Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы механизм действия среды

    Механизм моющего действия сложен и до конца еще не изучен. Накопленный к настоящему времени экспериментальный материал позволяет предположить, что энергетическая сторона данного процесса характеризуется особенностями взаимодействия в системе воздух (кислород)- -смазочная среда-f металл. К основным факторам, определяющим уровень моющих свойств, [c.210]


    По механизму действия грунты бывают следующих видов изолирующие, целью нанесения которых является механическая и электрическая изоляция защищаемого изделия от окружающей среды. В их состав входят нейтральные пигменты (окислы железа, цинковые и титановые белила) изолирующая способность таких грунтов определяется свойствами пленкообразующего материала  [c.144]

    Изучено влияние различных факторов на механизм хрупкого разрушения напряженного линейного и разветвленного полиэтилена в поверхностно-активных средах 026. Определено время, необходимое для разрыва под действием подвешенного груза, характер растрескивания, напряжения, возникающие в образце (радиальное, нормальное, сдвиговое). Показано, что время, необходимое для разрушения образца, зависит от размеров отдельных кристаллов (в крупных сферолитах хрупкость больше), термообработки и предварительной ориентации материала повышение температуры среды и концентрации поверхностно-активного слоя сокращает время. [c.276]

    Механизм действия неметаллических защитных покрытий состоит, главным образом, в отделении поверхности металла или какого-то другого конструкционного материала от коррозионной среды. Лишь некоторые виды лакокрасочных покрытий (содержащие цинковую или алюминиевую пыль, пассивирующие вещества, например окислы свинца, хромат цинка) предохраняют металлические поверхности от коррозии благодаря протекторному или пассивирующему действию. [c.55]

    В монографии обобщен большой фактический материал по стойкости эластомеров к различным физическим и химическим воздействиям атмосферным условиям, высоким и низким температурам, жидким агрессивным средам, ионизирующей радиации, вакууму, высоким давлениям. Даны общие представления о механизме действия каждого фактора, описаны способы увеличения стойкости эластомеров и методы испытаний. Большое-внимание уделено вопросам прогнозирования изменений свойств эластомеров в условиях эксплуатации. [c.2]

    Перечисленные работы следует отнести к начальному этану исследований влияния металлических расплавов на прочность более тугоплавких металлов. Был накоплен обширный экспериментальный материал, однако полученные результаты не могли быть использованы для построения общей теории рассматриваемых явлений, поскольку опыты проводились при самых различных, трудно сопоставимых условиях, а объектами исследования служили главным образом сложные но составу и структуре сплавы. Вследствие этого вопрос о механизме действия расплавленных металлических сред и о специфических условиях проявления эффекта остался нерешенным. [c.143]


    Материал расположен аналогично тому, как это было в книге Остатки пестицидов (инсектициды) . За вводной главой, в которой, в частности, кратко рассматривается экономическое значение сорняков и борьбы с ними, официальные предписания по вопросу регулирования и контроля за применением гербицидов, механизм действия, токсикология и побочное действие гербицидов, следует специальный раздел, посвященный отдельным действующим началам. Рассматриваются их химические, физические и токсикологические свойства, их применение, поведение в окружающей среде, их нежелательное побочное действие и, наконец, уровень остатков в продуктах урожая. Особое значение при рассмотрении действующих начал придается вопросу химических превращений гербицидов в растении, почве и воде, в организме животного и человека. [c.8]

    В целом механизм разрушения полимерных покрытий в результате кавитационной эрозии, сопровождаемой вибрацией, пульсацией и динамическими ударами, обусловлен сложнонапряженным состоянием материала покрытия, неравномерным перераспределением внутренних напряжений, усталостными изменениями и ухудшением адгезионных свойств. Для эффективной и длительной защиты бетона необходимо подбирать состав покрытия с оптимальным содержанием всех компонентов и учетом кроме кавитационного воздействия температурных колебаний, влияния действующих сред и адгезионных свойств полимерраствора. [c.152]

    Генетическая инженерия эту проблему решает довольно просто. Достаточно перенести в генетический материал растения нужный ген от устойчивых к гербицидам микроорганизмов. Ученые, изучая механизм действия гербицидов, выяснили, что чаще всего они воздействуют на один какой-либо важный для метаболизма растений фермент, связываясь с ним и таким образом ослабляя его активность. Это приводит к серьезным нарушениям роста и развития обработанных гербицидом растений, и они погибают. Среди бактерий легко можно обнаружить устойчивые генотипы, высевая их на питательную среду, в которую добавляют гербицид. [c.44]

