Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия связи и энергия активации

    Найденные таким путем энергии связи катализаторов с водородом могут быть использованы для определения других энергий связи при помощи энергий активации соответствующих реакций — гидрогенизации и изотопного обмена. Отметим, что в соотношении (8) у нас фигурирует кажущаяся энергия активации, которая может быть искажена вследствие адсорбции. Кроме того, величины теплот адсорбции могут входить в выражение с дробными коэффициентами, однако в рассматриваемых нами простейших реакциях эти случаи будем считать менее вероятными. Различные значения энергии активации, обусловленные разной адсорбционной способностью, отвечают, очевидно, разным значениям энергии связи. [c.347]


    По известным энергиям связей можно с хорошим приближением рассчитать энергию активации для реакций, относящихся к любой из упомянутых выше категорий. Применение метода было бы ограничено, если бы мы использовали только экспериментально определенные энергии связей. При расчете энергии активации часто необходимо знать энергии связей, которые экспериментально не измерены или их определение вообще невозможно. В этих случаях можно использовать предложенный автором метод декрементов [10]. Сущность этого метода заключается в том, что влияние на энергию связи между двумя атомами соседних атомов и групп рассматривают как независимую и постоянную величину. Из этого следует, что в молекуле, состоящей из трех атомов, существует взаимодействие связей. [c.55]

    В развитие сказанного следует отметить, что особенности поведения химических соединений, противодействующих износу трущихся пар при высоких нагрузках, могут быть объяснены различием в их молекулах величин энергии связи между активным элементом и органическим радикалом [з]. Одной из форм проявления прочности связи также является большая или меньшая склонность молекул присадки к диссоциации в силовом поле адсорбента. При этом, чем меньше энергия связи в молекуле, тем больше (при прочих равных условиях) их склонность к диссоциации и выше противозадирные свойства соединения. Так, на примере сульфидов и дисульфидов, используя расчет величины энергии связи радикала с атомом серы (табл. 9), показано не только преимущество дисульфидов в условиях высоких контактных нагрузок, но и влияние строения органического радикала на их противозадирные свойства. В ряде случаев величина энергии связи в молекулах определяет энергию активации процесса взаимодействия присадок с поверхностью металла и противоизносные свойства системы [ ]. [c.42]

    Разность энергий связи разрушающихся и образующихся соединений в основном определяет энергию радикал-молекулярной реакции, но некоторый вклад сюда же может дать энергия активации данного процесса (рис. 6.1). Энергия активации реакции часто является решающим фактором, определяющим весь ход процесса, если радикал, вступающий в реакцию с молекулой, взаимодействует с ней по нескольким механизмам. Обычно энергия активации приобретается реагирующей частицей в результате случайных тепловых соударений с молекулами данной системы, но для радикалов, уже имеющих избыточную энергию (например, горячие радикалы), они сами по себе будут более активны, чем такие же радикалы, находящиеся в тепловом равновесии с окружающей средой. Для большинства радикальных реакций энергия активации существенно меньше, чем для нерадикальных процессов. [c.149]


    Малая энергия связи в молекуле фтора обусловливает малую прочность молекулы, иначе говоря,—диссоциацию, часто предшествующую химическим процессам. Диссоциация может быть вызвана либо термически, либо фотохимически. Несмотря на небольшую энергию диссоциации связи Р — Р, необходимы весьма высокие температуры, чтобы молекула фтора заметно диссоциировала. Так, при 300°С степень диссоциации фтора составляет 0,0005, а при 500°С — 0,3%. Однако следует иметь в виду, что при чрезвычайно низкой энергии активации, потребной, например, для отщепления водорода атомами фтора, вероятно, даже такая малая степень диссо- [c.15]

    Сопротивление в уравнении (1Х-1) для данного процесса также будет характеристической величиной. В случае диффузионного массообмена образуется пленка, через которую и происходит диффузия следовательно, сопротивление будет пропорционально толщине этой пленки. При теплопередаче величина сопротивления пропорциональна толщине стенки, разделяющей. две среды. В случае химической реакции в гомогенной системе с сопротивлением связана энергия активации процесса и т. д. [c.348]

