Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деполимеризация радикальная

    Скорости радикальной полимеризации и деполимеризации возрастают с температурой. При некоторой темпера- О 180 360 5 (0 туре скорости полимеризации и деполимеризации могут стать равными. Это Рис. 15.1. Изменение в процес-можно установить, например, из изме- се нагревания с пероксидом [c.231]

    Полученное уравнение 5.8 учитывает параллельное протекание реакций деструкции (деградации) и деполимеризации ПИБ на ионных и радикальных активных центрах одновременно, но ие позволяет судить о причинах различия в селективности процесса по выходу мономера в присутствии катализаторов. Селективность действия катализаторов можно количественно оценить по величине 7 - длине кинетической цепи, характеризующей количество мономера, выделяющегося в среднем на один разрыв макромолекулы  [c.241]


    Термическая деструкция — это распад полимера под действием повышенных температур. Общий механизм термораспада полимеров по цепному механизму можно описать на примере карбоцепного полимера. Обобщенная формула карбоцепного полимера может быть изображена в виде -СНг-СНХ-СНг-СНХ- где X — некий гетероатом или некая группа атомов. Распад полимера начинается со стадии инициирования, причем наиболее вероятен распад по закону случая. Тогда в результате разрыва макромолекулы будет получено два радикала (осколки молекул). Такие макрорадикалы могут в дальнейшем подвергаться деполимеризации с образованием мономеров. Распад будет проходить с развитием двух стадий — внутримолекулярной и межмолекулярной передачи цепи, а затем деструкции самой макромолекулы. Такой механизм распада — радикальный — встречается наиболее часто, однако существует еще несколько видов распада — ионный (так распадаются полиформальдегиды и др. гетероцепные молекулы) и молекулярный распады. [c.108]

    При нагревании полиметакрилонитрила идут две конкурирующие реакции деполимеризация и связывание нитрильных групп с образованием лестничного полимера, аналогичного продукту, образующемуся из полиакрилонитрила 137-139 Деполимеризация достигает 100% (при 300 °С), если нагреванию подвергается полимер, приготовленный из тщательно очищенного метакрилонитрила 8. При термическом разложении полиакрилонитрила деполимеризация с получением акрилонитрила не наблюдается. Предполагают, что превращения полиметакрилонитрила в отличие от полиакрилонитрила протекают по радикальному механизму °. [c.392]

    В настоящее время твердо установлено, что большинство реакций деполимеризации протекает по свободно-радикальному механизму. При выделении мономерного звена из полимерной цепи одна из связей, соединяющих это звено с цепью, должна быть разорвана с образованием радикала строения [c.14]

    Однако в настоящее время нет сомнений в том, что эта реакция является радикальной, подобной реакции деполимеризации полиметилметакрилата. при которой образуется радикал, быстро отщепляющий люлекулы мономера и затем стабилизующийся в результате бимолекулярной реакции. В гл. 1 указывалось, что радикал СН.,—СН стабилизован энергией сопряже- [c.56]

    Такая тесная связь реакций сшивания и разрыва цепей — обычное явление в полимерных радикальных реакциях (см. раздел Полимеризация— деполимеризация как обратимый процесс , а также гл. 4). Обычно такая картина наблюдается при конкуренции между распадом отдельных полимерных радикалов и их рекомбинацией друг с другом. Рекомбинация преобладает, когда молекулы компактно упакованы в твердом теле, распад — когда молекулы находятся в растворе. Вопрос о природе реагирующих центров для данного случая будет рассмотрен ниже. [c.74]


    Характеристики термической деструкции полимера, хотя иногда и существуют указания на простой случайный или близкий к нему процесс, лучше всего поддаются интерпретации на основе цепного механизма. Хотя цепной характер деполимеризации установлен уже некоторое время назад [12] и было выявлено существование процессов отрыва водорода с передачей радикальной реакционной способности [49, 81], количественная трактовка термической деполимеризации была дана лишь сравнительно недавно [62, 64, 65]. По-видимому, только с помощью электронных вычислительных машин можно выполнить расчеты для теоретических систем, близко моделирующих поведение большинства известных полимеров. [c.162]

