Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиусы атомов и ионов в кристаллах

    Ионная, или электростатическая связь (рис. 3.2, в) образуется в случае полного переноса связывающих электронов к более электроотрицательному атому, который становится в результате этого отрицательным ионом - анионом с зарядом, равным количеству перенесенных электронов. Менее электроотрицательный атом теряет соответствующее количество электронов и становится положительным ионом - катионом. По существу, это предельный случай полярной ковалентной связи, который может реализоваться лишь при взаимодействии атомов, очень сильно отличающихся по электроотрицательности, например в 1лГ, СаРг, ВаО. Однако, строго говоря, даже в таких соединениях электроны не полностью переходят с катионов на анионы, а некоторая часть электронной плотности остается делокализованной между ними. Такую связь правильнее рассматривать как преимущественно ионную с малой примесью ковалентности. Ионная связь имеет электростатическую природу это значит, что она не имеет определенного направления в пространстве и ионные соединения не состоят из отдельных молекул, а образуют трехмерные пространственные кристаллические структуры, в которых соотношение между количеством катионов и анионов определяется их зарядами, а взаимное расположение - соотношением радиусов. Энергия ионной связи может быть легко рассчитана по закону Кулона, если известны заряды и радиусы ионов и тип кристаллической решетки. Подробнее об ионных кристаллах - см. разд. 6.3. [c.45]


    Определим сначала основное состояние системы электронов. Заметим, что переход второго электрона на молекулярную орбиту связан с образованием дырки. В основном состоянии кулоновское взаимодействие электрона с дыркой максимально, так как радиус образовавшегося локального экситона должен быть минимальным. Для большинства ионных кристаллов минимальный радиус экситона равен половине периода решетки [6], поэтому при исследовании основного состояния мы можем ограничиться суммированием в (2) и (3) по четырем ближайшим к адсорбированному атому отрицательным ионам. [c.134]

    Ковалентные и металлические радиусы близки между собой. Однако эффективные радиусы, которые приходится приписывать катионам в металлических кристаллах, оказываются большими, чем у ионов тех же металлов в ионных решетках. Одна из возможных причин этого состоит в следующем. При образовании катионов в случае ионных соединений электронейтральный атом металла лишается большего числа валентных электронов, чем при образовании электронного газа в массе металла, т. е. сильнее оголяется . В связи с этим реальный радиус катиона в ионном кристалле оказывается меньшим, чем в металле. Так как эффективные радиусы зависят от реальных, то и получается, что эффективный радиус катиона в металлической решетке больше, чем в ионной. [c.145]

    Баются друг к другу и образуют ионный кристалл, в котором ионы различного заряда занимают равновесные положения. Это можно представить с помощью диаграммы потенциальной энергии, изображенной на рис. 5-1. Согласно второму механизму (по Слейтеру) ионный кристалл можно представить себе образованным из нейтральных атомов. Первоначально они также бесконечно удалены друг от друга. По мере их сближения характерное уменьшение энергии не происходит до тех пор, пока электронные облака валентных электронов в атомах не начнут перекрываться. Слейтер показал, что перераспределение электронов между атомами будет происходить в области, где волновые функции обоих атомов велики. Так как эта область должна соответствовать атомным радиусам, она ближе расположена к атому с меньшим атомным радиусом и существенная часть электронной плотности будет находиться в объеме около атома с меньшим радиусом. Таким образом, Слейтер объяснил перенос электрона, опираясь лишь на строго атомную модель. Рассмотрим в качестве примера кристалл K I (атомный радиус калия равен 2,20 A, а хлора 1,00 A). Поскольку атомный радиус калия много больше, чем у хлора, то основная часть электронной плотности фактически будет находиться вблизи атома хлора. Каждый атом калия в кристалле окружен шестью атомами хлора и дает одну шестую часть электрона каждому атому хлора. Каждый атом хлора окружен шестью атомами калия, следовательно, он получает в целом один электрон. [c.268]