    Теплота первой реакции равна 102 ккал. а второй — 347,5 ккал таким образом, энергия диссоциации связи С—Н в метане равна 102 ккал, а средняя энергия связи составляет 86,9 ккал. Последняя величина рассчитана по термохимическим данным и зависит от величины скрытой теплоты сублимации графита, а первая является экспериментальной величиной, полученной на основе кинетических измерений. Зависимость между ними заключается в том, что в данном случае сумма индивидуальных энергий диссоциации связи в СН , СНд, СНз которые сильно различаются между собой, должна быть равна четырехкратной средней энергии связи. Таблицы энергии связи, составленные, нанример, Паулин-гом [33], дают сведения о средней энергии связи и не имеют прямого отношения к проблемам разложения углеводородов, поэтому дальше будут рассматриваться только методы определения энергии диссоциации связи. Раньше всех стали изучать энергию диссоциации связи в сложных молекулах Поляни и сотрудники [7], которые исследовали пиролиз ряда иодидов в быстром потоке несуш,его газа при низких давлениях иодидов, В этих условиях, по их мнению, вторичные реакции не представляют важности, и измеренная" энергия активации соответствует энергии реакций  [c.14]

    Связь энергии активации с тепловым эффектом реакции можно проиллюстрировать с помощью представления об энергетическом барьере. Химическую реакцию можно представить как переход системы из энергетического состояния I в энергетическое состояние II, сопровождающийся тепловым эффектом Qp. Из рис. 1,7 видно, что переход из состояния I в состояние II возможен ири затрате энергии Ех обратный переход возможен при затрате энергии Е . При осуществлении реакции в прямом [c.44]

    Физический смысл (2.70) ясен — скорость реакции в общем случае определяется не только теплотой активации, но и изменением свободной энергии при переходе в активированное состояние, причем эти факторы противоположны по своему действию. Если переход в активированное состояние ведет к сильному увеличению энтропии, то реакция будет идти с большой скоростью несмотря на высокие значения энергии активации. И напротив, если возрастание энтропии невелико, то даже при низких значениях ДН (или ди) реакция будет протекать медленно. Поскольку величина ДН (или Ди) связана с энергией активации, то величину ДЗ формально можно связать со стерическим фактором из (2.20). По этой причине стерический фактор иногда называют энтропийным множителем. [c.78]

    Найдем связь энергии активации а с АН образования активированного комплекса. Прологарифмировав (212.29) и затем продифференцировав полученное выражение по Т, с учетом уравнения Аррениуса [c.578]

    Наблюдаемую особенность изменения каталитической активности в процессе регенерации в зависимости от природы оксида авторы объясняют влиянием энергии связи кислорода катализатора на скорость выгорания углеродистых отложений [104]. Энергия связи кислорода в оксиде железа(П1) значительно выше энергии связи для оксидов кобальта и никеля, значения которых близки. Установлено [104, 105], что при низких температурах регенерации процесс лимитируется отрывом кислорода от решетки оксида, и в уравнении, связывающем энергию активации процесса с энергией связи кислорода катализатора, Е = Ео щ, будет знак плюс. В этом случае снижение энергии связи кислорода должно уменьшать энергию активации процесса в целом и увеличивать скорость выгорания углерода. Следовательно, при 450 С наиболее медленно выгорание углерода протекает на оксиде железа(П1), так как кислород в данном случае связан наиболее прочно. [c.41]


    Реакция Разрываемая связь Энергия активации, ккал/моль [c.63]

