Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 8. Методы анализа

    Поэтому ниже приводятся только краткие пояснения к тем методам анализа поликапроамида, которые применяются непосредственно на производстве.  [c.35]

    В ближайших отделах излагаются известные методы анализа смесей бензина с ароматическими углеводородами при условии, что содержание последних далеко не превосходит 50%. Литература по этому вопросу довольно обширна, но хороших методов нет. Можно разделить их на физические и химические, но в сомнительных случаях должно пользоваться и теми и другими. [c.145]


    В процессе анализа структуры все приведенные интегральные характеристики материала рассчитываются по результатам анализа представительного объема и, таким образом, число составных частей фазы, среднее значение поверхностной кривизны, связность и другие характеристики обычно относятся к единице его объема, т. е. являются средними статистическими значениями удельных объемных характеристик. Строго говоря, связность G, рассматриваемая как род гомеоморфных поверхностей, не должна быть подвержена статистическим колебаниям. Однако в природе формирование контактов частиц является статистическим процессом, зависящим от таких стохастических факторов как перемешивание в системе, смачивание, диффузия, растворение и рост частиц фаз, взаимодействие фаз и др., поэтому в принципе возможно рассматривать Gy как статистическую величину. Потребность экспрессного определения связности фаз в многофазных средах в последнее время быстро растет в связи с определяющей ролью этой характеристики в описании и прогнозировании механического поведения структурно неоднородных материалов, выявления структуры многофазных потоков в его объеме. Вместе с тем существующие методы определения Gy до сих пор практически основывались на методе анализа параллельных сечений структуры. В работах [47, 481 предложен иной метод определения статистической характеристики связности на основании простых измерений характеристик одного случайного представительного сечения материала. Разрабатываются также методы стереоскопической оценки Gy. [c.136]

    Ряд исследователей [71, 73] считали маловероятным неодинаковое изменение катализаторов по глубине частиц. По нашим данным, частицы в промышленных условиях спекаются неравномерно. Чем тяжелее перерабатываемое сырье, тем больше эта неравномерность. Однако это общий вывод, относящийся ко всей навеске, которая состоит из большого числа частиц. Значительный интерес представляют исследования отдельных частиц катализатора. Известные нам методы анализа пористой структуры катализатора не позволяют исследовать изменение ее по глубине отдельной частицы. Некоторые качественные результаты нам удалось установить, наблюдая за регенерацией пластинок, приготовленных из шариков равновесного катализатора, и сравнивая их оптические свойства на разных расстояниях от центра [85]. [c.65]


    Подчеркнем, что рассматриваемый метод анализа стационарного режима сложной схемы не требует вывода явного аналитического выражения для характеристического уравнения. Численная реализация метода может быть формализована результатами структурного анализа, в значительной степени близкими тем, которые находят применение в задаче расчета стационарного режима (см. главу IV). [c.259]

    За истекшее столетие возможности методов анализа неизмеримо возросли. Появились разнообразные спектральные, хроматографические и другие совершенные методы. Тем не менее, нефть — система настолько сложная, что и сейчас для ее анализа требуется, как правило, предварительное разделение на фракции по молекулярным массам и по группам компонентов. [c.52]

    Учитывая описанную выше разносторонность задачи, стоящей перед химической чисткой, авторы настоящего труда полагают, что темы для дальнейших исследований в этой области должны быть научно сформулированы с исчерпывающей точностью и ясностью. Авторы не раз были свидетелями напрасно потраченных усилий лишь из-за нечеткости определения задачи. Но даже в случаях наличия строгой формулировки темы исследования зачастую оказывались бесплодными в итоге отсутствия критического отношения к методам анализа и испытания. Авторы позволяют себе рассчитывать на то, что материал, составляющий содержание настоящего труда, а также его трактовка принесут соответствующую пользу в деле точного определения задач и исследований в области химической чистки и в то то же время помогут избежать те ловушки, которые готовит исследователям некритическое отношение к методам работы. [c.4]

    Внимание В связи с тем, что хлориды часто могут присутствовать в реактивах и в воздухе лаборатории, необходимо принимать специальные меры во время приготовления и хранения реактивов для предотвращения их загрязнения. Эти реактивы должны храниться отдельно от других реактивов и использоваться только для данного метода анализа. При каждой замене реактива должен проводиться контрольный анализ для того, чтобы убедиться, что реактив не загрязнен хлоридами. [c.26]

