Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Количественное омыление сложных эфиров

    Сложные эфиры и лактоны Количественное омыление сложных эфиров [c.981]

    Пожалуй, ни один метод определения сложных эфиров не распространен так сильно и не применяется столь часто, как количественное омыление сложных эфиров, тем не менее многим неизвестно, что в смесях растворителей сложные эфиры могут полностью омыляться избытком раствора едкого натра за 1—2 ч при энергичном взбалтывании при комнатной температуре, а низшие эфиры иногда омыляются даже в течение 10 мин. [c.981]


    Количественное определение сложных эфиров основано на реакции гидролитического расщепления (омыления). [c.114]

    Нуклеофильная атака гидроксильного аниона по карбонильной группе дает промежуточный анион, который может элиминировать либо гидроксильный анион, образуя исходные вещества, либо алкоксид-анион. Потеря алкоксид-аниона приводит к образованию карбоновой кислоты, которая реагирует с сильным основанием — алкоксид-анионом, давая карбоксилат-анион и молекулу спирта. Хотя завершающая стадия в принципе обратима, фактически равновесие нацело смещено в сторону образования спирта и карбоксилат-аниона. Таким образом, щелочной гидролиз (или омыление ) сложных эфиров в отличие от кислого гидролиза количественно приводит к солям карбоновых кислот. При этом катион металла не играет абсолютно никакой роли и служит только для сохранения электронейтральности. [c.159]

    Щелочное омыление сложных эфиров находит применение так-же для определения эквивалентных масс сложных эфиров или чисел омыления (например, в количественном анализе жиров). Числом омыления называют количество едкого кали (в миллиграммах), необходимое для гидролиза 1 г жира или вообще сложного эфира. [c.97]

    Число омыления и эфирное число. Количественное определение сложных эфиров основано на реакции гидролитического расщепления (омыления). В результате омыления образуется спирт и соль кислоты [c.250]

    Щелочное омыление сложных эфиров находит также применение для определения эквивалентного веса, или так называемого числа омыления сложных эфиров (например, в количественном анализе жиров). Число омыления— это число миллиграммов едкого кали, которое необходимо для омыления одного грамма жира или вообще сложного эфира. [c.403]

    Работы вида 4 обычно удобно проводить на первых же занятиях поэтому они сведены в главе IV. Общие методы количественного элементарного анализа в малый практикум обычно не включаются. Опыты по отдельным, более простым (частным) количественным методам анализа (определение эквивалента кислоты, коэффициента омыления сложного эфира и т. п.) приведены в главах, включающих описание соединений данного класса. [c.16]

    Количественное определение сложных эфиров. Обычным методом определения сложных эфиров является гидролиз (омыление). При проведении реакции в присутствии щелочи образуются соль соответствующей кислоты и спирт  [c.269]


    Учитывая, что при омылении на одну сложноэфирную группировку расходуется одна молекула щелочи, омыление сложного эфира можно использовать для количественного определения эквивалентного сложного эфира. [c.269]

    Общий метод количественного определения сложных эфиров основан на реакции омыления их растворами щелочей. Для открытия и определения сложных эфиров фенолов при малом их содержании применяется реакция образования гидроксамовых кислот. [c.296]

    Принцип метода. Содержание сложного эфира в продукте выражают в условных единицах эфирного числа , которое обозначает количество миллиграмм едкого кали, необходимое для омыления 1 г продукта. Количественное определение сложных эфиров основано на омылении их титрованным спиртовым раствором едкого кали [c.26]

    Принцип метода. Количественное определение сложных эфиров основано на омылении их спиртовым раствором едкого кали. По расходу едкого кали рассчитывают содержание эфиров. [c.8]

    Нейтральные вещества черного щелока представляют собой многокомпонентную смесь веществ, относящихся к различным классам органических соединений. Качественный и количественный состав нейтральных веществ меняется в зависимости от видовой специфичности сырья. Нейтральные вещества, извлекаемые из сульфатного мыла малополярным растворителем, в основном состоят из неомыляемых, но в них всегда присутствует какое-то количество сложных эфиров, не подвергнувшихся омылению при сульфатной варке древесины. [c.88]

