Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложность веществ частиц

    Некоторые закономерности растворимости веществ различной природы. До настоящего времени нет теории, с помощью которой можно предсказывать и вычислять растворимость. Это объясняется сложностью взаимодействия частиц в растворе, а также отсутствием общей теории жидкого состояния. Тем не менее многие наблюдаемые зависимости, связанные с растворимостью, можно объяснить. [c.251]

    В настоящее время теория процесса фильтрования с использованием вспомогательных веществ разработана недостаточно. Ввиду большой сложности этого процесса, где проявляется взаимодействие четырех фаз, из которых три твердые (частицы разделяемой суспензии, частицы вспомогательного вещества, фильтровальная перегородка) и одна жидкая, выбор вспомогательного вещества и определение его количества, а отчасти и выбор способа его ис- [c.349]


    По мере повышения концентрации раствора, как правило, усиливается интенсивность взаимодействия между содержащими его частицами и усложняется его структура наоборот, по мере уменьшения доли растворенного вещества строение раствора упрощается и взаимодействие между частицами ослабевает. Все это делает понятной огромную сложность развития количественной теории концентрированных растворов. До сих пор не удалось полностью выяснить ни состав, ни пространственную конфигурацию продуктов взаимодействия, природу связи в них, взаимодействия между частицами растворенного вещества. Сложность взаимодействия в растворах усугубляется отсутствием математической теории строения жидкостей. Поэтому разработка теории растворов высокой концентрации — дело [c.134]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]

    Однако к моменту открытия периодического закона только лишь стали утверждаться представления о молекулах и атомах. Причем атом считался не только наименьшей, но и элементарной (т. е. неделимой) частицей. Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран. Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской открыть два новых радиоактивных элемента полоний и радий. Последовавшее за этим установление природы а-, (5- н у-лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899 —1903 гг.), обнаружение ядер атомов диаметром 10 нм, занимающих незначительную долю объема атома (диаметр 10 нм) (Э. Резерфорд, 1909— 1911 гг.), определение заряда электрона (Р. М и л л и к е н, 1909— 1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Ф р а н к, Г. Г е р ц, 1912 г.), установление заряда ядра, равного номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позво или предложить следующую модель строения атома  [c.23]


    Однако проблема растворов полностью еще не разрешена. Теория еще не позволяет в любом случае предопределять свойства растворов по свойствам их компонентов. Объясняется это чрезвычайно большим многообразием и сложностью взаимодействий между молекулами растворите чя п частицами растворенного вещества. Структура раствора, как правило, бывает значительно сложнее строения его отдельно взятых компонентов. [c.81]

    Приведенный краткий обзор взаимодействий между части цами растворенного вещества и молекулами (и ионами) растворителя показывает исключительную сложность полного описания всей системы частиц в растворе, поэтому обычно выбирают один или несколько наиболее важных процессов, определяющи.х поведение системы, пренебрегая многообразием остальных. [c.126]

    По мере повышения концентрации раствора, как правило, усиливается интенсивность взаимодействия между содержащими его частицами и усложняется его структура наоборот, по мере уменьшения доли рас творенного вещества строение раствора упрощается и взаимодействие между частицами ослабевает. Все это делает понятной огромную сложность развития количественной теории концентрированных растворов. До сих пор не удалось полностью выяснить ни состав, ни пространственную конфигурацию продуктов взаимодействия, природу связи в них, взаимодействия между частицами растворенного вещества. Сложность взаимодействия в растворах усугубляется отсутствием математической теории строения жидкостей. Поэтому разработка теории растворов высокой концентрации — дело неблизкого будущего. Гораздо проще обстоит дело с очень разбавленными растворами, количественная теория которых создана уже давно (см. гл. И данного раздела). [c.143]

    Согласно взглядам И. Ньютона, взаимодействие ме кду мельчайшими частицами материи подчиняется законам более сложным, чем закон тяготения, так как, кроме сил притяжения между микрочастицами, когда они очень сильно сближаются, действуют еще и силы взаимного отталкивания Соединяясь между собой, частицы образуют различной сложности ансамбли, то, что И. Ньютон называет частицами первого, второго, третьего и т. д. до. .. частиц последнего порядка , которые образуют обычные вещества. [c.116]