    Критериями для оценки и выбора методов анализа служат их метрологические характеристики воспроизводимость, правильность, предел обнаружения (чувствительность), верхняя и нижняя границы определяемых содержаний. Чувствительность метода тем выше, чем меньше то количество вещества, от которого удается принять сигнал. При этом, как мы отмечали выше, данный сигнал приходится отличать на фоне сигналов окружающих веществ. Другими словами, сигнал X, отвечающий наличному количеству вещества, определяют из разности  [c.10]

    Дифференциальный спектрофотометрический метод при определении больших концентраций веществ не уступает по точности классическим методам анализа. Сущность метода заключается в том, что в качестве нулевого используют раствор с несколько меньшей концентрацией определяемого элемента, чем в испытуемом растворе. Согласно теории дифференциальной спектрофотометрии точность измерения тем выше, чем больше оптическая плотность нулевого раствора. [c.68]

    При обычной температуре лишь очень мало веществ находится в газообразной форме. Поэтому методы анализа газов немногочисленны. Тем не менее с методикой газового анализа связан ряд важных определений (анализ печных газов, природных газов и т. д.). Поэтому методы анализа газов разработаны достаточно подробно. [c.445]

    В этом случае абсолютная ошибка почти не превышает чувствительности аналитических весов и хи.мика нельзя обвинять в том, что он плохо взвешивал и поэтому получил относительную ошибку 8%. Тем не менее следует считать, что химик неправильно выбрал метод анализа для определения таких малых количеств железа не следовало применять обычный весовой метод анализа. [c.480]

    Из приведенных данных видно, что высокие значения коэффициентов /Сог получаются не только, когда Мг электроположительнее Ми но и в случаях, когда Мг значительно электроотрицательнее (например, N1 — 2п, Со — 2п и др.), например, процесс разряда ионов цинка подавляет разряд ионов никеля и кобальта настолько, что до наступления потенциала разряда ионов цинка на катоде практически не выделяются ни никель, ни кобальт (см. рис. 37). Вычисление коэффициента Кпг при совместном разряде несложно, и его значение весьма показательно, тем более, что, зная значения Ког, полученные при более значительных концентрациях М + в растворе и содержании Мг в осадке, можно приближенно вычислить возможное содержание Мг в осадке при весьма малых М + в растворе, когда существующими методами анализа невозможно определить содержание Мг в металле. [c.569]

    Следовательно, в электро-гравиметрии напряжение на клеммах должно расти быстрее, чем ток, проходящий через раствор. На графике (рис. Д.84, кривая 2) наблюдается отклонение от линейности. Поскольку концентрационная поляризация электродов тем сильнее, чем больше ток, это отклонение всегда проявляется с увеличением силы тока. Если при увеличении напряжения сила тока уже не возрастает даже при перемешивании раствора электролита, то достигнут так называемый предельный ток. Сила тока в этом случае ограничена скоростью диффузии ионов к электродам через пограничный слой. Скорость диффузии определяется законом Фика при постоянной температуре она зависит только от концентрации. Поэтому вольт-амперная кривая идет в этом случае параллельно оси напряжений (рис. Д.84, кривая 3), сила тока имеет постоянную величину, обозначаемую как inp. Величина его зависит от концентрации разряжающихся ионов, находящихся в растворе. Эту зависимость используют в полярографических методах анализа. [c.257]


    НО ТОЛЬКО свести к минимуму сделать это нужно обязательно. Чем больше случайный разброс метода анализа, тем больше определений нужно провести и усреднить для получения результата измерений, наиболее близкого к истинному, или соответственно тем меньше вероятность близости единичного результата измерений к истинному значению. [c.435]

    Чувствительность Ь инструментальных методов анализа определяется фактором пересчета показаний прибора (обычно в единицах шкалы) на содержание вещества в гравиметрии — это обратная величина стехиометрического гравиметрического фактора (Ь=1//). Чем меньше /, тем больше чувствительность метода и тем меньше абсолютная ошибка гравиметрического определения количества вещества х. В объемных методах анализа фактору f соответствует эквивалентная концентрация с применяемого титранта. Чтобы ошибка определения была невелика, а чувствительность метода высока, эта величина должна быть как можно меньшей, что способствует получению интенсивного сигнала у. Однако при этом начинает сказываться эффект разбавления, что приводит к систематическим ошибкам определения, поэтому следует выбирать оптимальную величину Сз. [c.457]