    Основной причиной опасности процессов центрифугирования является возможный разрыв барабана под действием центробежной силы. При нормальных скоростях разрыв барабана может произойти вследствие износа материала или деталей вращающего механизма от многолетней работы без соответствующего ремонта, нарушения гуммировки и другого защитного покрытия при работе с агрессивными средами и коррозии металла. Прочность, особенно в местах соединения, часто настолько уменьшается, что барабан не выдерживает напряжения, на которое рассчитан. [c.160]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Подготовка третьего издания книги повлекла за собой основательный пересмотр и реорганизацию материала предыдущего издания. В настоящей книге он сгруппирован в четыре основных раздела. Раздел I посвящен структурным аспектам развития на разных уровнях организации, что создает основу для понимания биохимических и физиологических подходов к проблеме, которые составляют содержание последующих разделов. В разделе П рассмотрены основные классы фитогормонов и их роль в эндогенной регуляции развития. Материал этого раздела подвергся значительной переработке и реорганизации, а главы, посвященные биохимии и механизмам действия фитогормонов, значительно расширены. Раздел III, касающийся различных аспектов влияния внешних условий иа развитие, пополнен новыми данными, а глава о ростовых движениях практически написана заново. И наконец, в разделе IV мы обсуждаем более общие проблемы развития, в частности его регуляцию на молекулярном уровне. Поскольку развитие, по существу, представляет собой процесс, связанный с дифференциальной активностью генов, в начале главы мы даем краткий обзор современного состояния знаний о структуре генома растений и о регуляции экспрессии генов у эукариот, хотя пока еще нельзя прямо связать эту информацию с огромным материалом, полученным в области развития растений при использоваиии других подходов. Несмотря иа то, что каждый из четырех разделов книги вносит свой вклад в наше понимание развития, в настоящее время еще невозможно объединить эти разные стороны наших знаний в единое целое. Совершенно очевидно, что фитогормоны играют жизиеиио важную роль как в процессах роста и диффереицировки клеток и тканей, так и в ответных реакциях растений иа воздействие факторов окружающей среды, но до тех пор пока мы не выясним механизм их действия иа молекулярном и субклеточном уровнях, мы не сможем полностью понять их роль в развитии. Более того, хотя первостепенная роль гормонов в регуляции и координации роста не вызывает сомнений, степень участия гормонов в регуляции процессов днфференцировки пока не ясна, так как каждый из крупных классов гормонов имеет широкий [c.7]


    Q > с Условное обозначение 1 I Ь >. ч Температура рабочей среды, С Способ действия Материал защитного покрытия Типоразмер исполнительного механизма Масса, кг [c.292]

    При эксплуатации трещина может расти под действием циклических нагрузок, вследствие влияния коррозионной среды или совместного влияния механической нагрузки и коррозионной среды. В этом случае трещина дорастает (медленно) до критических размеров, а затем быстро (за доли секунд) происходит окончательное разрушение. Несмотря на то что при этом в детали может не быть заметной макропластическая деформация, долом (нестабильная стадия распространения трещины) может происходить по хрупкому, вязкому или квазихрупкому механизмам. Практическое применение механик разрушения потребовало разработки силовых, деформационных и энергетических критериев разрушения, которые используют в зависимости от материала, условий эксплуатации и вида разрушения, [c.86]

    Широкое применение находит в ней лабораторное и численное моделирование химических процессов в геосферах. Лабораторное моделирование позволяет выявить механизмы превращений отдельных соединений или групп соединений под действием как природных, так и антропогенных факторов. Численное моделирование имеет целью получение сценариев возможных изменений в окружающей среде на разных уровнях - от локального до глобального. Развитие и совершенствование таких сценариев должны давать исходный материал для разработки научно обоснованной стратегии охраны среды обитания и биосферы в целом от непреднамеренных нарушений химических равновесий под влиянием человеческой деятельности. [c.6]