    Если горячий атом обладает значительной энергией отдачи, то при замедлении в твердом веществе он создает зону нарушений — клин смещения , представляющую собой область атомов, смещенных из узлов решетки. Например, при рассеянии 300 эв кинетической энергии в ионном кристалле атом отдачи с массой, равной 100 а. е., смещает 5—6 атомов из узлов решетки. Процесс передачи энергии остальным атомам среды от смещения атомов приводит к образованию горячих атомов, которые сливаются в течение 10 2 сек, образуя горячую зону. В этот момент горячая зона имеет размер, равный примерно пяти атомным радиусам ( 125 атомов), и температуру 10 ° К. Спустя 10" сек зона включает 1000 атомов и имеет температуру 10 ° К. Через 10 ° сек размер зоны увеличивается в несколько раз, а температура падает до 400°К. Возможно, что во всем объеме зоны замедления не происходит процесса плавления вещество по-прежнему представляет собой твердую фазу с той или иной степенью нарушений регулярной [c.201]

    Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, атом представляют как ядро, вокруг которого по орбитам вращаются электроны. Последовательность элементов в периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме их радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантовомеханических представлений. [c.136]

    При выяснении понятия эффективный радиус было допущено, что частицы, составляющие кристалл, имеют форму шара. Однако это не всегда так. Каждая частица (атом, ион, молекула) содержит определенное, свойственное данному веществу, количество положительных и отрицательных зарядов, взаимодействующих друг с другом. Силу взаимодействия всех положительных зарядов можно заменить одной равнодействующей. Точка приложения этой равнодействующей называется центром тяжести положительных зарядов. частиц. То же относится и к сумме всех отрицательных зарядов, равнодействующая которых приложена к центру тяжести отрицательных зарядов. Если центры тяжести положительных и отрицательных зарядов совпадают, частица неполярна и может быть представлена шаром. Когда же центры тяжести положительных и отрицательных зарядов частицы разобщены и находятся друг от друга на некотором расстоянии, частица представляет собой диполь, а форма ее лишена шарообразности. Шар будет деформирован. Одной из причин, вызывающих деформацию частицы, является превращение нейтральной частицы в диполь, т. е. процесс поляризации. Подобная деформация вызывается действием 1) электрического поля, 2) электромагнитных колебаний светового луча, 3) электрического поля рядом расположенных ионов и 4) изменением теплового состояния вещества. Естественно, что кристаллическая решетка, составленная из шарообразных частиц, при плотнейшей укладке их будет отличаться от решеток, составленных из тех же частиц после деформации их в результате поляризации. [c.134]

    Так как в кристаллах галидов ш,елочных металлов в большинстве случаев координационное число равно 6, а атом металла отдает не более одного электрона, перекрывание может дать максимально 1/6 электрона каждому соседнему атому галогена. Последний в свою очередь может принять статистически по 1/6 электрона от шести атомов калия, и в результате образуется ион 1 . Для достижения такого положения в сущности не надо заметно передвигать электрон по направлению от одного атома к другому в радиальном направлении. Скорее всего надо добиться неких изменений в азимутальном смысле внешнее s-орбитальное облако атома катионогена должно из чисто сферического превратиться в искаженное шестью выступами, направленными к координированным атомам галогена. При этом достаточно перекрывания порядка 1/6 е , а эта малая величина может быть получена при взаимодействии сравнительно далеких от r a хвостовых частей электронных облаков, т. е. на расстояниях, значительно превышающих радиус катиона. В случае явно ионных кристаллов можно приближенно предсказать межъядерное расстояние, складывая атомные (а не ионные) радиусы максимальной плотности. Это свидетельствует о том, что даже в типично ионных структурах вклад ковалентного характера в волновую функцию достаточно велик для того, чтобы являться определяющим межъядерное расстояние. [c.235]

    Основополагающим понятием современной химии является понятие о химическом элементе , т. е. виде атомов с определенной совокупностью свойств. Под свойствами изолированных атомов подразумеваются заряд ядра и атомная масса, особенности электронного строения, потенциалы ионизации, сродство к электрону и электроотрицательность, атомные, орбитальные и ионные радиусы н т. д. Однако необходимо иметь в виду, что изолированные атомы как форма организации вещества могут существовать в природе лишь при достаточно высоких температурах в виде моноатомного пара. Единственным исключением являются благородные газы, для которых при любых условиях и в любом агрегатном состоянии структурной единицей является атом. Все остальные элементы существуют в природе в виде более сложных агрегатов молекул и кристаллов. Таким образом, следует строго различать понятия элемента как вида изолированных атомов и простого вещества как формы существования элемента в свободном состоянии. Следует особо подчеркнуть нетождественность этих понятий хотя бы потому, что один элемент может существовать в виде нескольких простых веществ (аллотропия) .  [c.26]