    По количеству щелочи, израсходованному на омыление, рассчитывают количество сложного эфира. Для наиболее часто используемых в основном органическом синтезе сложных эфиров наряду с количественным определением содержания эфира определяют различные константы кислотное число, эфирное число, число омыления, бромное число и другие показатели. [c.250]

    Сложность строения многих алкалоидов сильно затрудняет определение их структуры. Прежде всего выясняют, содержит ли изучаемый алкалоид кислород или нет, для чего проводят качественный и количественный анализ, определяют молекулярный вес и устанавливают его молекулярную формулу. Если алкалоид оказался кислородсодержащим, устанавливают, в какой форме представлен в нем кислород для этого применяют ряд реакций, характеризующих ту или иную кислородсодержащую группу например, гидроксильную группу открывают с помощью хлорангидридов кислот или уксусным ангидридом, сложные эфиры — путем их омыления, простые эфиры — действием на них иодистого водорода, что приводит к образованию соответствующего галоидоалкила. [c.370]

    Определение в воздухе. Метил-этил-пропил-бутил-амил- и винил-ацетаты омыляют количественно при нагревании в среде водно-спиртовых растворов едких щелочей. По количеству затраченной на омыление щелочи определяют содержание У. У. К. Метод не специфичен, так как реакция омыления характерна для многих других сложных эфиров. Органические растворители, как бензол, толуол, ацетон, скипидар, бензин, спирты, не мешают определению. Метилацетат (также и в присутствии с метиловым спиртом) может быть определен колориметрически. Амилацетат по Коренману определяют путем омыления уловленного эфира и дальнейшей колориметрии амилового спирта (см. Амиловый спирт). [c.356]

    Более удобным методом выделения кислот и спиртов из сложных эфиров является метод аминолиза, описанный Кайзером и Кларком . Реагентом в данном случае является моноэтаноламин (см. стр. 185). Этот метод имеет ряд преимуществ перед омылением растворами щелочей продолжительность омыления сокращается до 15—30 мин. Спирты количественно выделяются в чистом виде, и одновременно образуются амиды двухосновных кислот, которые легко характеризовать по температурам плавления и содержанию азота (см. стр. 188). Это дает возможность установить природу двухосновной кислоты, входящей в состав пластификатора (см. табл. 13, стр. 186). [c.262]

    Полученный сложный эфир уксусной кислоты после нейтрализации избытка ангидрида подвергают омылению, и по расходу щелочи затем рассчитывают содержание спирта. Метод ацетилирования уксусным ангидридом не пригоден для количественных определений легколетучих спиртов, так как процесс идет при нагревании. [c.53]

    Вызывает некоторое удивление незначительная область применения в ряде случаев некоторых из этих реакций. Например, реакция омыления обычно не имеет указанных недостатков или побочных реакций, как это наблюдается у реакций нитрования или сульфирования. По-видимому, с помощью щелочи в таких растворителях, как бензиловый спирт, можно при высокой температуре плавно проводить количественный гидролиз огромного числа сложных эфиров, а следовательно, можно осуществить и достаточно быстрое титрование. Опять-таки, хотя и предположительно, что можно легче разорвать связь кремний — хлор, нежели углерод — хлор, можно было бы ожидать случаи определения других галогенидов путем прямого гидролитического титрования. Такие соеди- [c.66]


    Большое влияние на ход омыления оказывает характер спирта, применяемого для приготовления раствора щелочи. Растворы щелочи в метиловом спирте омыляют сложные эфиры очень медленно, и даже для легко омыляемых жиров время реакции приходится иногда удлинять до 3—4 час., а количественного омыления трудно омыляемых жиров или носков за практически приемлемый период времени вообще достичь не удается. [c.217]

    Для выяснения строения так называемых сложных эфиров и количественного распределения функциональных групп в кислой и нейтральной фракциях образец парафина промышленного окисления был омылен в лабораторных условиях водно-спиртовой щелочью по методике, применяемой для количественного определения сложных эфиров [8]. Зато неомыляемые отделяли от солей кислот многократной экстракцией петролейным эфиром с последующей отгонкой петролейного эфира в вакууме. Водный раствор солей подкисляли 2JV со.тяной кислотой, затем кислоты экстрагировали петролейным эфиром. В табл. 2 приведен весовой процентный выход продуктов после разделения на фракции. Взвешивание производили после сушки, весовые потери произошли за счет водорастворимых фракций (в основном, очевидно, кислот). -  [c.311]