    Принципиальной особенностью, отличающей зернистую фазу от действительной твердой фазы, является способность сыпучей среды к текучести. Это приводит к появлению внутреннего трения между частицами среды. Механизмы текучести сыпучей и жидкой фаз совершенно различны, что обусловлено значительной разницей свойств обеих фаз. Зернистые материалы, в отличие от жидкости, могут претерпевать напряжение сдвига также в состоянии покоя — статический коэффициент внутреннего трения для сыпучей среды отличается от нуля. Кроме того, характерным свойством некоторых зернистых материалов является спайность, т. е. способность под действием нагрузки, сохраняя свою форму, образовывать прочные своды и вертикальные стены. Наконец, напряжения сдвига в текущей сыпучей среде можно рассматривать как независимые от скорости сдвига (они зависят от давления, действующего внутри материала). В жидкой фазе обратная взаимосвязь напряжение сдвига не зависит от скорости сдвига, но находится в зависимости от давления. [c.342]

    HIV-1. Практически эта задача оказалась чрезвычайно сложной и на сегодняшний день нерешенной Среди требований, предъявляемых к свойствам ингибиторов, главное и самое трудновыполнимое касается избирательности их действия. Ингибиторы, обладающие терапевтическим эффектом, должны быть прежде всего высокоспецифичны до такой степени, чтобы дезактивируя ретровирусную протеиназу, не нарушать нормального функционирования как аспартатных, так и других протеолитических ферментов клетки-хозяина. Для целенаправленного поиска ингибиторов, удовлетворяющих этому требованию, необходимо располагать количественными данными о всех стадиях катализа вирусной протеиназы и механизмах функционирования протеиназ инфицированной клетки, а также владеть методом решения обратной структурной задачи, те конструирования химического строения ингибитора по заданной пространственной форме. Вероятность обнаружения таких ингибиторов экспериментальным или эмпирическим путем мала. Помимо того, что этот путь ненадежен, он чрезвычайно дорогостоящ и продолжителен На несовершенство используемого подхода, допускающего исследование только в направлении от функции к структуре, указывают разработанные схемы катализа аспартатных протеиназ. Они интересны в том отношении, что исходят по существу из одного и того же экспериментального материала, включающего данные рентгеноструктурного анализа и результаты многочисленных биофизических и биохимических исследований, а также базируются на одинаковых традиционных, теоретических представлениях о природе биокатализа. При единстве исходного опытного материала, теоретической основы и в рамках одного подхода были предложены пять различных стереохимических моделей функционирования аспартатных протеиназ, которых, впрочем, могло быть и больше [363-366]. [c.546]

    Из многих известных механизмов износа полиамидов в процессе эксплуатации два являются наиболее важными. Это абразивный и адгезионный износ. При использовании полиамидов в непрерывно скользящих деталях существенное значение приобретает также усталостный износ, в который переходит абразивный износ по мере сглаживания трущихся поверхностей. При этом возникают локальные нарушения сплошности материала в результате действия циклических напряжений. Кавитационный (или эрозионный) износ может встречаться в деталях, двигающихся с высокой скоростью в жидкой среде. [c.126]

    Для условий эксплуатации конструкционных сталей, характеризующихся наличием коррозионной среды, при повышенных температурах и давлениях может иметь место дополнительное резкое снижение пластичности до значений порядка - 10 2% [82, 83]. При равных значениях накопленной в процессе нагружения пластической деформации в силу значительного уменьшения критической деформации располагаемой пластичности значение составляющей накопленного квазистатического повреждения (1 , согласно уравнению (5.4), может быть многократно повышено, и это внесет соответствующий вклад в снижение долговечности материала. Этот же механизм дополнительного повреждения от действия коррозионной среды и повышенных температур по параметру времени нагружения оказывает соответствующее влияние на накопление и усталостной составляющей повреждения. При этом односторонне накопленная деформация и амплитудное значение циклической упругопластической деформации будут также зависеть от этих факторов, что скажется на снижении накопленного повреждения. Вместе с тем ведущей в общем накопленном повреждении останется роль снижения пластичности, входящей в знаменатели зависимо- [c.156]

    Хотя механизм огнетушащего действия порошков еще недостаточно изучен, ясно, что основную роль иг рает гетерогенная рекомбинация радикалов и атомарных частиц пламени на поверхности порошка, что при водит к обрыву цепных реакций горения Поэтому при уменьшении размеров частиц порошка, то есть при уве личении его удельной поверхности возрастает и его огнетушащая способность Помимо ингибирующего действия высокая эффективность порошковых соста ВОВ объясняется совместным влиянием таких факторов, как разбавление горючей среды газообразными продуктами разложения порошка, охлаждение зоны горения, изоляция поверхности горящего материала от кислорода воздуха [c.49]