    При анализе чистых металлов требования к точности оире-деленин малых концентраций чаще всего не слишком жесткие, и ошибка в 10—20% в большинстве случаев вполне приемлема. Вероятно, при этом можно считать, что любое загрязнение основы до 0,1% не будет заметно искажать интенсивностей спектральных линий основы п анализируемого элемента. Это, разумеется, не относится к тем методам анализа, в которых происходит предварительное отделение суммы примесей от основы, как ЭТО имеет место, например, в методе испарения (см. гл. VIII). При испарении суммы примесей из пробы, содержащей, например, 0,1% постороннего, неопределяемого элемента и по 0,00 % определяемых элементов, полученная новая проба в основном будет состоять из первого элемента, содержащего около 1 % каждого из определяемых элементов. Это может привести к существенному перераспределению интенсивностей спектральных линий по сравнению, например, с тем случаем, когда проба содержит только определяемые элементы в количестве 10" % каждый. Такие явления наблюдались в некоторых опытах по методу испарения, когда в анализируемую пробу перед испарением вводилось 0,1% натрия. [c.86]

    За последние 150 лет параллельно с развитием основных теоретических представлений в области химии выяснялся общий состав нефти [14]. Однако замечательное постоянство химического состава сырых нефтей стало понятным лишь около 40 лет назад. Ш. Ф. Мабери на основании многочисленных и тщательно выполненных анализов нашел, что даже наиболее различающиеся между собой нефти содержат от 83 до 87 % углерода, от И до 14% водорода, а также кислород, азот и серу в количествах от 2 до 3% [28]. Он показал, что это постоянство может быть объяснено очень просто, если предположить, что каждая нефть представляет собой смесь небольшого числа гомологических рядов углеводородов, причем число индивидуальных членов каждого ряда может быть очень велико. Различие между двумя любыми нефтями заключается в вариациях содержания каждого ряда и содержания индивидуальных углеводородов, присутствующих в каждом ряду. Природа гомологических рядов, составляющих нефть, такова, что эти вариации но оказывают большого влияния на состав общей смеси. Таким образом, в результате, несмотря на некоторые различия, элементарный состав одной нефти весьма близок к элементарному составу другой нефти. Этот общий вывод имеет важное техническое значение, так как позволяет получать довольно однородные нефтяные продукты из нефтей различного состава. Вместе с тем методы переработки сырых нефтей должны быть весьма разнообразными и обеспечивать получение товарных продуктов в нужном количестве и необходимого качества. Например, небольшое содержание асфальтовых веществ не может заметно отразиться на элементарном составе всей нефти в целом, точно так же, как и увеличение содержания ароматических углеводородов в керосиновой фракции на 10% не может заметно изменить отношение содержания углерода и водорода. Однако каждое из этих изменений может значительно увеличить трудности переработки нефти и уменьшить выход чистых продуктов 2. [c.49]

    Например, легкие прямогонные газойлевые фракции (200— 350 °С) оказалось возможным охарактеризовать семью структурными группами парафиновыми цепями (парафиновые углеводоро-ды+алкильные заместители), moho-, би- и трициклическими нафтеновыми структурами, MOHO-, би- и полициклическими ароматическими ядрами. Определение количеств этих структур при использовании современных методов анализа не вызывает затруднений. Вместе с тем именно содержание структурных групп (а не групп углеводородов) определяет результаты процесса и используется для его моделирования. [c.96]

    Обыкновенно зеленая флуоресценция свойственна маслам, полученным из нефтей парафинового основания. Эти масла считаются лл-чшими и поэтоАу иногда (за границей) маслам из нефтей асфаль- товою или нафтенового основания ис сствекно сообщают зеленую флуоресценцию. Имеется много патентов для приготовления флуо-ре(щируюнщх (веществ, вводимых в такие масла. Никаких методов анализа до сих пор не опубликовано на эту тему. [c.229]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    По опубликованным данным практически невозможно сравнить ме>вду ебвй-ВЭТС для различных насадочных колонн или коэф-диенты полезногоТ1ейс1Вия дл тарельчатых колонн. Это объяс- няется тем, что испытания проводили с различными эталонными смесями в разных условиях и только в редких случаях приводили аппаратурно-технологические параметры, указанные в разд. 4.10 в качестве безусловно необходимых. Дополнительные трудности возникают из-за того, что чистота применяемых эталонных смесей не всегда была гарантирована, а растворение смазки для кранов в отбираемых пробах часто приводит к искажению результатов. По-видимому, в настоящее время необходимо перейти к стандартным методам испытания, чтобы таким образом обеспечить получение сравнимых данных. В свете последних научных достижений становятся необходимыми новые исследования эффективности важнейших насадочных и наиболее распространенных тарельчатых колонн, учитывающие эти достижения и основанные на использовании таких современных точных методов анализа, как инфракрасная спектроскопия, газовая хроматография и масс-спектрометрия. [c.161]