    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Правильность введения константы скорости для количественной характеристики реакционной способности органических соединений получила веское подтверждение в цикле исследований кинетики омыления сложных эфиров, проведенном учеником Вант-Гоффа Рейхером [94]. Рассмотрев диссертацию Шваба [c.26]

    Щелочное омыление сложных эфиров находит также применение для определения эквивалентной массы или так называемого числа омыления эфиров (например, при количественном анализе жиров). Числом омыления называют количество гидроксида калия (в мг), которое необходимо для омыления (гидролиза) 1 г жира ялеи сложного эфира. [c.104]

    Если количественное определение сложных эфиров омылением в смесях, содержащих альдегиды, приводит к неправиль-иым результатам [29], то альдегиды следует предварительно превратить в оксимы, так как в отличие от самих альдегидов их оксимы стойки по отношению к воздействию щелочей. [c.168]

    При количественном анализе растворителя определяют его симические константы (число омыления, гидроксильное, эфирное, карбонильное число и т. д.), количественное содержание ароматических углеводородов и т. д. По гидроксильному числу можно эпределить содержание того или иного спирта, по карбонильному— кетона, по числу омыления — сложного эфира. Окончатель-1ое заключение о составе растворителя следует делать после по-зторного спектрального и хроматографического анализа выделен-1ЫХ из растворителя компонентов. [c.407]

    Гидролиз сложных эфиров карбоновых кислот относится к числу хорошо изученных реакций. Законо.черности, присущие этим реакциям, достаточно подробно исследованы на примерах гидролиза сложных эфиров монокарбоновых кислот в кислой и щелочной средах. Хорошо известно, что омыление сложных эфиров в щелочных средах протекает с количественным [c.79]

    Конденсация фрагмента [Н (1 —2 )-6—8] с ранее описанным пентапептидом (Н 1—5) с помощью карбодиимидного метода привела с выходом 40% к разветвленному декапептиду [I (1 — 2 )-1—8], охарактеризованному количественным аминокислотным анализом и УФ-спектром. Формильную группу отщепляли действием 4 н. метанольного раствора НС1 в трифторуксусной кислоте или диметилсульфоксиде в течение 20 час при 20 [К ( —2 )-1—8] [2392]. Освободившуюся аминогруппу вновь количественно идентифицировали колориметрическим нингидриновым методом. Последующее омыление сложного эфира проводили обработкой 1,5-кратным избытком 1 н. едкого натра в диметилсульфоксиде в течение 20 час [L(l —2 )-1—8] образовавшуюся свободную карбоксильную группу определяли микротитрованием. Циклизацию синтезированного разветвленного декапептида осуществляли путем перемешивания при 20° раствора декапептида с 300-кратным избытком N, N -дициклогексилкарбодиимида в условиях высокого разбавления, причем выход неочищенного продукта реакции составил 20%. Защитные группы отщепляли действием натрия в жидком аммиаке. Полученный циклический пептид был очищен путем противоточного распределения (400 переносов вго/7-бутанол/0,1 н. соляная кислота) и хроматографирования на целлюлозном порошке (н-бутанол/ пиридин/ледяная уксусная кислота/вода, 30 20 6 24 м-бута-нол, содержащий 15% уксусной кислоты) с последующим обессоливанием на амберлите ШС-50 (ХЕ-64) в Н+-форме. [c.566]

    Впервые количественные исследования влияния структурных факторов на скорость омыления сложных эфиров в щелочной среде (реакция второго/но-рядка) были проведены Райхером [И], который, начиная с 1885 г., изучал сложные жирные эфиры К СООК с неразветвленными и разветвленными алкильными группами К и К. Эти исследования были расширены результаты изучения жирных эфиров Олсоном [12], Шкрабалом [13] и Киндлером [14] [c.940]