    Таким образом, при одновременном действии механических напряжений и жидких сред характер и механизм разрушения материала может не только количественно, но и качественно отличаться от разрушения в агрессивных средах в отсутствие напряженного состояния. Такие эффекты, как коррозионное растрескивание металлов, охрупчивание стекла, озонное растрескивание резин, появление хрупкого растрескивания при повышенных температурах у ПЭ в растворах поверхностно-акти-вных веществ возникают при одновременном воздействии механических напряжений и среды. [c.121]

    По механизму воздействия на материал в процессе разрушения жидкие среды можно подразделить на четыре группы химически взаимодействуюш,ие с полимером, активные растворители (пластификаторы), поверхностно-активные, смешанного действия. Химически активные среды и растворители взаимодействуют и с ненапряженным полимером. Поверхностно-активное действие проявляется в основном в напряженных образцах, в отсутствие механических напряжений в образце эти среды практически инактивны. Рассмотрим несколько примеров, которые позволяют отметить особенности проявления природы жидкости в обш,ем кинетическом процессе разрушения полимеров при динамических испытаниях. [c.185]

    К настоящему времени более изучено воздействие физически активных сред. Физически активные среды могут как адсорбироваться на поверхности, так и сорбироваться объёмом полимерного материала. Адсорбция компонентов коррозионной среды приводит к изменению поверхностной энергии на фанице раздела фаз полимер - среда. К поверхностно - активным веществам (ПАВ) относят большинство органических растворимых в воде соединений кислоты, их соли, спирты, эфиры, амины, белки, большинство водных растворов сильных электролитов. Основные представления о механизме действия ПАВ на прочность твёрдых тел были даны Ребиндером. ПАВ, уменьшая свободную поверхностную энергию на фанице раздела фаз полимер - среда, облегчают зарождение и развитие поверхностных дефектов. Молекулы ПАВ проникают в устья микротрещин и действуют расклиниваюгце. Адсорбционный эффект может быть выявлен в чистом виде для полимеров, которые практически не набухают в физически активных средах (например, полистирол в водных растворах спиртов). [c.111]

    Приведенная на рис. 4 схема включает также процессы электрохимической коррозии, водородного износа /см. разделы 1,2/. Эта схема отражает адсорбционно-коррозионно-усталостную природу разрушения и износа металла в смазочной среде и является феноменологическим описанием механизма этого разрушения и износа с учетом факторов, определяемых составом смазочной среды. В зависимости от условий эксплуатации, характера нагрузки, материала и конструкции конкретного узла машины роль указанных на схеме факторов может быть различной. Вместе с тем значимость каждого из указанных факторов представляется достаточной для включения в общую схему и рассмотрения применительно к конкретному случаю разработки, анализа механизма действия и применения смазочных материалов, эффективных в условиях коррозионно-ус-талостного износа. [c.35]

    Полное токсикологич. исследование включает обязательное проведение хронич. эксперимента на животных, продолжительность к-рого определяется назначением материала, однако должна быть не менее 3 мес. При проведении такого эксперимента рекомендуется регистрировать у животных чувствительные к интоксикации показатели функционального состояния организма (ге-матологич., физиологич., биохимич. и др.) с учетом предполагаемого механизма действия вещества. Обязательны макро- и микроскопич. патологоанатомич. исследования. При необходимости изучается возможное влияние веществ на функции организма, ответственные за воспроизведение и развитие потомства, влияние веществ непосредственно на плод. В специальных экспериментах определяется степень опасности возникновения аллергич. реакций, злокачественных новообразований (бластомогенное действие), нежелательных изменений наследственности (мутагенное действие) и др. отдаленных последствий. Токсикологич. исследования особенно важны в тех случаях, когда тип и количество веществ, мигрирующих из материала или изделия, невозможно определить химич. путем. В организм животных вводят сам полимерный материал, напр, путем вшивания (имплантации) или скармливания (в этом,случае материал предварительно измельчают), а также вытяжки из материала в модельные среды. Результаты исследований подвергаются обязательной статистич. обработке. [c.180]