    Природу радикального фрагмента, отщепляющегося в этом процессе инициирования реакции деполимеризации, не определяли, но на основании строения конца цепи (I) можно принять, что наиболее слабыми связями должны быть те, которые помечены звездочкой, так как расщепление- [c.31]

    Тепловое воздействие является одним из наиболее часто встречающихся эксплуатационных условий работы полимерных изделий, поэтому изучение закономерностей изменения структуры и свойств полимеров под тепловым воздействием имеет очень большое значение. Здесь мы рассмотрим действие чисто теплового фактора без участия кислорода, так как объединенное действие обоих факторов логичнее рассматривать при описании окисления полимеров. Тепловым воздействиям подвергаются, например, изделия из полимеров, используемые для работы при высокой температуре в различных аппаратах, где нет доступа кислорода. В зависимости от химического строения молекул в полимерах могут происходить разные изменения. Так, одни полимеры полностью деполимеризуются, т. е. разлагаются до мономера в других при длительном нагревании происходит случайный разрыв связей и образование устойчивых молекул пониженной молекулярной массы, а иногда отщепление низкомолекулярных продуктов за счет реакций боковых групп без существенного изменения исходной молекулярной массы. Такие воздействия приводят также к беспорядочному сшиванию макромолекул и образованию разветвленных и сшитых структур. Скорости как радикальной полимеризации, так и деполимеризации возрастают с температурой. Существует предельная температура, при которой скорости полимеризации и деполимеризации становятся равными. Это можно установить, например, из измерения вязкости растворов полистирола при полимеризации стирола и тепловой обработке полистирола. В какой-то момент значения вязкостей выравниваются, что говорит об одинаковой молекулярной массе продуктов полимеризации и деструкции (рис. 107). [c.181]

    Важный вид термич. деструкции — деполимеризация (цепная реакция отрыва от макромолекулы мономерных звеньев). Деполимеризация полиэтилена, полистирола, полиметилметакрилата и ряда др. полимеров — радикальная реакция, протекаюш ая по след, общей схеме  [c.243]

    Термическое разложение полиацетальдегида происходит по радикальному механизму [1458]. Деполимеризация полиацетальдегида, происходящая вслед за распадом, протекает как реакция первого порядка относительно содержания ацетальде-гида с энергией активации 18,8 ктл моль. [c.51]

    Аналогичным образом происходит радикальная деполимеризация. [c.434]

    Рост цепи, сопровождающийся реакциями передачи. Этот случай частично рассмотрен при обсуждении радикальной деполимеризации в присутствии кислорода и инициированной деструкции. [c.27]

    При проведении полимеризации в жидких кристаллах исключается ряд неблагоприятных кинетических и термодинамических эффектов, связанных с разрушением кристаллической решетки (вырождение однородной анизотропии в неоднородную по всему кристаллу), захватом активных центров дефектами кристалла (прекращение роста цепи), с термодинамической неустойчивостью образующихся макромолекул (приводящей к разрыву основной цепи, к деполимеризации и т. д.). Кроме того, появляется возможность использования обычных радикальных и ионных инициаторов и осуществление контроля скоростей инициирования, стационарной концентрации активных центров и других кинетических параметров. [c.109]

    Подробно исследована прежде всего теломеризация метилметакрилата в метаноле в присутствии метилата натрия [12]. Метилметакрилат и метанол вводились в реакцию в различных соотношениях, метилат натрия в количестве 2,5%- Опыты проводились с исключением влаги и двуокиси углерода в присутствии ингибитора радикальной полимеризации 2,4,6-гр с(диметиламинометил)-фенола. Перед разгонкой реакционная смесь нейтрализовалась кислотой. Если перегонку проводить без удаления алкоголята, то наблюдается деполимеризация и образование циклического тримера. [c.223]