    Принципиальное значение и огромное будущее новой отрасли естествознания предвидел Менделеев. В первом издании Основ химии (1871 г.) он писал, что положено новое начало изучения органических веществ, составляющих массу тел животных и растений. Он писал далее, что коллоиды суть тела по-видимому сложного состава, большого веса частицы... они все легко (от сложности или полимерности) подвергаются изменениям в физических и химических свойствах. Менделеев указывает, что вопросы коллоидной химии должно считать передовыми и могущими иметь значение во всей физике и химии . В дальнейшем он много занимался экспериментальным исследованием коллоидных систем, и показав, что почти все вещества могут быть получены в коллоидном состоянии, подготовил тем самым идею универсальности коллоидного состояния. [c.19]

    Скорость диффузии низкомолекулярных веществ в студне определяется сложностью пространственной сетки. В студнях невысоких концентраций диффузия низкомолекулярных веществ происходит практически с такой же скоростью, что и в чистом растворителе. Это обусловлено наличием достаточно больших промежутков между макромолекулами, соединенными друг с другом в трехмерную структуру. С увеличением концентрации студня, а также с возрастанием размера диффундирующих частиц скорость диффузии уменьшается. Если размеры частиц диффундирующего вещества так велики, что частицы не могут пройти через макромолекулярную сетку, то диффузии вообще не будет. На этом основано применение полупроницаемых мембран, обыч- [c.373]

    Несмотря на обширное практическое применение гетерогенного катализа до настоящего времени нет единой теории его. Это связано со сложностью процесса. Наиболее распространенной является адсорбционная теория, согласно которой на поверхности катализатора происходит адсорбция, т. е. концентрирование реагирующего вещества на поверхности катализатора. Адсорбция является результатом взаимодействия неуравновешенных сил поверхностных частиц твердого катализатора с молекулами реагирующего вещества из газо- [c.36]

    Относительная дороговизна и сложность оборудования. Эжектор в, выпускной трубе забивается сажей и углистыми частицами, содержащимися в отработанных газах, или смолистыми веществами, содержащимися в картерных газах. Часто требуется зачищать эжектор для обеспечения эффективной работы, системы вентиляции [c.368]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]


    В настоящее время теория процесса фильтрования с использованием вспомогательных веществ разработана недостаточно. Ввиду большой сложности этого процесса, где проявляется взаимодействие четырех фаз, из которых три твердые (частицы разделяемой суспензии, частицы вспомогательного вещества, фильтровальная перегородка) и одна жидкая, выбор вспомогательного вещества и определение его количества, а отчасти и выбор способа его использования могут быть выполнены только после предварительного экспериментального исследования. [c.290]

    Сложности приготовления образцов твердых веществ, которые нерастворимы в обычных растворителях для ИК-спектроско гаи, чаще всего возникают при их растирании до мелкодисперсных порошков, образующих суспензии (взвеси) в вазелиновом масле или КВг. В обоих случаях цель состоит в создании однородного распределения частиц в луче и в улучшении пропускания света взвешенными частицами в среде, имеющей близкий с образцом показатель преломления. [c.89]

    Формула (3.9.29) показьшает, что при а > 3 восприимчивость становится бесконечно большой, т. е. вещество поляризуется самопроизвольно (отсутствие внешнего поля). Такие вещества (сегнетоэлектрики) действительно существуют, хотя приведенное условие перехода в такое состояние не является достаточно корректным. Причина в том, что самопроизвольная поляризация возможна в веществе, молекулы которого обладают постоянным дипольным моментом, но в этом случае на любую молекулу кроме поля Лоренца действует более сильное поле ближайших соседей (локальное поле), наличие которого формула Клаузиуса — Мосотти не учитывает. Корректный расчет локальных полей требует учета структуры вещества (или дисперсной системы, если речь идет о ее поляризуемости) и дипольного взаимодействия соседних молекул (частиц). Сложность проблемы в том, что структура в свою очередь определяется взаимодействием молекул, так что возникает замкнутый круг двух взаимосвязанных задач, каждая из которых не может решаться отдельно от другой. Существует ряд теорий полярных диэлектриков, в которых постулируется наличие структуры того или иного вида. Разные теории отличаются способами описания структурно зависимой части поля, действующего на каждую молекулу [31]. Это теория локального по.тя Дебая, теория реактивного поля Онзагера, теория локального ноля Кирквуда. [c.651]