    Некоторые выводы мы можем сделать на основании одного простого примера. Рассмотрим металл литий с кристаллической структурой о. ц. к. и кратчайшим возможным расстоянием между ядрами, равным 3,03 А. В атоме лития имеются только три электрона, основное состояние которых (ls) (2s) радиус иона Ы+(15)2 (табл. 28 на стр. 337) равен всего лишь 0,60 А. На внутренние сильно связанные электроны другие атомы лития почти не будут оказывать влияния, поэтому мы приходим к выводу, что один и только один валентный электрон каждого атома сообщает кристаллу металлические свойства. Все связи атома с его ближайшими четырнадцатью соседями обязаны своим существованием этому единственному (на каждый атом) электрону, связывающая сила которого, таким образом, размазана . Это следует также из сравнения длины связи, (2,67 А) в двухатомной молекуле Ыг с кратчайшим возможным расстоянием (3,03 А) между атомами в металле. Увеличенная длина связи в металле означает, что последняя ослаблена в то же время число связей в металле больше, вследствие чего полная энергия связи на один атом возрастает от 13 ккал/моль в молекуле до 39 ккал/моль в металле. Валентные электроны, или электроны проводимости, таким образом, связаны в металле сильнее, чем в молекуле, но их связывающая сила распределена между большим числом объектов. [c.342]

    Величины эффективных радиусов зависят от типа связи и довольно резко меняются при его изменении. В пределах одного типа связи на величину эффективного радиуса частицы влияют координационное число, структура решетки и химическая природа частиц. Исходя из максимально плотной упаковки, отрицательные ионы, имеющие большие размеры, чем положительные, должны возможно теснее группироваться вокруг последних. Число, показывающее, сколько атомов или ионов окружают каждый данный атом или ион в кристалле, называется координационным числом. Координационные числа разных веществ могут быть равны 2, 3, 4, 5, 6, 8 и 12. Встречаются кристаллические решетки (у некоторых металлов) с координационным числом 14. [c.146]

    Атомные и ионные радиусы. Одной из численных характеристик ато ма или иона, предопределяющих их свойства, является эффективный радиус атома или иона. Не следует думать, что атомы или ионы в молекулах или кристаллах резко отграничены друг от друга. Тем не менее во -многих случаях, в частности при сочетании в кристаллическую решетку, атомы и ионы ведут себя так, как если бы они были шариками определенного размера. [c.63]

    При рассмотрении волновых функций атомов и ионов становится ясным, что те и другие не обладают строго определенными размерами. Единственный способ, при помощи которого можно отнести величину радиуса (размер) к атому или иону,— это измерить тем или другим способом, насколько близко два атома или иона могут подойти один к другому под влиянием сил, по величине подобных тем, которые участвуют в химических процессах. Для ионов в кристалле это можно сделать, определяя расстояние между центрами двух соседних ионов, которое является суммой ионных радиусов. Тогда возникают два вопроса  [c.61]

    Атом Хд-10, СЛ( Тетраэдрический рал нус в кристалле, А Ион Х/-10 , сл Ионный радиус в кристалле, А [c.257]

    К., не содержащий примесей, с идеально правильной кристаллич. структурой, при абс. пуло должен быть совершенным изолятором. При темп-ре, отличной от абс. нуля, возникает собственная проводимость, причем носителями электрич. тока являются пе только свободные электроны, но и т. наз. дырки , образующиеся после ухода электронов. Дефекты структуры также влияют на электропроводность, вызывая обычно дырочную проводимость. Принимается, что для чистого К. при комнатной темп-ре уд. сопротивление должно составлять величину порядка 10 ом см. Электрич. свойства К. очень сильно зависят от примесей. Добавляя элементы V гр. периодич. системы, замещающие К. в решетке с освобождением электронов, получают кристалл К., к-рый проводит ток почти полностью с помощью электронов (т. наз. ге-тип проводимости) введение элемента III группы приводит к созданию дырочной проводимости (р-тии). Диэлектрич. проницаемость К. равна 12. К. диамагнитен, с атомной магнитной восприимчивостью —5,3-10 в. Для К. характерна прозрачность для длинноволновых ИК-лучей. Показатель преломления К. 3,87. Ат. радиус (при четверной координации и ковалентной связи) 1,175 А, ионный радиус 0,39A. Ввиду [c.402]