    Ко второй группе реакций деструкции относятся цепные реакции деструкции, т. е. такие, при которых па один акт разрыва полимерной молекулы под действием какого-либо деструктирую-щего фактора приходится несколько актов распада цепей в других местах цепи. Как и цепная полимеризация, цепная деструкция может протекать по радикальному или ионному механизму. Инициирование цепной деструкции происходит под влиянием факторов, вызывающих образование радикалов или иоиов в цепях полимера (т. е. аналогично цепной полимеризации) под действием теплоты, света, излучений высоких энергий, а также химических веществ, распадающихся на свободные радикалы (пероксиды) или ионы. Цепная деполимеризация как частный случай цепной деструкции рассмотрена выше на примере деполимеризации полиметилметакрилата, содержащего двойные связи на концах макромолб1сул. Цепная деструкция протекает также при действии кислорода на полимеры (окислительная деструкция). [c.241]


    ДЕПОЛИМЕРИЗАЦИЯ, разрушение макромолекул в результате последоват. отщепления молекул мономера с их концов, на к-рых находятся активные центры радикальной или ионной природы. Р-ция, обратная полимеризации. Соотношение констант скоростей этих р-ций определяется положением термодинамич. равновесия в системе мономер— [c.151]

    Термическое воздействие выше 620 К приводит к деградации и деполимеризации полимера. Выход мономера в летучих продуктах реакции достигает порядка 20 30% (масс), а выход углеводородов С5 и выше - более 65-70% (масс) при скорости деполимеризации 2,5-3%> мин. (623 К) [12]. В числе получающихся наиболее важных, помимо изобутилена, продуктов следует отметить ди-, три-и тетрамеры изобутилена образующиеся при внутримолекулярной передаче цепи по свободно-радикальному механизму. [c.219]

    В щелочной среде происходит окисление полисахаридов по свободнорадикальному механизму. Целлюлоза, полученная при кислородно-щелочной варке, отличается повышенным содержанием карбонильных и карбоксильных групп. Образование карбонильных групп в положениях С(2), С(з) и С(й) инициирует статистическую деструкцию полисахаридных цепей по механизму реакции р-алкоксиэлимнннрования. Ионизация гидроксильной группы у С(2) (см. 16.3) благоприятствует появлению свободно-радикального центра у этого атома углерода и образованию затем карбонильной группы (схема 11.32). При расщепление гликозидной связи 1- 4 по реакции р-алкокси-элиминирования образуются редуцирующее и кередуцирующее концевые звенья. Появление редуцирующего концевого звена инициирует деполимеризацию, а нередуцирующее звено в форме дикетона либо перегруппировывается в концевое звено карбок-сифуранозида, либо окисляется далее с расщеплением связи С(2)-С(3) и образованием двух карбоксильных групп (см. 21.1). [c.352]

    В ИК-спектрах сополимеров выделены частоты валентных колебаний С—Н бокового радикала 2890—2980 м- полосы в области 1300—1470 и 980, 810 см относятся к деформационным ко- лёбаниям С—Н группы [474 Ь В спектрах всех сополимеров отсутствует характерный для виниловых эфиров набор частот 820, 960, 1200, 1320, 1620 см . Узкая симметричная полоса при 1580 QM-1 свидетельствует о наличии свободных группировок H2= HS. Дополнительные доказательства присутствия зтих группировок получены анализом сулемовым методом. Свободные винилтиогруппы позволяют осуществлять деполимеризацию сополимеров под влиянием радикальных инициаторов (ДАК). [c.166]