    Кинетика твердофазового спекания. В реальных технологических условиях спекание представляет собой сложный физический, а часто (особенно в многокомпонентных системах) и физико-хими-ческий процесс, включающий в себя перенос вещества, физические явления на границе фаз, фазовые превращения, химические реакции и т. д. Сложность этого процесса затрудняет его кинетическое описание, т. е. установление зависимости скорости спекания от различных определяющих его факторов. Таких факторов (часто взаимосвязанных) можно назвать очень много природа спекающегося материала, температура, коэффициент диффузии, дисперсность спекающихся частиц, величина пор и их распределение по размеру, поверхностное натяжение и вязкость конденсированной фазы, степень дефектности решетки и т. д. Влияние всех этих факторов на скорость спекания в реальных процессах осложняется тем, что в одном и том же случае может реализоваться несколько механизмов спекания, каждый из которых имеет свои кинетические особенности кроме того, кинетика спекания может быть неодинаковой на его различных стадиях. [c.338]

    Наибольшую сложность представляет удаление из потока воздуха компрессорного масла, которое содержится в воздухе в виде аэрозоля с частицами размером 0,01...1 микрона. Из-за малости этих частиц нельзя удалить их в фильтре-влагоотделителе центробежного действия. Поэтому воздух из фильтра-влагоотделителя 5 (см. рис. 10.5) поступает в химический осушитель 6, в котором влага адсорбируется при прохождении воздуха через специальное вещество - адсорбент, в качестве которого может использоваться активированный уголь, активная окись алюминия или силикагель. [c.284]

    Стремление учесть влияние указанных факторов на воспламеняемость аэрозолей объясняет причины множества предложенных методов. В этих методах весьма существенную роль играет способ создания аэрозоля, имеющего достаточно однородные свойства во всем объеме реакционного сосуда. Сложность проблемы в значительной мере обусловлена разнообразием физических свойств промышленных образцов пыли. Объемная и истинная плотности пылеобразующего вещества, средние размеры частиц, их дисперсионный состав и форма, гигроскопичность, электрические свойства и когезия между частицами — все эти факторы могут влиять на процесс получения облака пыли. Как уже отмечалось в гл. 1, частицы порошка, применяемого в исследовании на воспламеняемость, размером примерно 70 мкм имеют значительную скорость витания. Поэтому порошок в неподвижном воздухе быстро оседает, причем наиболее крупные частицы выпадают практически мгновенно. [c.62]

    Методы, кратко рассмотренные в предыдущих разделах, привели к огромным успехам в накоплении термодинамических данных для органических веществ в идеальном газовом состоянии. Столь же важны достижения в теории строения молекул, которые явились результатом возможности сопоставления термодинамических величин, вычисленных на основании принятой молекулярной модели или параметров, с точными экспериментальными данными. Однако вещества в их действительном состоянии обычно не могут строго обрабатываться, как если бы они состояли из независимых молекул, а для систем из взаимодействующих молекул методы статистической механики становятся чрезвычайно сложными. Путем включения в статистическую сумму конфигурационного интеграла, связанного с функцией потенциальной энергии межмолекулярного взаимодействия, был достигнут некоторый успех в применении статистической термодинамики к таким системам слабо взаимодействующих молекул, как сжатые газы [270]. Были найдены также полезные качественные объяснения простых фазовых изменений и критических явлений [376] что же касается количественных результатов, то они могут быть получены пока только для простых веществ. Сложность проблемы для систем сильно взаимодействующих частиц, таких, какие имеют место в кристаллическом состоянии, можно видеть из того факта, что для одного моля вещества необходимо рассматривать 6М+ М 3п — 6) степеней свободы, где N — число Авогадро. Работы по теории твердого состояния ограничивались поэтому слишком упрощенными, идеальными моделями произвести полный количественный расчет применительно к твердому органическому веществу в настоящее время не представляется возможным. Тем не менее концепции статистической термодинамики дают логичное обоснование для качественного обсуждения и специальных расчетов свойств органических кристаллов, рассматриваемых в последующих разделах данной главы. [c.19]