    В настоящее время имеется несколь о методов анализа, позволяющих в первом приближении судить о структуре гибридных углеводородов, входящих в средние и тяжелые фракции нефти. Они основаны на изучении большого числа индивидуальных углеводородов и их смесей. Накопленный опь1тный материал позволил найти закономерности между распреде.тением углерода в различных структурных фрагментах молекулы и физическими константами углеводородов и их смесей. Основанные на эмпирических расчетах, они не могут претендовать на высокую точность. Тем не менее существующие методы служат наилучшим и самым простым способом анализа указанных фракций нефти. [c.61]

    Целью проведения лабораторных рабо т явдяется углубление теоретических знаний студентов по программе дисциплины и обучение их физико-химическим методам-анализа сырья и-продуктов деструктивных процессов, привитие-навыков по анализу и объяснению результатов экспериментов. В итоге практикума-студенты должны научиться собирать лабораторные установки и В соответствии с" положенным заданием проводить термодеструктивные процессы, уметь пользоваться лабора-тбрными приборами качественного анадаза по теме задания, анализи-ро вать и обобщать получаемые результаты, делать выводы по работе и оформлять отчеты. - - -. - [c.336]

    Попытка разработать такой метод сделана Отделом химии Башкирского филиала АН СССР [179]. Однако тщательное рассмотрение Проекта инструкции показывает, что авторам не удалось решить поставленную задачу. Рекомендуемый Проектом инструкции метод анализа основан на ступенчатом удалении групп сернистых соединений хшдическими реактивами по схеме Белла и Агруса (предложенной в 1941 г.) и отличается от последней только тем, что количественное определение групп ведется не химическими, а электрохимическими методами. Это не устраняет ни одного из недостатков, отмеченных для рассмотренных выше схем. При этом точность и чувствительность рекомендованных вариантов электрохимических методик сведена к точности и чувствительности обычных волюмометрич( ских химических методов. [c.427]

    Здесь уместно отметить, что утверждение Квптковского и Петрова [124] о полной непригодности методов структурно-группового анализа для исследования нефтяных высокомолекулярных углеводородов, содержащих ароматические структуры, слишком категорично и недостаточно мотивировано. Их расчеты проведены на примерах сравнительно простых двойных и тройных смесей из синтетических углеродов, не вполне моделирующих сложные многокомпонентные -системы, какими являются даже узкие фракции высокомолекулярных углеводородов нефти. Известно, что чем сильнее отклоняется явление по своим характеристикам от средних значений, тем реже оно повторяется. Во всяком случае, пока нет более точных методов определения строения сложных гибридных структур высокомолекулярных углеводородов нефти, структурно-групповыми методами анализа следует пользоваться, даже если ошибки определений будут составлять 15—20%. Правда, такие отклонения уже легко будет обнаружить по данным элементарного анализа и константам ( , п и др.). Методы структурно-группового анализа дают полуколичественную характеристику, в общем правильно отражающую сочетание структурных элементов в усредненной молекуле многокомпонентных смесей. На примерах индивидуальных синтетических соединений и их смесей надо вести дальнейшие исследования по выяснению закономерностей, связывающих свойства со строением молекулы. [c.252]

    Уже отмеченная выше близость свойств бенз- и дибензтиофеновых соединени со свойствами соответствующих конденсированных ароматических углеводородов приблизительно равного молекулярного веса создает очень большие трудности при разделении их смесей. При помощи одних только физических методов не всегда удается отделить полностью сернистые соединенпя от углеводородов даже при многократном повторении процесса. Между тем для аналитических целей, а нередко и ири решении некоторых препаративных и даже технологических задач очень важно количественно отделить или определить сернистые соединения в смеси. В этом с.лучае приходится комбинировать физические, физико-химические и химические методы. Обзор методов анализов сернистых соединений, содержащихся в нефтях и нефтепродуктах, опубликован в статье [95]. [c.362]