    При термодинамической оценке способности мономера полимеризоваться большое знацение имеет так называемая предельная температура полимеризации (см. с. 633), т. е. температура, при которой константы скорости роста цепи и деполимеризации равны. Изобутилен, например, не дает высокомолекулярного соединения в условиях, обычных для радикальной полимеризации, так как существенно ниже нуля. Однако подобная реакция легко протекает при —100°С по катионному механизму . Термодинамическая возможность осуществления радикальной полимеризации этилена, стирола, винилхлорида и метилметакрилата при более высоких температурах, характерных для таких процессов, обусловлена тем, что Т р. этих мономеров равна соответственно 407, 225, 312 и 200 0. [c.232]

    ДЕСТРУКЦИЯ ПОЛИМЕРОВ, разрушение макромолекул под действием тепла, кислорода, света, проникающей радиации, мех. напряжений, биол. и др. факторов. Приводит к уменьшению мол. массы полимера, изменению его строения, физ. и мех. св-в, в результате чего полимер может стать непригодным для практич. использования. В большинстве случаев Д. п. происходит при совместном действии тепла и О2 (термоокислительная Д. п.) по механизму автокаталитич. радикально-цепного окисления, инициируемого радикалами, образующимися при распаде первичных продуктов окисления— гидропероксидов. Д. п. под действием тепла в отсутствии Oi и др. активных сред (термич. Д. п.) обусловлена диссоциацией связей в макромолекуле и гетеролитич, их расщеплением. Термич. Д. п. сопровождается разрушением боковых групп, разрывом макромолекулы по закону случая и образованием мономера (т. е. деполимеризацией), а термоокислительная — также образованием разл. продуктов окисления. [c.152]

    Правильность уравнений (5.42) и (5.43) зависит от того, является ли реакция деполимеризации полисульфонов процессом, точно обратным реакции роста цепи [75]. В то время как последняя реакция, по-видимому, включает присоединение комплекса 1 1, первая может идти путем последовательного отщепления отдельных молекул олефина и двуокиси серы. При этом возможно, что одна из этих стадий определяет скорость реакции. Если это так, то не равно —АН и AS —А5 также не равно А5о, поскольку прямая и обратная реакции имеют различные переходные состояния. Это условие недостаточно осознается при кинетических рассмотрениях предельной температуры, однако тот факт, что анализ экспериментальных данных приводит к разумным выводам, наводит на мысль, что деполимеризация полисульфонов 1 1 является процессом, точно обратным реакции роста. Обширные кинетические исследования с различными полиал-киленсульфонами проводились Дейнтоном, Ивином и их сотрудниками [72—74, 76]. При техмпературах, значительно ниже предельных, реакция обладает всеми общими характеристиками свободно-радикальной полимеризации, хотя точная корреляция с уравнениями, выведенными теоретически, невоз- [c.219]

    При температурах выше 200° ш-полимер становится полностью растворимым. Этот процесс связан главным образом с наличием остаточной перекиси, применявшейся для инициирования полимеризации. Перекись распадается с образованием радикалов, которые отрывают атомы водорода от цепи аналогично реакции внутримолекулярной передачи, а образующийся полимерный радикал диспропорционирует. Такие реакции являются обычными в химии полимеров, в частности они были исследованы на бензольных растворах полиметилметакрилата, поли-этил- -хлоракрилата [35] и полистирола (см. ниже раздел Полимеризация—деполимеризация как обратимый процесс ). В связи с этим интересно отметить, что сополимеры винилиден-хлорида в растворе тетрагидрофурана, не распадающиеся термически по сво-бодно-радикальному механизму, быстро деструктируют иод действием радикалов, образующихся из присутствующих в растворителе примесей перекис-ного типа [36]. [c.58]

    Особенности реакций деполимеризации полиметилметакрилата, полистирола и полиэтилена были интерпретированы на основе представлений, 0 радикальных цепных процессах. Во всех случаях принималось, что реакция идет через одинаковые стадии—инициирование, рост цепи и обрыв, а особенности деполимеризации полистирола и полиэтилена связывали с протеканием реакций внутримолекулярной и межмолекулярной передачи цепи. Симха, Уолл и Блатц [4, 40—421 предложили следующую общую схему реакции деполимеризации. Инициирование рассматривается как разрыв углерод-углеродных связей главной цепи, хотя часто огю может происходить и в результате разрыва слабых связей различного типа внутримолекулярная передача цепи рассматривается как особый случай реакции отрыва мономера от цепи, в результате которой образуются летучие осколки большего размера, чем мономер. [c.64]