    Рассмотренные виды влияния имеют большое практическое значение и показывают, насколько многообразным может быть механизм воздействия одного вещества на излучение другого. Эта сложность воздействия, впервые установленная в работах по созданию пламенно-фотометрических методов анализа, позволяет с полным правом рассматривать пламя как среду, сосуд и растворитель для реакций, протекающих в частицах аэрозоля и в газах пламени при высоких температурах [c.105]

    Географическая оболочка - сложная природная система, подчиняющаяся географическим законам, характеризуется свободной энергией разных видов, разной степенью сложности вещества (свободные элементарные частицы, атомы, ионы, молекулы, химические соединения), тел и организмов, разнообразием осадочных пород, почвенного покрова, форм рбльефа, концентрацией солнечной энергии. [c.13]

    В последние годы выполнено много исследований в области промывки фильтровальных осадков. Рассмотрим различные физические модели и соответствующие математические описания промывки осадков на основе закономерностей диффузии растворенного вещества. Отметим, что во всех математических описаниях на уровне микрофакторов (см. с. 16) принимают ряд упрощений и допущений с целью выразить закономерности диффузионной стадии в виде аналитических зависимостей допустимой сложности. Одно из таких обычных допущений состоит в том, что рассматриваются непористые частицы, вследствие чего исключается осложняющее явление молекулярной диффузии растворимого вещества из пор в твердых частицах в поры между частицами. Вторым обычным допущением является признание гомогенности и прочности структуры осадка. [c.250]

    Химическое вендество, или, более точно, индивидуальное вещество, состоит из одного определенного типа молекул. Молекулой назы-иается мельчайшая частица индивидуального вещества, способная существовать самостоятельно и сохраняющая химические свойства нещества. Химическое превращение, т. е. образование новых веществ, обладаюндих по сравнению с исходными вещества.ми нными свойствами, связано с изменением состава молекул вентества. Молекулы одних венгеств сложнее, чем других, т, е. различные вещества отличаются друг от друга сложностью и составом молекул.. Молекула характеризуется массой, которая определяется числом и массой входящих в ее состав атомов. Относительная молекулярная масса вептества и относительная атомная масса элемента — это масса молекулы или, соответственно, атома, выражается в условных атомных единицах. [c.12]

    Сложность атомов. В последней четверти XIX в. возникли представления о сложности структ уры атомов. Д. И. Менделсеи и А. М. Бутлеров указывали, что атомы не подвергаются делс[гню лишь при обычных (для того времени) химических процессах, но могут быть, по-виднмому, разделены в ходе процессов, которые будут открыты впоследствии. Основоположники диалектического материализма утверждали, что атом не является пределом делимости материи. Фридрих Энгельс, например, подчеркивал, что ...атомы отнюдь не являются чем-то простым, не являются вообш,е мельчайшими известными нам частицами вещества... атомы обладают сложным составом...  [c.19]

    Живые огранизмы выделяют огромное количество органических соединений, которые более века привлекают внимание химиков-органиков. Некоторые из этих соединений являются небольшими молекулами (сахара, гидроксикислоты), тогда как другие представляют собой очень большие частицы (белки, полисахариды, нуклеиновые кислоты). Соединения и той и другой группы характерны для всех живых систем. Между этими крайними случаями находятся вещества, молекулы которых имеют средний размер и степень сложности. Некоторые из них обладают сильным физиологическим действием, например витамины. Довольно часто соединения такого типа являются основой для исследований, нацеленных на получение лекарственных препаратов в этих препаратах необходимое физиологическое действие, которым обладает природное соединение, проявляется с большей силой и специфичностью за счет синтетических соединений родственного строения. Такого рода исследования базируются на том факте, что физиологическая активность соединения однозначно связана с его молекулярной структурой. Сравнение взаимосвязи структура — активность внутри больши> групп органических соединений позволяет постепенно пoзнaт молекулярную топографию некоторых рецепторных центров живых тканях, которые взаимодействуют и с природными со динениями, и с их синтетическими аналогами. [c.352]