    Сульфирование индиго изучалось многими исследователями [873], что объясняется доступностью индиго, тех1шческим значением продуктов сульфирования как красителей и, наконец, тем, что сульфирование индиго является первой операцией в одном из методов анализа красителя. Моносульфокислота получается взбалтыванием 1 весовой части индиго с 20 частями серной кислоты и 10 частями песка [874а]. Она растворима в горячей воде, но дает очень трудно растворимую калиевую соль. С таким же избытком серной кислоты при 100° образуется дисульфокислота [8746] при 120—130° для сульфирования требуется значительно меньше кислоты [875]. Доказано, что сульфогруппы стоят в параположении к атомам азота [876]. Нагревание 10 г индиго с 100 г [c.133]

    Использование характеристических полос позволяет идентифицировать ту или иную группу атомов в сложной смеси. Это особенно важно, если смесь веществ трудно разделяется на компоненты. Один из методов анализа вещества в сложной смеси без его выделения состоит в том, что в кювету сравнения помещают один из предполагаемых компонентов смеси и последовательно увеличивают его концентрацию (или длину оптического пути, если имеется кювета с плавно изменяемой толщиной). Если этот компонент действительно содержится в смеси, то в дифференциальном ИК-спектре будут постепенно исчезать некоторые полосы, а затем появятся полосы, обращенные в противоположную сторону. Если же в смеси нет вещества, помещенного в кювету сравнения, то уже при очень малых его концентрациях появятся отрицательные полосы в спектре. После такой компенсации полос одного вещества можпо добавить в кювету сравнения второй предполагаемый компонент смеси и т. п. Чем меньше веществ содержится в смеси, тем про1це и надежнее применение этого метода. Нельзя компенсировать очень сильные полосы, так как при соответствующих частотах свет на приемник почти не попадает и прибор фактически не работает. [c.212]

    Необходимо отметить, что если для некоторых синтетических смазочных материалов (сложные эфиры, органические фосфаты) разработаны критерии срабатываемости (в первую очередь, разумеется, по техническим характеристикам), то в большинстве случаев сушествуюшие методы анализа не позволяют установить приближение критического состояния масла и тем более — рост его экологической опасности. [c.60]

    Нельзя сказать, чтобы проблемам определения суперэкотоксикантов ранее не уделялось должного внимания. Достаточно вспомнить, что такой анализ играет важную роль при решении задач санитарии и охраны труда в атомной и химической промьппленности, в контроле качества пищевых продуктов и фармацевтических препаратов, чему посвящена обширная литература [5-11]. Однако большинство работ этого плана по своей сути мало отличается от обычного определения примесей на уровне микро- и ультрамикроконцентраций. Качественные изменения произошли при решении задач экологии, медицины и других областей человеческой деятельности. Именно тогда на основе достижений физических и физикохимических методов анализа, прежде всего хроматографии и масс-спектрометрии, сформировалась самостоятельная область аналитической химрга - анализ суперэкотоксикантов. В настоящее время аналитическая химия суперэкотоксикантов имеет свои разработки по пробоотбору, выделению и разделению анализируемых компонентов, методам детектирования следовых количеств загрязнителей и др. Развитие этой области тем или иным образом оказьшает воздействие и на другие дисциплины, вызывающие в настоящее время повьппенный интерес со стороны широкой общественности, в частности на биохимию, клиническую химию и медицину, для которых проблема определения токсичных веществ на следовом уровне является весьма актуальной. [c.152]

    В качестве маркеров применяют также ферменты. Основгшная на этом принципе специальная аппаратура для высокочувствительного ферментативного иммунохимического анализа выпускается серийно. В этом случае определяемый компонент метят ферментом. С антителами взаимодействуют как свободные, так и связанные с ферментом соединения, причем активность фермента при образовании комплексов АГ-АТ. как правило, подавляется (иногда усиливается). Концентрацию исследуемого вещества определяют путем измерения активности фермента по отношению к соответствующему субстрату. Чем больше концентрация немаркированного соединения, тем меньше фермента связьшается антителами и тем выше его активность. При этом достигается высокая чувствительность определений, характерная для ферментативных методов анализа. Использование ферментов-маркеров для контроля за ходом иммунохими- [c.299]