    К этому типу реакций относятся, например, процессы цепной радикальной деполимеризации, особенно характерные для полиметакрилатов и полистирола реакции цепного распада по ионному механизму полиоксиметилена и других гетероцепных полимеров. Учитывая, что эти и аналогичные им процессы подробно рассмотрены в хорошр известных монографиях Феттеса [28], Грасси [29], Мадорского [30], Ениколопяна [31], мы не будем в дальнейшем на них останавливаться и упомянули о них в основном из соображений полноты классификации. [c.18]

    Методом инфракрасной спектроскопии было установлено, что при нагревании таких сополимеров образуются ангидридные структуры. Таким образом, если звенья метакриловой кислоты могут принимать участие в процессе радикальной деполимеризации, то присутствие в макромолекуле звеньев ангидрида метакриловой кислоты ингибирует образование мономера нри термодеструкции таких сополимеров. Превращение полиметакриловой кислоты в ангидрид (это рассматривается ниже, в разделе Б-3,в) протекает при температурах более низких, чем температуры разложения сложного эфира или деполимеризации. Поэтому деполимеризация полиметакриловой кислоты может наблюдаться только при фото-инициированном разложении при сравнительно низких температурах, и даже при выполнении этих условий необходимо, чтобы метакриловая кислота входила в состав сополимера. Действительно, реакция деполимеризации чистой полиметакриловой кислоты не инициируется под действием ультрафиолетового излучения. [c.35]

    Поли-а-метилстирол и полиметилметакрилат имеют много общего. Оба эти полимера получены из а,а-дизамещенных мономеров, и данные, приведенные в табл. У1П-2, показывают, что оба они недостаточно устойчивы термически и нри нагревании разрушаются, образуя почти чистые мономеры. Однако в реакциях термического разложения этих полимеров имеются существенные различия, которые, как показали Браун и Уолл [87], являются результатом того, что инициирование процесса радикальной деполимеризации иоли-а-метилстирола протекает по закону случая, а не у концов цепей, как для нолиметакрилатов. Последующие опыты по деполимеризации поли-а-метилстирола в растворе, проведенные Грантом, Вейсом и Бивотером [88], в основном подтвердили данные Брауна и Уолла, которые так же, как и данные Грасси и Мелвилла по термическому распаду полиметилметакрилата, были получены при изучении термодеструкции расплавленного полимера. [c.36]

    Причины наблюдающихся различий могут быть объяснены на основании данных рис. 111-16, из которых видно, что в растворе в нафталине образование летучих продуктов протекает с меньшей скоростью (в тетралине летучие продукты вообще не образуются). Иначе говоря, процесс радикальной цепной деполимеризации замедляется в среде нафталина и полностью ингибируется в среде тетралина. Тетралин, как известно, является ингибитором радикально-ценных реакций вследствие относительно высокой реакционноспособности метиленовых групп, находя- [c.41]

    Щ11ХСЯ в а-полонсениях к ароматическому ядру. Реакционноспособность атомо75 водорода нафталина, вероятно, достаточно велика только для проявления им замедляющего действия на радикально-цепную деполимеризацию. Следует отмстить, однако, что могут быть приведены и другие объяснения наблюдаемых явлений например, можно объяснять замедление или ингибирование реакции деполимеризации в растворах присутствием в них следов ингибиторов, а также большей подвижностью деполимери-зующихся макромолекулярных радикалов в растворах, что способствует [c.42]