    Омыление щелочью наиболее часто применяется для количественного определения содержания большинства сложных эфиров, в том числе и жиров, а также продуктов этерификации фенолов. Наибольшее влияние на реакцию омыления оказывают следующие факторы достаточная концентрация ионов гидроксила в растворе, хорошая растворимость анализируемого вещества во взятом растворителе и высокая температура реакции омыления. Сравнительно легко растворимые в воде сложные эфиры (как, например, этил-формиат, метилформиат, этилацетат и др.) могут быть омылены водными растворами щелочей. Сложные эфиры, плохо растворимые в воде, омыляют в спиртовой среде. Для этого пользуются спиртовыми растворами едкого кали или едкого натра. Можно прямо растворить сложный эфир в этиловом спирте, а затем прилить определенное количество водного раствора титрованной щелочи и омылить эфир. Спиртовые растворы едкого кали более предпочтительны вследствие хорошей растворимости едкого кали в спирте, особенно при получении его концентрированных растворов. Скорость омыления сложных эфиров различна. Она зависит от природы входящих в состав сложного эфира кислоты и спирта. В одних случаях реакция омыления протекает быстро даже при обычной комнатной температуре, в других [c.249]

    В отсутствие полярных групп эфиры легко количественно определить методом ГХ. В этих анализах ншроко применяют полиэфирные жидкие фазы, которые позволяют получать симметричные хроматографические пики для простых эфиров и, кроме того, обеспечивают разделение в зависимости от числа ненасыщенных связей. Симметричные пики и хорошие количественные данные можно получить и на неполярных жидких фазах, но они не позволяют разделять насыщенные и ненасыщенные эфиры. Колонки с неполярными фазами можно использовать только для грубого разделения эфиров по их молекулярным весам (например, отделить эфиры H- i6 от эфиров я- is), а колонки с полиэфирами — для дополнительного разделения по числу ненасыщенных связей (О, 1, 2 или большее число двойных связей). Эфиры с высоким молекулярным весом или их нелетучие комплексы (например, фосфолипид) обычно превращают в более летучие производные (по кислотной или спиртовой группе или по обеим этим группам) путем переэтерификации, алкоголиза или омыления с последующим превращением в простые или сложные эфиры. Если эфиры содержат полярные группы, то на одном из этапов определения получают производные по этим группам. Так, например, ацетилирование моно- и диглицеридов обеспечивало полное элюирование этих эфиров в ГХ-анализе в то же время без ацетилирования элюирование может оказаться неполным [41, 42]. Моноглицериды (Сг— is) и диглицериды (С4—Сзб) определяли также и путем превращения их по свободным оксигруппам в триметилсилильные эфиры под действием бис- (триметилсилил) ацетамида [43]. [c.140]

    Как уже указывалось ранее, амиды можно определять, используя реакцию омыления. Однако для амидов реакцию омыления не удается применять столь же широко, как для сложных эфиров. Первичные амиды R ONH2 наиболее легко поддаются определению с помощью омыления, но и в этом случае некото-зые первичные амиды оказываются слишком устойчивыми для количественного омыления. Вторичные R ONHR и третичные R ONR R" амиды подвергаются гидролизу с трудом. [c.149]

    Еще одна часто встречаемая в неионогенных ПАВ примесь — это полиэтиленгли-коль. Для определения содержания этой примеси образец, как правило, растворяют в водном растворе натрий хлорида, который впоследствии экстрагируют этилацетатом. Слой этилацетата затем еще раз экстрагируют раствором натрий хлорида. Далее раствор натрий хлорида экстрагируется хлороформом. Слой хлороформа упаривают досуха, и сухой остаток экстрагируют ацетоном для удаления проэкстрагированных солей. Остаток после выпаривания ацетона соответствует содержанию полиэтиленгликоля в исходном образце [63]. Также была разработана технология определения сорбита в сложных эфирах сорбита [2], которая заключается в омылении эфиров сорбитана, после чего выделенный сорбит окисляется перйодной кислотой. Результатом является образование четырех молекул муравьиной кислоты и двух молекул формальдегида, которые могут быть измерены количественно. [c.131]