    Пробы и стандартные образцы, подготовленные к облученгао, помещают в цилиндрические алюминиевые или полиэтиленовые контейнеры диаметром 15-20 мм и длиной 150-200 мм. Продолжительность облучения зависит от состава определяемых элементов и периода полураспада образующихся нуклидов. Для повышения чувствительности обычно используют относительно короткоживущие изотопы. Так, определение ртути проводят по Hg (Т /2 = 64,1 ч), а не по (Т /2 = 46,6 сут.). Применение короткоживущих радионуклидов привлекательно еще и тем, что анализ осуществляется за короткое время Кроме того, малая продолжительность облучения позволяет избежать заметной активации мешающих элементов Однако из-за быстрого уменьшения активности измерения необходимо производить вблизи источников нейтронов, что не всегда возможно Наиболее распространены методы нейтронно-активационного анализа на основе средних и долгоживущих изотопов с Т)/2 > 2-3 сут Продолжительность облучения проб природных сред в этом случае равна 10-30 ч, иногда нескольким суткам. Для природных вод оптимальное время вьщержки проб в реакторе составляет 10-50 сут. [112 . При этом возможно определение элементов в пробах воды на уровне следующих концентраций  [c.312]

    Приступая к изучению окисления пропана, автор совместно с С. С. Поляк [54, 55] поставил перед собой в качестве предварительной задачи, требующей первоочередного решения, разработку метода анализа органических перекисей при их совместном присутствии с перекисью водорода. Дех1Ствительно, как было показано выше (см. стр. 29—32), те методы определения органических перекисей — окисление К1, реакции с титановым и ванадиевым реактивами, — которые использовались во всех описанных работах, являются одновременно и реакциями на перекись водорода. А так как с развитием исследования окисления углеводородов все умножались факты, свидетельствующие об образовании в ходе этой реакции перекиси водорода, то тем менее однозначными становились утверждения ряда авторов о нахождении в числе продуктов реакции и органических перекисей. [c.228]

    Пособие представлено двумя книгами. Первая книга состоит из введения к электрохимическим методам анализа и раздела, освещающего потенциометрические методы исследования и анализа. Вторая - отведена изложению методов кулонометрии и Больтамперометрии. Такое распределение материала обусловлено принципиальными особенностями методов потенциометрии, а также тем обстоятельством, что это направление электроаналитической химии после появления книги Кольтгофа и Фурмана "Потенциометрическое титрование" (1935) до настоящего времени не бЬтло представлено отдельным изданием в отечественной литературе. Между тем потекциометрия занимает одно иэ ведущих мест среди электрохимических методов анализа и исследования, особенно после успешного развития такой области, как ионометрия. [c.3]

    Весовой анализ — один из наиболее давно известных, хорошо изученных методов анализа.С помощью весового анализа установлен химический состав большинства веществ. Весовой анализ является основным методом определения атомных весов элементов. Весовой метод анализа имеет ряд недостатков, из которых главные — большие затраты труда и времени иа выполнение определения, а та1сже трудности при определении малых количеств веществ. В настоящее время в практике количественного анализа весовой метод применяют сравнительно редко и стараются заменить его другими методами. Тем не менее весовой анализ используют для определения таких часто встречающихся компонентов, как, например, двуокись кремния, сульфаты и др. Методом весового анализа нередко устанавливают чистоту исходных препаратов, а также концентрацию растворов, применяемых для других методов количественного анализа. Изучение теории весового анализа очень важно также потому, что эти методы применяются для разделения элементов — не только в аналитической химии, но также в технологии, в частности, при выделении редких металлов, при получении чистых препаратов и др. [c.29]

    Потенциометрическое титрование в объемном анализе применяется сравнительно редко. При возможности пользоваться цветным индикатором не имеет смысла применять сложную аппаратуру для установления точки эквивалентности. Потенциометрическое титрование применяют для анализа в тех случаях, когда раствор окрашен или содержитосадок,мешающий применению цветного индикатора. Потенциометрическое титрование применяют также при необходимости определить два и более компонентов смеси. Так, например, для обычного метода анализа смеси йодистого и хлористого натрия требуется довольно много времени потенциометрически легко сделать анализ такой смеси при титровании ее одним и тем же раствором азотнокислого серебра, так как при этом наблюдается два отдельных скачка потенциала. Так же анализируют смесь нескольких окислителей или нескольких восстановителей и т. д. [c.436]