    Однако, несмотря на значительное число полученных к настоящему времени работоспособных расчетных формул, применимых в отдельных частных случаях массотеплообмена реагирующих частиц с потоком, общая теория переноса вещества и тепла в дисперсных средах с учетом химических превращений далека от завершения. Такая теория должна базироваться на совместном рассмотрении уравнений гидродинамики, диффузии и теплопроводности, что связано с большими трудностями, которые не преодолены в настоящее время ни аналитическими, ни численными методами. Степень сложности проблемы Станет понятной, если учесть, что имеющиеся аналитические и численные решения значительно более простой задачи об обтекании сферической капли или твердой частицы ламинарным однородным на бесконечности потоком не являются исчерпывающими. Вместе с тем разработка новых и совершенствование существующих химико-технологических схем, описание природных явлений часто приводят к новым постановкам задач, требующим учета условий, не соответствующих области применимости найденных ранее закономерностей, так что становится необходимым более детальное рассмотрение механизма процесса массотеплообмена реагирующих частиц с потоком. [c.6]

    Применение поверхностноактивных веществ (смачивателей). Применение смачивателей не имеет существенного значения до тех пор, пока частицы не будут подведены к каплям за счет какого-нибудь механизма осаждения. Поэтому применение смачивателей могло бы быть полезным при улавливании крупных частиц, высокая эффективность осаждения которых в большинстве случаев в мокрых аппаратах может быть достигнута и без применения смачивателей. При осаждении же мелких частиц вся сложность задачи заключается в подводе их к капле или пленке жидкости, чему смачиватели способствоьать не могут. В связи с этим использование поверхностно-активных добавок возможно в низконапорных пылеулови- [c.146]

    Так как бета-частицы могут проникнуть только через слой вещества весом 0,3 мг/см , для максимального использования излучения важно получить как можно большую поверхность контакта между газом и органическим соединением. Твердые вещества тщательно растирают в порошок и распределяют по стенкам сосуда в виде слоя, толщина которого в оптимальном случае должна быть около 10 мк. При метке жидкостей реакционный сосуд после отсоединения от вакуумной системы помещают в трясучку. Доля трития, поглощенного каким-либо соединением в единицу времени, уменьшается при увеличении молекулярного веса и сложности молекулы. Достигаемые удельные активности при использовании 90% трития имеют порядок десятков мкюри на 1 г и сильно зависят от вида соединения. Например, в случае мепробамата (2-метил-2-пропилпропандиол-1,3-дикарбамата) продукт обладал высокой удельной активностью (300 мкюри1г), в то время как н-гептан, полученный этим методом, имел удельную активность только 1,3 мкюри1г [26]. Тритий замещает водород в различных связях в разных отношениях. Например, в метильной группе толуола отношение трития к водороду меньше /ю того же отношения в бензольном ядре. [c.686]

    При реагентной обработке осадка происходит коагуляция - процесс агрегации тонкодисперсных и коллоидных частиц. Образование при этом крупных хлопьев с разрывом сольвентных оболочек и изменением форм связи воды способствует изменению структуры осадка и улучшению его водоотдающих свойств. В качестве коагулянтов используют соли железа, алюминия [(Ре304. Ре2804)з, РеСЬ, А12(304)з] и известь. Эти соли вводят в осадок в виде 10 %-ных растворов. Могут быть также использованы отходы, содержащие РеС1з, А12(804)з и др. Наиболее эффективным является применение хлорного железа совместно с известью. Доза хлорного железа составляет 5-8%, извести 15-30% (от массы сухого вещества осадка). Недостатком реагентной обработки является высокая стоимость, повышенная коррозия материалов, сложность транспортирования, хранения и дозирования реагентов. [c.128]