    Ли и Кольтгоф 2 пришли к заключению, что если константы скорости реакций двух компонентов отличаются по крайней мере в 4 раза, практически целесообразно количественное онре-деление обоих компонентов. Так, авторы с успехом определяли близкие пары сложных эфиров, например этилацетата и изопро-пилацетата, используя скорости их омыления, которые при 25° С находятся в соотношении 4,2 1. Средняя ошибка составляла 2% (абсолютных). Были проанализированы различные пары карбонильных соединений путем использования разницы в скоростях разложения их бисульфитных соединений. Для формальдегида и ацетальдегида при 25° С и pH 3,4 соотношение скоростей составляло 1 60. [c.501]

    Сложные эфиры спиртов дают с гидроксиламином гидроксамовые кислоты в сильно щелочных средах. Для количественного определения пригоден лишь метод, основанный на образовании окрашенного железного комплекса полученной гидроксамовой кислоты, измеряемого спектрофотометрически. Этот метод особенно удобен при определении малых количеств сложных эфиров и для анализа многокомпонентных систем. Все определение состоит из двух стадий реакции сложного эфира с гидроксиламином, протекающей в щелочной среде, и получения окрашенного комплекса с железом (III) в кислой среде Скорость реакции образования гидроксамовой кислоты увеличивается по мере повышения концентрации Н0 в реакционной среде, однако при этом появляется опасность побочной реакции омыления определяемого эфира без образования гидроксамовой кислоты [33. Как протекает реакция для различных сложных эфиров даже одной и той же кислоты, точно сказать 1 ельзя, так как выделение после реакции чистых гидроксамовых кислот представляет большие трудности и реакция образования гидроксамовых кислот мало изучена. Описываемый метод имеет до известной степени условный характер. Достаточно точные данные удается получить только при строгом соблюдении одинаковых условий на обеих стадиях определения как при построении калибровочной кривой, так и при анализе. [c.171]

    Сложные эфиры, лактоны, ангидриды кислот, а) Сложные эфиры. Могут присутствовать эфиры, относящиеся к самым разнообразным группам кислот и спиртов (или фенолов). Их кипятят в течение часа с 8—10 -ным раствором NaOH в метиловом спирте, испаряют большую часть метилового спирта и смешивают с водой при наличии выделившихся веществ их извлекают эфиром, взбалтывают для з даления метилового спирта с водой, отгоняют эфир и подвергают перегонке. Если температура кипении после омыления отличается от таковой до омыления, то это означает, что из эфиров образовались спирты групп Л-Л. 1 или Т-Л. 1 нх исследуют по стр. 229 или по п. II. Если температура кипения изменилась очень мало, — это указывает либо на отсутствие сложного эфира, либо на образование такого спирта, который обладает температурой кипения, весьма близкой к темп. кип. сложного эфира. Последнее возможно только в том случае, если омылялся эфир легколетучей кислоты. Кислота определяется следующим образом небольшую пробу щелочного раствора после омыления осторожно обрабатывают на часовом стекле крепкой НгЗО и определяют присутствие легколетучей кислоты по запаху. Другие методы открытия сложных эфиров и количественного их определения по коэффициенту омыления подробно излагаются в руководствах по исследованию минеральных масел, жиров и воска. [c.249]

    Определение этилнитритным методом. Этилнитритный метод количественного определения этилового спирта основан на образовании в солянокислом растворе сложного эфира этилового спирта и азотистой кислоты (этилнитрита) с последующим извлечением и омылением его. О количествах связавшейся с этиловым спиртом азотистой кислоты судят по реакции образования азокрасителя. [c.53]

    Для определения степени этерификации простых эфиров целлюлозы нельзя применять методы кислотного или щелочного омыления, которыми обычно пользуются при исследовании сложных эфиров целлюлозы. Алкильные группы могут быть количественно отщеплены только при нагревании с концентрированной иодистоводо-родной кислотой. Этот метод применяется для определения степени этерификации простых эфиров целлюлозы (метод Цейзеля). Реакция протекает по схеме  [c.470]


Смотреть страницы где упоминается термин Количественное омыление сложных эфиров: [c.355]    [c.283]    [c.283]    [c.196]   
Смотреть главы в:

Методы органической химии Том 2 Издание 2 -> Количественное омыление сложных эфиров

Методы органической химии Том 2 Методы анализа Издание 4 -> Количественное омыление сложных эфиров




ПОИСК





Смотрите так же термины и статьи:

Омыление

Омыление сложных эфиров



© 2024 chem21.info Реклама на сайте