    Если ряд параллельных определений дает малое отклонение от среднего резуль" тата, то это характеризует хорошую воспроизводимость работы. Очевидно, воспроиз" водимость является важнейшей характеристикой метода анализа и техники его вы" полнения. Если нет хорошей восироизводимости, то нельзя говорить о правильных результатах. Тем не менее необходимо иметь в виду разницу между воспроизводимостью и правильностью. Воспроизводимость является необходимой, но недостаточной характеристикой правильности результатов. [c.479]

    В целях упрощения обработки кинетики квазиравновесных ферментативных реакций с помощью метода графов, М. В. Воль-кенштейн с сотрудниками разработали так называемый диаграммный метод анализа ферментативной кинетики [5—8]. Согласно данному методу, дальнейшее упрощение анализа графов достигается тем, что для обратимых стадий ферментативного процесса выписываются не константы скорости, а константы равновесия. В этом случае линии, соединяющие вершины графа, называют дугами (аналоги ветвей в графах стационарных реакций). Величина дуги равна отношению констант скоростей прямой и обратной реакции (по отношению к ориентации дуги). Дуги ориентируются от входа, за который обычно принимают состояние свободного фермента. Наконец, выходом диаграммы называют вершину, из которой получается продукт ферментативной реакции и свободный фермент. В этом случае из выхода ведет не дуга, а ветвь, величина которой равна константе скорости стадии образования продукта. [c.292]

    При реакциях между твердыми веществами наряду с процессами, протекающими на поверхности раздела фаз, и процессами образования зародышей кристаллов при образовании новой фазы большое значение имеют также процессы переноса в кристаллах. Для ускорения относительно медленной объемной диффузии необходим подвод тепловой энергии. Поэтому все реакции между твердыми веществами, как правило, проводятся при повышенных температурах. П(зскольку химическая активность твердых веществ в значительной мере определяется их структурой и величиной поверхности, исходные вещества перед проведением реакции размалывают в тонкий порошок или измельчают каким-либо иным способом, т. е. переводят вещества в состояние с сильно развитой поверхностью. Тем самым осуществляется активация за счет механической энергии (разд. 33.9.2.6). Для проведения реакций между твердыми соединениями чаще всего используют смеси порошков или прессованные таблетки. Для установления равновесия обычно требуется постепенное нагревание до довольна высокой температуры. Для исследования конечных продуктов и кинетических измерений особенно удобны структурно-аналитические и физические методы анализа. При определении механизмов реакции было установлено, что в некоторых твердофазных реакциях перенос компонентов реакции происходит через газовую фазу. [c.437]

    Инструментальные методы анализа столь тесно связывают неорганическую, органическую и физическую химию, что невозможно разграничить, например, методы органического и неорганического инструментального анализа. Тем не менее целью этой книги является рассмотрение важнейших методов и принципов анализа неорганических веществ. Новейшие данные по различным областями анализа можно найти в обзорах, помещаемых каждые два года в апрельских номерах журнала Analyti al hemistry . [c.255]

    Как было показано в разд. 44.3, при измерении какого-либо параметра различными аналитическими методами происходит небольшой,, но неизбежный случайный разброс результатов. При оценке результатов измерений, например, методами, приведенными в разд. 44.7, этот разброс тем или иным образом сказывается на результатах анализа. Из данных по случайному разбросу результатов анализа эталонной пробы можно определить случайный разброс, или точность, метода анализа, а из отклонения среднего значения от известного теоретического найти лравильность, или систематическую ошибку, метода. Если аналогично оценить операции отбора пробы и подготовки ее к анализу, то можно сделать соответствующие выводы о методе анализа в целом. Эти выводы имеют особенно важное значение для аналитической практики, но на их получение тратится много времени, поскольку необходимо осуществить весь ход анализа. Часто соответствующие рекомендации касаются только принципа проведения анализа или в лучшем случае собственно метода [c.461]


Смотреть страницы где упоминается термин Тема 8. Методы анализа: [c.63]    [c.131]    [c.133]    [c.165]    [c.159]    [c.47]    [c.10]    [c.109]    [c.6]   
Смотреть главы в:

Исследование социально-экономических и политических процессов практикум -> Тема 8. Методы анализа




ПОИСК





Смотрите так же термины и статьи:

Рекомендуемые темы УИРС по химическим методам анализа (табл Рекомендуемые темы УИРС по разным технологическим производствам (физико-химические методы анализа)

Хай-Темя



© 2025 chem21.info Реклама на сайте