    Примеси замещения заменяют частицы основного вещества в узлах решетки. Они внедряются в решетку тем легче, чем ближе атомные (ионные) радиусы примесного и основного вещества. Примеси внедрения занимают междуузлия и притом тем легче, чем больше объем пространства между атомами. Так, в плотно упакованных ГЦК-металлах меньшие по размерам примесные атомы В, С, 31, К, О внедряются в тетраэдрические или октаэдрические междуузлия или же вытесняют из узла атом и образуют с ним пару типа гантели, ориентированную вдоль <100>. В полупроводниковых кристаллах ео структурой типа алмаза или сфалерита атомы примеси легко внедряются в четыре незанятые тетраэдрические пустоты (см. рис. 102, 140 и цветной [c.309]

    Ионные решетки построены из ионов, связанных электростатическими силами притяжения и отталкивания между ионами. Ионные решетки имеют соединения, у которых атомы химических элементов сильно различаются по величине сродства к электрону. Типичная ионная решетка у хлорида натрия. При сближении атомов натрия и хлора происходит переход электрона от атома натрия к атому хлора, в результате чего возникает ионная связь между ионами N3 и С1 . Количество ионов Ыа+, которое может разместиться вокруг иона С1", ограничивается силами электростатического отталкивания между ионами Ыа+. Чем меньше сила отталкивания между ионами одинакового знака заряда, тем устойчивее кристалл. Количество катионов, которое может разместиться вокруг аниона для образования устойчивой структуры кристалла, зависит от зарядов и от отношения радиусов катиона и аниона (/ ). При Я > 0,73 вокруг аниона может разместиться до восьми катионов при Я от 0,73 до 0,41 — до шести катионов, а при Я < 0,41 — только 4. [c.37]

    Атомные и ионные радиусы. Вследствие волновой природы электрона атом не имеет строго определенных границ. Поэтому измерить абсолютные размеры атомов невозможно. Практически приходится иметь дело с радиусами атомов, связанных друг с другом тем или иным типом химической связи. Такие радиусы следует рассматривать как некоторые эффективные (т. е. проявляющие себя в действии) величины. Эффективные радиусы определяют при изучении строения молекул и кристаллов (стр. 249). [c.33]

    ИОНОВ В кристалл зависит от величины (т. е. радиуса) отдельных ато)мов или ионов войти могут только те частицы, которые по величине соизмеримы с элементами решеток. Таким образом, растущие кристаллы действуют наподобие сортирующего или просеивающего механизма. Следовательно, один из наиболее важных принципов в распределении элементов — это их градация по величине, соответствующей размерам решетки или междуатомным расстояниям породообразующих минералов для наиболее обычных элементов. [c.232]

    Ионные кристаллы состоят из положительных и отрицательных ионов, которые регулярно чередуются в узлах решетки и связаны между собой силами электростатического (кулоновского) взаимодействия. Валентные электроны металла в этом случае полностью передаются более электроотрицательному атому. Ионные кристаллы, как и кристаллы металлов, имеют плотную упаковку. Если такой кристалл построен из ионов разной величины, то ионы с меньшим радиусом располагаются в промежутках между плотно упакованными ионами с большим радиусом. Такую решетку имеют, например, кристаллы Na l, K l, КВг. Силы связи в ионных кристаллах достаточно велики и имеют вполне определенную пространственную ориентацию. Поэтому такие кристаллы характеризуются высокой прочностью, хрупкостью и низкой электропроводностью. Ионные кристаллы галогенидов, сульфидов, сульфатов, фосфатов металлов в ряде случаев образуются на поверхностях трения при использовании смазочных сред, содержащих элементы с высокой степенью электроотрицательности, например, хлор, серу, фосфор и др. В частности, такую структуру имеют PbS, AgF, Agi, HgBr2, нашедшие применение в качестве твердых смазок [75, 83]. [c.57]