    Сначала существуют молекулы АВ и СО, расположенные достаточно далеко друг от друга. Прн этом взаимодействуют атомы, входящие в состав одной и той же молекулы. Эти связи достаточно прочны. После сближения этих молекул возникают связи между атомами, входящими в состав различных молекул, а прежние связи становятся более слабыми. В дальнейшем старые связи еще более ослабевают и разрываются, а новые, наоборот, упрочняются. В результате происходит перегруппировка атомов и вместо исходных молекул образуются молекулы продуктов. Можно представить себе, что в ходе этой реакции реагирующие молекулы образуют некоторый малоустойчивый комплекс атомов А, В, С и О, который затем распадается на молекулы продуктов. Этот комплекс, в котором старые связи между атомами еще не полностью разорвались, а новые еще не вполне образовались, называется активным комплексом или переходным состоянием. На образование активного комплекса необходима энергия, равная энергии активации. Тот факт, что экспериментальные значения энергии активации химических реакций всегда значительно меньше энергии диссоциации соответствующих веществ, подтверждает представление о том, что в ходе реакции не происходит полного разрыва старых связей. [c.287]

    Как видно из рис. 150, а, энергия активации элементарного акта реакции разряда /д определяется разностью ординат точек А и О. Если при изменении потенциала электрода потенциальная кривая иона НзО" " переместилась параллельно самой себе в положение Г, то изменение энергии активации М/можно связать с изменением энергии начального состояния А / . Рассмотрим рис. 150, б, где область пересечения потенциальных кривых 1 н Г с кривой 2 представлена в более крупном масштабе. Отрезок А В равен величине АС/о, а отрезок СВ=А В—А С дает изменение энергии активации Аи (поскольку начальная точка О поднимается на АНо А В, а точка пересечения А — только на А С). Легко видеть, что СВ/А В= = tg 7/(tg б+1 7)=а<1. Изменение энергии активации АЦ составляет некоторую долю а от АОо, что и утверждает принцип БПС. [c.277]

    Таким образом, причина возникновения притяжения между двумя атомами водорода сводится к тому, что вследствие квантово-механического принципа суперпозиции электроны переходят с атомных на энергетически более выгодные молекулярные орбиты. Отталкивание, отвечающее состоянию и , — типичное явление, имеющее весьма большое значение в атомных процессах. Именно оно определяет свойство насыщаемости связи, энергию активации, размеры молекул и пр. [c.473]

    Энергия активации 3—один из основных параметров, который характеризует скорость химического взаимодействия. Энергия активации процесса зависит от природы реагирующих веществ. Чем больше энергия активации, тем меньше (при прочих равных условиях) скорость реакции. Энергия активации необходима в основном для ослабления химических связей в исходных веществах и для преодоления отталкивания между электронами, которое возникает при сближении молекул и атомов взаимодействующих веществ и мешает их столкновению. [c.122]

    Сначала две молекулы иодистого водорода расположены достаточно далеко друг от друга. При этом существует взаимодействие лишь между атомами в молекуле. После сближения на достаточно короткое расстояние начинают возникать связи между атомами, входящими в состав разных молекул, и связи Н—I становятся более слабыми. В дальнейшем они еще более ослабевают и полностью разрываются, а новые связи Н—Н и I—I, наоборот, упрочняются. В результате происходит перегруппировка атомов и вместо исходных молекул HI образуются молекулы На и В процессе сближения и перегруппировки атомов молекулы образуют некоторый малоустойчивый активный комплекс (или переходное состояние) из двух молекул водорода и двух молекул иода комплекс существует очень недолго и в дальнейшем распадается на молекулы продуктов. На его образование необходима затрата энергии, равная энергии активации. То, что энергия активации химических реакций всегда значительно меньше энергии диссоциации соответствующих связей, подтверждает теоретический тезис, что в процессе взаимодействия молекул не происходит предварительного полного разрыва химических связей. [c.245]

    Метод Поляни — Семенова, устанавливающий связь энергии активации реакции с тепловым эффектом экзотермических реакций атомов и радикалов с валентно-насыщенными молекулами [c.70]