    При термодеструкции полистирола летучие продукты реакции образуются в молярных количествах, соответствующих соотношению мономер димер тример тетрамер приблизительно 40 10 8 1. В соответствии с механизмом внутримолекулярной передачи цепи (раздел Б-2,б) переходные состояния для образования димера, тримера и тетрамера должны представлять собой соответственно четырех-, шести- и восьмичленные циклы. На основании этого можно предположить, что тример долн ен был бы образовываться при деполимеризации в гораздо большем количестве, чем димер или тетрамер. Однако факт большего содержания димера в летучих продуктах термодеструкции но сравнению с содержанием тримера может рассматриваться как доказательство того, что основным фактором, ускоряющим протекание процессов внутримолекулярной передачи цени, является расстояние радикального конца цепи от того центра, у которого происходит передача цепи. Иначе говоря, чем ближе к концу макромолекулы, на котором образуется радикал, находится та часть этой же молекулы, у которой происходит передача цепи, тем больше возможность передачи энергии между образующимися и разрывающимися связями, поэтому энергетические требования, выполнение которых необходимо для того, чтобы могла осуществиться такая реакция, гораздо меньше, чем требования, необходимые для протекания межмолекулярного процесса. [c.44]

    На основании общей теории радикальной деполимеризации можно сделать вывод, что расщепление цепей по закону случая является результатом преобладания межмолекулярной передачи цепи вместо образования летучих продуктов по реакции, обратной реакции роста цепи, а также результатом внутримолекулярной передачи цепи. Уолл и Страус, основываясь на этом, считают, что отсутствие максимума скорости при термоде- [c.51]

    Было показано [102—106], что полиметакрилонитрил при термодеструкции может распадаться в трех различных направлениях. Такими процессами термодеструкции являются кетениминный распад реакции, приводящие к появлению у полимера окраски, и, наконец, радикальная деполимеризация эти процессы изучались соответственно при температурах 20—120°, 120—220° и выше 220°. За каждый из этих процессов ответственны определенные, отличающиеся одна от другой аномалии структуры полимера, поэтому процесс термодеструкции полиметакрилонитрила представляет собой наглядный пример влияния структурных аномалий на природу и направление процессов деструкции полимеров. Кетениминный распад и радикальная деполимеризация относятся к истинным процессам деполимеризации, тогда как реакции, приводящие к появлению окраски полимера, не являются процессами расщепления цепей, а представляют собой реакции заместителей. Последние реакции будут рассмотрены ниже. [c.52]

    Ко второй группе реакций деструкции относятся цепные реакции деструкции, т. е. такие, при которых на один акт разрыва полимерной молекулы под действием какого-либо деструктирующего фактора приходится несколько актов распада цепей в других местах цепи. Как и цепная полимеризация, цепная деструкция может протекать по радикальному или ионному механизму. Инициирование цепной деструкции происходит под влиянием факторов, вызывающих образование радикалов или ионов в ценях полимера (т. е. аналогично цепной полимеризации) под действием тепла, света, излучений высоких энергий, а также химических веществ, распадающихся на свободные радикалы (перекиси) или ионы. Частным случаем цепной деструкции является цепная деполимеризация, протекающая путем последовательного отщепления мономерных звеньев от, концо.в молекулярных цепей и приводящая в итоге к полному переходу полимера в мономер. При этом молекулярная масса полимера последовательно уменьшается. Так протекает, например, термическая деструкция полиметилметакрилата, содержащего на концах цепей двойные связи (такой продукт образуется при свободнорадикальной полимеризации метилметакрилата при обрыве цепи путем диспропорционирования)  [c.180]

    Важный внд термич. деструкции — деполимеризация (цепная )еакции отрыва от макромолекулы мономерных 5вен[.ев). Деиолнмерп, ация полиэтилена, полистирола, полиметилметакрилата и ряда др. по.пимеров — радикальная реакция, протекающая по след, общей схеме  [c.243]

