонки.. После ввода пробы повышали температуру сразу до 250°С. Высококипящие компоненты пробы концентрировались на первых сантиметрах колонки, а растворитель испарялся. Движения потока в обратном направлении не присходит за счет совокзшного действия дополнительного охлаждения, малого объема пробы и большого диаметра капиллярной колонки. Относительное стандартное отклонение при шестикратном вводе стандартной смеси (рис. 3-35, а) и пробы (б) не превышает 1%. Эти результаты лучше, чем данные анализа методом ВЭЖХ. Представленные данные также свидетельств тот о пригодности как метода внутреннего стандарта, так и абсолютной калибровки при проведении количественного анализа. [c.55]


Смотреть страницы где упоминается термин Количественный анализ растворителей: [c.614]    [c.143]    [c.81]    [c.152]   
Смотреть главы в:

Методы анализа лакокрасочных материалов -> Количественный анализ растворителей




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный



© 2025 chem21.info Реклама на сайте