    Возможны и такие случаи, когда при д < 15 ккал реакция идет медленно (при малом значении А). Первый случай возможен в реакциях между простыми молекулами, а второй — между сложными, требующими определенной ориентации для реакции. Чем больше энергия активации реакции, тем при более высокой температуре она совершается. Реакции между веществами с прочными ковалентными связями идут медленно. Часто это наблюдается в реакциях между органическими веществами. Очень высокий потенциальный барьер ( а порядка 100 ккал) в твердых телах препятствует, например, переходу термодинамически неустойчивого алмаза в графит при 298° К и 1 атм, хотя для этого перехода Д0%в8< 0 (—0,685 ккал/г-атом). Энергия активации в твердых телах зависит от прочности химических связей, которые могут быть очень большими. Поэтому состояние ложных равновесий в них часто сохраняется долго неизменным. [c.45]

    Для того чтобы химическая реакция стала возможной, молекулы реагирующих веществ должны обладать некоторым минимальным запасом избыточной энергии (по сравнению с величиной средней энергии молекул). Эта характерная для каждой реакции величина излишка энергии называется энергией активации и обозначается акт. Энергия активации необходима для преодоления сил отталкивания между сближающимися молекулами, а также для ослабления и нарушения связей в молекулах [c.125]

    Следует отметить, что для веществ, строение которых в значительной степени обусловлено направленными под определенным углом в пространстве гомеополярными связями, энергии активации Е велики (диффузионная подвижность молекул мала), и поэтому относительно легко достигается такая температура, при которой практически невозможна кристаллизация. В этом случае и<идкость переходит в стеклообразное состояние. [c.503]

    Как видно на рис. 86, с ростом электродного потенциала повышается плотность тока, создаются благоприятные условия для протекания процесса. Если связать энергию активации с величиной потенциального барьера, то повышение перенапряжения (рис. 86, кривая II), т. е. сообщение дополнительной электрической энергии, будет равносильно снижению этого барьера, уменьшению эффективной энергии активации. Действительно, по уравнению Фольмера  [c.367]

    В жидкости различают первичные соударения реагентов, встретившихся и попавших в результате диффузии в клетку растворителя , которые составляют вместе с ней диффузионную пару, и вторичные соударения частиц А и В в клетке . Если такие частицы друг с другом не взаимодействуют, то число соударений частиц А и В в клетке растворителя оценивается в 10 . Общее число соударений частиц А и В в растворе не зависит от вязкости растворителя и предполагается таким же, как в газовой фазе. В ходе столкновения многоатомных частиц А и В между ними первоначально возникают силы отталкивания (противодействия). Они связаны с отталкиванием электронных оболочек частиц А и В, с их поляризацией и растяжением химических связей, которые в составе А и В должны исчезнуть, когда частицы перейдут в С и В. Кроме преодоления сил отталкивания и растяжения химических связей энергия расходуется на частичную десольватацию А и В, если они растворены в сольватирующем растворителе. При движении реагирующей системы А + В к вершине потешдаального барьера, измеряемого свободной энергией активации АО или же только энергией активации Е (Е = АЯ" + КТ, где АН — энтальпия активации), наряду с силами противодействия по мере сближения частиц А и В начинают действовать силы взаимодействия. Постепенно баланс сил склоняется в пользу сил взаимодействия, и тогда система А + В достигает вершины потенциального барьера и оказывается в переходном состоянии [А...В], в котором индивидуальность частиц потеряна, а новые частицы С и В из них еще не возникли. В переходном состоянии те связи, которые должны быть разорваны в ходе превращения А и В, разрыхляются, существенно ослабевают, а те связи, которые вновь должны возникнуть в С и В, еще только наметились, но око1нчательно не сформировались. Движение от исходного состояния А + В в переходное состояние [А...В], которое длится около 10 с, по длительности эквивалентно времени единичного колебания химической связи в молекуле. [c.195]