    Различные исследователи спорят об оптимальной толщине слоя для ПТСХ. В общем увеличение толщины ведет к большей емкости образца, но уменьшает разрешение зон. Шталь и сотр. [11] предсказывают неоднородную скорость проявления, связанную с толщиной слоя, и плохое разделение на слоях, имеющих толщину больше чем 0,5—1 мм, тогда как Хонеггер [9] считает, что оптимальные толщины слоев находятся в пределах 1—3 мм. По мнению Халнаапа [12], можно использовать слой толщиною 2 мм, однако при больших толщинах разделение ухудшается. Важно, что разрешение, сложность образца, нагрузка и толщина слоя взаимосвязаны, поэтому нагрузка и толщина должны быть выбраны таким образом, чтобы при разделении между зонами интересующих веществ с каждой стороны было по крайней мере 3 мм чистого пространства. Толстые слои содержат большее количество подвижной фазы и требуют более длительной сушки при многомерных проявлениях. Было найдено, что слои толщиной 5—10 мм, приготовленные из частиц силикагеля с увеличенным количеством связующего, пригодны только для грубых разделений [12]. [c.133]

    Таким образом, сложность полимерного состояния вещества, специфические свойства полимеров и особенности протекания в них процессов фазового разделения, определяемые неравновесностью этих процессов, позволяют выделить особый класс полимерных дисперсных систем — систем с незавершенным фазовым разделением, где в результате ряда термодинамических и структурных факторов возникают частицы дисперсной фазы, нетипичныа для классических коллоидных систем и описываемые только в рамках новых представлений о механизме фазового распада в гетерогенных многокомпонентных системах. [c.192]

    Х 1рактерные для ряда гидрометаллургических процессов производства цветных и редких металлов гетерогенные реакции типа твердое тело — жидкость, протекающие с образованием новой твердой фазы, сильно замедляются вследствие тормозящего действия пленок вновь образовавшихся соединений, покрывающих частицы исходного твердого вещества. Так, в процессе разложения шеелита соляной кислотой на поверхности частиц этого минерала образуется плотная сплошная пленка вольфрамовой кислоты. Эта пленка сохраняется даже при интенсивном перемешивании суспензии. Подобные процессы можно значительно интенсифицировать, если совместить действие химических реагентов с механическим истиранием или измельчением, например в шаровых или вибрационных мельницах. Однако из-за сложности аппаратурного решения это не всегда может быть экономически приемлемо. [c.147]

    При выборе аппаратурно-технологического оформления процессов экстрагирования стремятся обеспечить возможно более полное извлечение содержащихся в твердом теле веществ при минимальном расходе экстрагента. Этого трудно, а часто и невозможно достичь, проводя процесс путем однократной обработки твердой фазы растворителем или при прямоточном движении взаимодействующих фаз. Поэтому на практике применяют экстрагирование путем движения растворителя через неподвижный слой твердых частиц, последовательную обработку твердой фазы неболъши.ми количествами растворителя, а также противоточный процесс. В связи со сложностью организации непрерывного противоточного движения твердой и жидкой фаз используют ступенчатый противоточный процесс. В каждой ступени происходит смешение твердой фазы, поступающей с предыдущей ступени, с жидкостью, поступающей с последующей ступени. Свежий экстрагент подается в последнюю ступень по ходу твердой фазы (рис. V. 17). Каждая ступень включает операции смешения твердой и жидкой фаз для [c.488]

    Исследования Д. Г. Звягинцева по адсорбции микроорганизмов на модифицированной поверхности стекла, содержащей преимущественно либо гидрофильные (NH+2, С00 , 0Н ), либо гидрофобные — (СНз) — группы, еще раз продемонстрировали роль природы поверхности адсорбента во взаимодействии мел<ду микробными клетками и твердыми материалами, а также всю сложность этого процесса [101, 103, 198]. Определенную селективность по отношению к вирусам проявляют некоторые синтетические полиэлектролиты. Например, сополимер стирола и малеинового ангидрида, сшитый дивинилбензолом, способен адсорбировать из воды вирус табачной мозаики (палочки длиной 3000 А и диаметром 160 A) на 100% и вирус полиомиелита (шарообразные, диаметром 350 А с большим содержанием РНК) —на 99,99%, в то время как ионообменная смола Амбер-лайт ХЕ-119 поглощает только 97о вируса табачной мозаики. Поперечносшитый сополимер азобутилена и малеинового ангидрида РЕ 60 в виде порошка с размером частиц 100 меш адсорбирует вирусы в присутствии других микроорганизмов и органических веществ, что позволяет обходиться без дополнительного фильтрования или обработки жидкости ионообменными смолами при концентрировании вирусов и выделении их из различного рода сточных и природных вод [509, 511]. В ионообменных смолах аниониты, поверхность которых заряжена положительно, адсорбируют микроорганизмы значительно лучше, чем отрицательно заряженная поверхность катионитов. В последнем случае определенное значение имеет природа катионов, насыщающих смолу сравнительно хорошо сорбируются отдельные микроорганизмы (например. Вас. my oides, Sar ina Sp.) водородной формой смолы, хуже — катионитами, насыщенными Си +, Ее + и А1 +, и еще хуже при насыщении ионами кальция, магния и бария. Формы смолы, содержащие одновалентные катионы (К+, Na+, NH+4), практически не сорбируют [c.190]