    Причина реализации кубической координации, а не более предпочтительных антипризматической или додекаэдрической, носит чисто геометрический характер. Оба менее симметричных типа координации часто встречаются в комплексных ионных кристаллах, в большинстве 8-координированных молекул и ионов, в структурах АХ4 с координацией 8 4 (TI1I4, 2г 4, Zr U). Кубическая координация в СаРг реализуется потому, что невозможно построить трехмерную структуру АХг с антипризматиче-ской или додекаэдрической координацией А и тетраэдрической координацией X. В структурах AX4 геометрические ограничения гораздо менее строгие, чем в АХг, так как на каждом атоме X сочленяются только по два 8-координационных полиэдра, а не четыре, как в структуре АХг. Этот аргумент с еще большей определенностью приложим к структурам АХ, где каждый атом должен служить общей вершиной для восьми координационных полиэдров AXs. КЧ 12, ожидаемое при отношении радиусов, близком к 1, в структурах АХ и даже шире — в структурах АтХ — не наблюдается, хотя в комплексных галогенидах и оксидах щелочных и щелочноземельных металлов 12-вершинная координация встречается. Это также чисто геометрическая проблема, которая обсуждается далее. [c.378]

    ЧТО атом благородного газа располагается на поверхности в таком положении, что он 1 ходится в соприкосновении с наибольшим возможным числом ионов, а затем вычислил дисперсионную энергию между атомом и каждым соседним ионом решетки в соответствии с уравнением Лондона (65). Поляр язуемости и характеристические энергии он заимствовал у Майера[ ]. Характеристические энергии здесь не являются просто ионизационными потенциалами свободных ионов. Ионизационный потенциал измеряет только работу, необходимую для удаления электрона из замкнутой оболочки, но когда электрон удаляется с поверхности ионного кристалла, к этой работе надо прибавить работу, затрачиваемую против кулоновских сил притяжения свободного электрона и окружающих ионов. Майер оценил поляризуемости из экстраполированных показателей преломления ионных кристаллов, приписывая часть поляризуемости кристалла положительному, а часть — отрицательному иону. Ленель, следуя Лондону, разделил расстояние г на две части, принимая ( ,/2 равным гольдшмидтовскому радиусу иона и вычисляя с1 2 — радиус атома благородного газа—из расстояний в решетке в твердом состоянии. [c.283]

    Сэндвичевая структура является самой устойчивой не только для ковалентных комплексов, использующих -орбитали, но н для ионных кристаллов — для катиона и двух отрицательно заряженных циклов. Интересно и необычно строение комплекса бериллия. Предложены два возможных строения [Ве(ср)г]. Первое основано на интерпретации данных по дифракции электронов в газовой фазе [65] (рис. 13.20, а). Атом бериллия приближен к одному циклу, расстояние между двумя циклами (337 пм) определяется отталкиванием между ними, что вытекает из ван-дер-ваальсова радиуса углерода (167—170 пм). Малый по размерам ион Ве + поляризует л-облако одного цикла, и образуются энергетически выгодные короткая ковалентная связь и длинная ионная связь. Второе возможное строение, по рентгеноструктурным данным, для твердого бериллоцена — смешанный сэндвич, содержащий а-связь металла с одним циклом и л-связь с другим [66] (рис. 13.20,6). [c.437]

    На основании этих данных М. Гольдшмит в 1926 г. сформулировал первый закон кристаллохимии в таком виде Строение кристалла определяется количеством его структурных единиц, их размерами и поляризационными свойствами . Под структурными единицами понимают атом, ион, комплексный ион или молекулу, под их размерами — величины эффективных радиусов, под поляризационными свойствами — величины деформации частиц в зависимости от действующих факторов. [c.134]