    В о п р о с. В книге академика Топчиева и Паушкииа Соединения фтористого бора на стр. 81 дано объяснение причины повышенной реакционной способности изопарафинов с точки зрения энергии связи, энергии активации и других факторов. Как вы относитесь к этому объяснению  [c.306]

    Этим объясняются ббльшие значения энергий связей (энергий активации) в этих двух случаях. Меньшие значения энергий связи для йодистых аллила, бензила и ацетонила объясняются стабилизацией свободнорадикального состояния за счет энергии резонанса. [c.328]

    Хотя водородная связь не является прочной связью (энергия этой связи, т. е. энергия реакции ХН + V ХНУ составляет только около 5 ккал1мол), тем не менее она играет большую роль в определении свойств вещества. Благодаря небольшой энергии связи и небольшой энергии активации ее образования и разрыва, водородная связь играет существенную роль в процессах, происходящих при обычных температурах. Именно водородные связи обусловливают кон- [c.279]

    Первый катализатор (кривая /) не будет достаточно активен, так как энергия связей в мультиплетиом комплексе М слишком мала, а энергия активации Ез II стадии реакции велика. Поэтому скорость всей реакции на первом катализаторе будет мала. Третий катализатор (кривая <3) также будет малоактивен, так как энергия связей атомов А, В, С и D с атомами К мультиплета слишком велика. Поэтому будет велика энергия активации Еа распада мультиплетного комплекса, а скорость III стадии реакции — мала. Третий катализатор дает слишком прочное поверхностное соединение с реагирующими молекулами. Поэтому почти все атомы мультиплетов оказываются связанными в мультиплетные комплексы, и катализатор неактивен. [c.442]

    Здесь переход аксиальной конформации в экваториальную может происходить как путем инверсии шестичленного цикла, характеризуемой константой скорости / , так и путем инверсии пирамидальной системы связей при М —константа скорости кг. Методом динамического ПМР (характеристическое время ЯМР Н Ю " с) были определены константа первого процесса к и потенциальный барьер инверсии цикла 56,5 кДж/моль. Второй процесс, хотя относится тоже к промежуточному обмену, оказывается несколько быстрее. Он изучен методом динамического ЯМР С(/ 10 с), и барьер инверсии связей при N оценен как 46 кДж/моль. Оба значения барьера являются эффективными величинами, так как это слабо невырожденная система, т. е. аксиальная и экваториальная конформации СэНюЫС отличаются по энергии (ДУ Л0 6 кДж/моль, конформация е обладает меньшей энергией), и энергии активации переходов а->-е и е а также отличаются (на указанную величину). [c.44]

    Качественно вид поверхности потенциальной энергии можно получить из приведенной формулы, пренебрегая энергией кулонов-ского взаимодействия и рассматривая обменные интегралы как монотонно убывающие функции соответствующих межатомных расстояний. Исследование зависимости U от угла между Гдв и Гво показывает, что минимум энергии соответствует линейной конфигурации трех атомов. Поверхность в координатах U —Гав — вс имеет вид двух долин, сходящихся вместе с образованием перевала (см. рис. 12). Точка перевала соответствует положению атомов иа верщине потенциального ба зьера. Эти особенности поверхности потенциальной энергии системы трех атомов сохраняются и при более точном расчете взаимодействия, основанном на использовании лучших приближений для электронной функции. Такие прямые расчеты, однако, возможны пока только для простейших систем из трех атомов, да и в этом случае они чрезвычайно трудоемки. В общем случае задача прямого теоретического расчета поверхности потенциальной энергии и энергии активации пока неразрешима. В связи с этим был предложен ряд полуэмпирических методов такого расчета. [c.76]