    Установлено [415], что константа скорости мономолекулярного разложения в газообразных системах не зависит от присутствия или отсутствия водяного пара, азотной кислоты или частиц пыли, а также не зависит от способа приготовления катализатора. Хотя Хирст и Райдил указывают, что константа скорости увеличивается при очень низких давлениях, наблюдение Хиббена [227] не подтвердило этого. По его определениям величина константы скорости реакции в пределах 0,002—0,2 давления была той же, что и найденная им для нормального давления. Хиншельвуд с сотрудниками установил, что мономоле-кулярное разложение более характерно для таких веществ, как пятиокись азота, ацетон (диметилкетон), диэтилкетон и ацетальдегид, которые имеют большие молекулы. Бимолекулярные константы получены для веществ, аналогичных иодистому водороду, окиси хлора и закиси азота, которые имеют простые молекулы. Вследствие более сложной структуры первой группе требуется более длинный период времени между активацией и реакцией. Таким образом, Хин-шельвуду казалось, что абсолютная величина скорости реакции подтверждает, что сложность структуры, являете я важным фактором при разложении по моно-молекулярному закону. [c.189]

    Выбор освещаемых вопросов в этой главе был довольно произвольным. Мы старались охватить по крайней мере несколько вопросов достаточно полно, а не давать читателю просто список хроматографических методов. Хотя иногда и кажет ся, что умышленный пропуск чего-либа в объяснении помогает обойти любые сложности, мы старались избегать этого. В гл. 16 мы отмечали, что скорости потока в жидкостной хроматографии должны (быть гораздо медленнее, чем в газовой хроматографии, поскольку диффузия в жидкой среде происходит более медленно. Это утве рждение допускает, что размеры частиц носителя, используемого в жидкостной и газовой хроматографии, должны быть одинаковыми и что поэтому растворенное вещество должно диффундировать одинаково как в жиДко стной, так и в газовой хроматографии. Читатель может справедливо считать это допущение произвольным — его оправданием являются лишь технические ограничения, которые заключаются в том, что для ускорения движения потока жидкости через слой очень мелких частиц требуются очень высокие давления. [c.601]

    Термич. обработка (спекание) — наиболее ответственная операция технологич. процесса получения волокна из ПТФЭ. Она проводится при тсмп-ре (360— 400°С), значительно превышающей томп-ру плавления кристаллитов полимера (330°С). Но и в этих условиях полимер не переходит в вязкотекучее состояние, вследствие чего не происходит полного слияния частиц иолимера с образованием монолитной структуры волокна, как в случае формования волокон из расплава. Для Ф., получаемого спеканием, характерна капиллярно-пористая структура. Спекание осуществляетея при перемещении нити но поверхпости обогреваемого металлйч. ролика или пластины. На этой стадии технологич. процесса нить имеет прочность, близкую к нулю, и усаживается примерно на 20%, что обусловливает сложность конструкции машины для спекания (многоместная машина, оборудованная системой местного отсоса газообразных продуктов пиролиза, среди к-рых имеются НК и др. токсичные вещества). [c.395]


Смотреть страницы где упоминается термин Сложность веществ частиц: [c.218]    [c.60]    [c.314]    [c.12]    [c.293]    [c.419]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.59 , c.218 , c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Сложность ХТС



© 2025 chem21.info Реклама на сайте