    Т. обр., термостойкость полимеров опр Зделяется не только прочностью связей в макромолекуле, но и наличием (или отсутствием) условий, способствующих протеканию ценных свободно радикальных ироцессов. Все факторы, затрудняющие осуществление таких процессов, будут приводить к повышению термостойкости. Так, введение в макромолеку.лы полиметилметакрилата небольшого количества акрилонитрильных звеньев, отщепление к-рых характеризуется большей энергией активации, приводит к заметному сни кению скорости деполимеризации. На скорость Т. д. существенное влияние оказывает цепное строение иолимерных соединений, поскольку отрыв атома водорода от макромолекулы, сопровождающийся переходом соответствующего участка цепи от тетраэдрич. конфигурации к плоской, связан с перемещением полимерных цепочек, что неизбежно должно привести к повышению энергии активации реакции и снижению ее скорости по сравнению со скоростью аналогичной реакции в случае низкомолекулярных соединений. По-видимому, один из основных факторов, определяющих высокую термостойкость застеклованных и кристаллич. пол1 меров,— невозможность эффективного развития ценЕых процессов из-за высокого межмолекулярного взаимодействия, затрудняющ( го перемещение сегментов макромолекулы. Существенную роль в этом случаэ играет также и снижение скорости инициирования вследствие рекомбинации в клетке первичных радикалов, образовавшихся прп разрыве связей С—С в макромолекуле (см. Клетки э(ффект). [c.302]

    Натта, Пино, Маццанти [558] установили, что изотактические полимеры с высоким молекулярным весом сохраняют регулярность структуры даже после продолжительной термической обработки с энергичными катализаторами изомеризации (А1С1з), но подвергаются быстрой деполимеризации в реакциях, протекающих по радикальному механизму (окисление в присутствии перекисей, хлорирование элементарным хлором и т. д.) термическая деполимеризация под действием ионных катализаторов происходит гораздо медленнее. Хлорирование полипропилена приводит к понижению кристалличности, которая полностью исчезает при введении в него 30% хлора. [c.197]

    Образовавшийся радикал СРз может отрывать атом водорода от ближайшей полимерной молекулы с образованием фтороформа и полимерного радикала типа II, инициируя таким образом радикальный процесс разложения. Распад радикала II в р-положении может приводить к реакциям деполимеризации, межмолекулярной и внутримолекулярной передачи цепи, в результате которых образуются экспериментально наблюдающиеся продукты разложения (крупные фрагменты полимерных цепей, фтористый водород, фто-роформ, винилиденфторид и другие низкомолекулярные фторугле-водороды). [c.296]

    МАКРОРАДИКАЛЫ СВОБОДНЫЕ (нолимерпые радикалы) — полимерные цепи, имеющие один или несколько неспарепных электронов последние могут быть в середине или конце основной цепи, если полимер не разветвлен, или в боковой цепи. М. с. могут образовываться двумя способами 1) иа низкомоле-кулярных соединений мономеров) путем радикальной полимеризации в результате присоединения исходного инициирующего радикала свободного к двойной связи молекулы мономера с образованием свободного радикала большего размера, к-рый, в свою очередь, по аналогичной схеме реагирует с другой молекулой мономера 2) из полимеров — при действии различных деструктирующих факторов (см. Деструкция полимеров), в результате действия к-рых происходит разрыв основной полимерной цепи, отрыв боковых групп, атомов водорода или мономерных звеньев (см. Деполимеризация) с образованием М. с. Эти процессы могут обусловливаться как механохимич. реакциями, имеющими место, напр., при вальцевании полимеров, действии на них ультразвука (см. Механохимия полимеров), так и действием на полимеры ионизирующих излучений (радиационная деструкция), УФ-лучей, тепла, кислорода (термич. и термоокислительная деструкция) и нек-рых других факторов. [c.519]


Смотреть страницы где упоминается термин Деполимеризация радикальная: [c.240]    [c.62]    [c.39]    [c.52]    [c.113]    [c.532]    [c.394]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.52 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Деполимеризация

Деполимеризация при радикальной полимеризации



© 2025 chem21.info Реклама на сайте