    АТОМНЫЕ РАДИУСЫ, эффективные характеристики атомов, позволяющие приближенно оценивать межатомное (межъядерное) расстояние в молекулах и кристаллах. Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают нек-рый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (90-98%). А. р.-величины очень малые, порядка 0,1 нм, однако даже небольшие различия в их размерах могут сказываться на структуре построенных из них кристаллов, равновесной конфигурации молекул и т. п. Опытные данные показывают, что во мн. случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих А. р. (т. наз. принцип аддитивности А. р.). В зависимости от типа связи между атомами различают металлич., ионные, ковалентные и ван-дер-ваальсовы А. р. [c.218]

    С самого начала развития структурной химии значительный интерес привлекало обсуждение длин связей в терминах радиусов, приписываемых элементам. Стало привычным использовать три набора радиусов, разных для металлических, ионных п ковалентных кристаллов. Расстояния между несвязанными атомами сопоставлялись с суммами вандерваальсовых радиусов , которые принимались близкими к ионным радиусам. Самые первые ковалентные радиусы для неметаллов были приняты равными половине расстояний М — М в молекулах и кристаллах, в которых атом М образует 8—N связей (где N — номер группы периодической системы), т. е. они брались из таких молекул, как р2, НО—ОН, H2N—NH2, Р4, Sa и из кристаллов элементов IV группы со структурой алмаза. Это включает Н и 16 элементов периодической системы, лежащих в блоке С— —Sn—F—I. Первоисточник для вычисления ковалентных радиусов металлов был совершенно другим из-за отсутствия данных для молекул, содержащих связи М—М. Тетраэдрические радиусы были выведены нз длин связей М—X в соединениях МХ со структурами типа ZnS, октаэдрические радиусы — пз данных для кристаллов со структурами типа пирита и родственных с ним структур в предположении аддитивности радпу- [c.343]

    Ионы Li+ (атомные остовы), имеющие электронную структуру расположены по узлам объемноцентрированной кубической решетки. Известно, что радиус иона Li+ составляет О, 68 А. Длина связи Li—Li в молекуле Lia в газе равна 2,674 А, а в кристалле лития расстояние между ближайшими соседями составляет 3,03 А. Однако увеличенную длину связи в кристалле по сравнению с молекулой нельзя рассматривать как признак более слабой связи. Энергия связи в кристалле равна 39 ккал1молъ, а в молекулярном газе эта энергия составляет 13 ккал1молъ. Металлическая связь осуществляется через электроны, образующие газ почти свободных электронов (так называемые электроны проводимости). Атом в решетке, таким образом, связан даже сильнее, чем в молекуле. [c.198]

    Координационным числом (к. ч.) называется число одинаковых атомов, окружающих данный атом. Так, в структуре Na I к. ч. Na+ и 1 равно 6. С увеличением к. ч. увеличивается расстояние между катионом и анионом. В справочниках по кристаллохимии приведены значения радиусов действия для к. ч., равного 6. Значение к. ч. в структуре кристаллов определяется соотношением размеров ионных радиусов. Геометрическим способом были установлены следующие пределы значения к. ч. для отношения радиуса катиона Гк к радиусу аниона Га  [c.19]

    Для учета ионности связи вместо Да Сыркин, как и другие авторы [119, 122], предлагает пользоваться эффективными зарядами е на отдельных атоь1ах соединения, определяемыми из экспериментальных данных. Эффективный заряд атома — это реальный заряд, находящийся внутри объема, окружающего атом. Это определение не является строгим, так как неясно, особенно в случае ковалентных кристаллов, какой объем следует выбрать для вычисления этого заряда. Если за основу для вычисления объема принимать те или иные атомные или ионные радиусы, можно прийти к противоречивым [c.39]

    Если сравнивать соедш ение с одинаковыми анионами, то изменение сродства образования в группе щелочных металлов дается уравнением (12), стр. 174, выражающим разность G — (Aj Qg). Из приведенных в табл. 28 данных следует, что сумма + Qs при переходе от Li к s уменьшается от 159,8 до 108,1 ккал г-атом, т. е. в отношении 3 2. Если принять при этом, что энергия решетки G уменьшается в том же соотношении или сильнее, то разность между G и (Aj -f Qs) также должна уменьшаться следовательно, сродство образования должно уменьшаться от соединений лития к соединениям цезия. Энергия решетки в соответствии с уравнением (11), стр. 172, обратно пропорциональна расстоянию между центрами ирнов в кристалле г, соответствующему сумме радиусов аниона и катиона. У фторидов, если переходить от LiF к sF, ионное расстояние возрастает от 2,01 до 3,01 А (ср. табл. 39), таким образом, энергия решетки уменьшается приблизительно в соотнршении 3 2 .  [c.179]