    Сначала участники реакции расположены достаточно далеко друг от друга и между ними отсутствуют силы взаимодействия. По мере сближения между атомами В и С возникает связь, которая постепенно усиливается, а между атомами А и В связь ослабевает Наступает такой момент, когда молекулы А—В деформированы и нестабильны, а молекулы В—С еще не сформированы. Этот момент является переходным. Систему можно рассматривать как состоящую из трех слабо связанных между собой атомов А - - В- - С (активированный комплекс). На сближение атома С с молекулой А—В и на разрыв связи А—В затрачивается некоторая энергия, равная энергии активации. В течение реакции изменяются расстояния между АиВиВиС, а соответственно этому изменяется потенциа ьная энергия системы (аналогично рис. 17.8). Точка К соответствует образованию активированного комплекса. Поскольку активированный комплекс обладает максимумом потенциальной энергии, то он нестабилен. Время его существования составляет 10 — 10 с. Поэтому он распадается на продукты реакции. [c.288]

    Энергия активации реакции обрыва цеПи при катионной полимеризации больше, чем при свободнорадикальной, так как для ее осуществления при катионной полимеризации требуется разрыв а-связи в растущей полимерной цепи (см. схемы реакций). Энергия же активации реакции роста щ пи, определяющей весь процесс полимеризации, при катионной полимеризации меньше, чем при свободнорадикальной, так как рост цепи связан с атакой двойной связи мономера положительно заряженным ионом карбония. По этой причине повышение температуры реакции катионной полимеризации ведет к снижению ее скорости, а также средней молекулярной массы полимера. [c.39]

    Влияние различных групп на реакционную способность и ориентацию объясняется на основании резонансных эффектов и эффектов поля, поскольку они связаны со стабильностью промежуточно образующихся аренониевых ионов. Для того чтобы понять, почему можно использовать такой подход, необходимо убедиться в том, что в этих реакциях образование продукта контролируется кинетически, а не термодинамически (см. т. 1, разд. 6.6). Некоторые из этих реакций необратимы, другие же обычно завершаются задолго до достижения равновесия. Следовательно, какой из трех возможных интермедиатов образуется, зависит не от термодинамической стабильности продуктов, а от энергии активации, необходимой для получения каждого из трех интермедиатов. Нелегко предсказать, какая из трех величин энергии активации наименьшая, но можно предположить, что профиль свободной энергии должен быть аналогичен приведенным на рис. 6.2, а или 6.2,6 (т. 1 гл. 6). В каждом из этих случаев переходное состояние ближе по энергии к промежуточному аренониевому иону, чем к исходным соединениям. Применяя постулат Хэммонда (т. 1, разд. 6.7), можно считать, что геометрия переходного состояния также аналогична геометрии интермедиата, и что все, приводящее к увеличению стабильности интермедиата, будет понижать также и энергию активации процесса образования этого интермедиата. [c.313]

    Выводы мультиплетной теории позволили развить и теоретически обосновать ряд кинетических методов определения энергий связи различных реагирующих атомов с поверхностью катализаторов. Методы эти основаны на определении энергий активации нескольких независимых реакций, и в этом смысле получаемые результаты недостаточно однозначны, так как возможные ошибки в определяемых энергиях связи достигают 29 кДж. [c.91]

    Ускоряющее действие катализаторов обусловлено тем, что в его присутствии уменьшается энергия активации. Это может быть связано либо с изменением потенциальной энергии переходного состояния и исходных веществ, либо, как правило, появлением нового пути реакции с меньшей энергией активации, чем в отсутствие катализатора. Например, энергия активации распада диэтилового эфира (С2Н5ОС2Н5), происходящего без катализатора, составляет 53,0 ккал/моль (222,6 кДж моль), а в присутствии паров иода (катализатор) эта величина уменьшается до 34,3 ккал/моль (114 кДж/ /моль). [c.275]


Смотреть страницы где упоминается термин Энергия связи и энергия активации: [c.142]    [c.292]    [c.154]    [c.630]    [c.144]    [c.277]    [c.319]    [c.43]    [c.280]    [c.299]    [c.117]    [c.45]    [c.211]   
Смотреть главы в:

Почему происходят химические реакции -> Энергия связи и энергия активации




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Энергия активации

Энергия связи



© 2025 chem21.info Реклама на сайте