    Имеются также убедительные данные, что в кристалле любого щелочного металла на каждый атом приходится всего один делокализованный электрон, и этой конденсированной фазе присущи многие свойства, которые следует ожидать в системе из однозарядных положительных ионов, окруженных численно равным количеством электронов, образующих электронный газ . Например, при последовательном переходе от лития к цезию температуры кипения и плавления, а также твердость щелочных металлов уменьшаются вполне закономерно. Это согласуется с представлением о том, что размер положительного иона суще-ствеино определяет силы, удерживающие конденсироваиную фазу как единое целое. Маленькие ионы лития должны сильнее нритягивать окружающие электроны, чем более крупные ионы натрия, и эта закономерность выполняется при последовательном переходе к более тяжелым щелочным металлам по мере возрастания ионных радиусов. При этом возникает интересный вопрос как один атом может координироваться восемью другими атомами, если на каждый атом приходится только один электрон, участвующий в связи Интересно также выяснить, почему координационное число равно именно восьми. Почему оно не равно, например, двенадцати, как это обнаруживается в большинстве металлов Ведь двенадцать — это максимальное число сфер, которые могут плотно упаковываться вокруг сферы такого же размера, если между ними не действуют какие-либо направленные силы. [c.496]

    В некоторых соединениях металлов первой н второй подгруппы В периодической таблицы атом металла образует две связи, и здесь опять все электроны валентной группы (в данном случае 4 электрона) являются поделенными. Линейное расположение таких связей найдено в комплексных ионах [N0 — Ag — СН] , [С1 — Ли — С1] , в молекулах Hg l2, HgBr2 и Hg]2 и в кристаллических СИзО и Ag20. Эти связи также, вероятно, являются 5/7-связями. В отношении 2-ко-валентных радиусов Си и Ag в этих кристаллах, равных соответственно 1,18 и 1,39 а, встречаются те же затруднения, что и у 2п0. Если считать эти связи ковалентными, то каждый атом Си должен иметь формальный заряд—1, а каждый атом О должен иметь заряд - -2, и, очевидно, эти связи не являются чисто ковалентными. [c.100]

    Существенное улучшение теории достигается в рамках обо-лочечной модели [164]. В своей самой простой форме она исходит из следующих предпосылок если рассмотреть в кристалле два иона, располагающихся в непосредственной близости друг от друга, то, как известно, взаимное проникновение их электронных оболочек приводит к их отталкиванию. Если эти ионы поместить в электрическое поле, то их электронные оболочки будут деформироваться (эффект поляризации) и деформация изменит силу отталкивания ионов. В то же время — и это очень важно — взаимное отталкивание между соприкасающимися атомами, проявляющееся на малых расстояниях, может привести к поляризации другого рода — деформационной поляризации, которая в свою очередь приведет к эффектам большого радиуса действия. Оболочечная модель позволяет учесть эти эффекты. Каждый нон или атом с заполненными внутренними электронными слоями схематически можно представить в виде остова . [c.94]


Смотреть страницы где упоминается термин Радиусы атомов и ионов в кристаллах: [c.124]    [c.378]    [c.392]    [c.392]    [c.119]    [c.283]    [c.488]    [c.119]    [c.49]    [c.51]    [c.275]    [c.458]    [c.18]    [c.20]   
Смотреть главы в:

Краткий справочник физико-химических величин Изд.8 -> Радиусы атомов и ионов в кристаллах




ПОИСК





Смотрите так же термины и статьи:

Атомы ионные радиусы

Ионные радиусы

Ионные радиусы в кристаллах

Кристаллы ионные

Кристаллы ионов

Радиусы атомов

Радиусы атомов и ионов

Радиусы ионов

рий радиус иона



© 2025 chem21.info Реклама на сайте