    Не удивительно поэтому, что за прошедшие после открытия комплексных металлоорганических катализаторов 20 лет появилось огромное количество работ советских и зарубежных авторов, посвященных изучению кинетики процессов полимеризации, механизма действия каталитических систем и свойств образующихся продуктов. Общее число работ, посвященных различным аспектам комплексного катализа, опубликованных в научных журналах и в патентной литературе всего мира, исчисляется к настоящему времени несколькими десятками тысяч. Некоторые из них обобщены в монографиях. Первым обобщением материала по анионно-координационной полимеризации является книга Н. Гейлорда и Г. Марка Линейные и стереорегулярные полимеры , в которой отражены статьи и патенты, появившиеся до начала марта 1959 г. В этой книге с исчерпывающей полнотой изложены все ранние работы в этой области химии. Впоследствии было опубликовано множество работ по различным вопросам полимеризации на комплексных металлоорганических катализаторах, среди которых имеется несколько монографий и крупных обзоров. Следует отметить особенно удачные — сборник обзоров Кристаллические полиолефины под ред. Р. А. Раффа и К. В. Дака, книгу Амброжа и соавторов Полипропилен , книгу Н. Н. Корнеева, А. Ф. Попова, Б. А. Кренцеля Комплексные металлоорганические катализаторы , сборник обзоров Полиэтилен и другие полиолефины . [c.7]

    Механизм действия. Трудности, связанные с механической обработкой, возрастают с увеличением твердости металла. Поэтому предпочтительнее работать с мягкими материалами и придавать им окончательную твердость после обработки. Детали из сплава черных металлов нагревают до 750—1100°С в зависимости от состава материала, но обязательно на 30—50 °С выше температуры аустенитного превращения (а — 7). При закалке образуется мартенсит, содержание которого в структуре можно регулировать интенсивностью теплоотвода при погружении детали в закалочную жидкость [11.228]. Скорость охлаждения определяется закалочной средой и существенно влияет на свойства детали. Применяя соответствующую закалочную среду, скорость охлаждения можно варьировать от 2 до 3000 °С/с. Диапазоны интенсивности охлаждения в различных закалочных средах частично перекрываются и к тому же могут быть скорректированы (рис. 168). Так, скорость охлаждения в расплаве солей может быть снижена с 3000 до 700 °С/с увеличением коТнцентрации соли скорости охлаждения в органических средах можно изменять от 30 до 800 °С/с. Минеральные масла и эмульсии на их основе попадают в этот диапазон, типичный для многих режимов закалки. Когда температура закаливаемой детали выше температуры кипения или разложения закалочной жидкости, процесс протекает в три.стадии (рис. 169 и 170) [11.2291  [c.396]

    Среди сложных механизмов действия примесей, препятствующих росту зерен, возможны прямое ограничение двин ения атомов материала основы, замедление движения дислокаций окружающими примесями и образование примесями второй фазы, которая нренятствует движению границ зерен. Последний из этих механизмов был идентифицирован, например, в вольфраме. Нет сомнения, что использование материалов высокой чистоты в такого [c.46]

    В реакциях окисления молекулярным кислородом, как и в других цеиных процессах, обрыв реакционной цепи осуществляется не только путем рекомбинации радикалов, но и вследствие их взаимодействия с ингибиторами. Механизм действия значительной группы ингибиторов удовлетворительно объясняется теорией цепных реакций И. И. Семенова, согласно которой обрыв цепи ингибиторами можно рассматривать как частный случай передачи цепи с образованием менее активного свободного радикала [1, 2]. Такой механизм вполне приемлем для ингибиторов, в молекуле которых содержится подвижный атом водорода. Однако имеющийся в литературе опытный материал показывает, что ингибиторами окисления молекулярным кислородом могут служить вещества самой различной химической природы (фенолы, амины, аминофенолы, органические и минеральные кислоты, вода, хиноны, сульфиды и др.). Кроме того, нужно учитывать, что в реальных условиях автоокислепия углеводородов в реакционной среде возможно одновременное существование не только свободных радикалов типа R, R0, ROO, НО, Н00 , но и неустойчивых перекисных соединений типа ROOR, которые в свою очередь могут непосредственно реагировать с молекулами ингибитора. [c.94]

    Полиэтилен, как и другие пластмассы, может растрескиваться под влиянием среды (воздух, растворители, масла) и приложенного напряжения. Исследования [147] показали, что при постоянном напряжении время до начала образования трещин и последующего разрушения зависит от величины напряжения. Если оно не вызывает развития деформации более 3,5% при 20° С (критического растяжения), то растрескивания не наблюдается. При более высокой деформации происходит растрескивание полиэтилена, сопровождающееся образованием, развитием и соединением друг с другом отдельных микротрещин. Механизм возникновения трещин неясен, но растрескивание обусловлено теми дефектами, которые создаются при переработке материала в изделия. По-видимому, образование трещин проходит через два этапа. Первый этап — переход материала в состояние, при котором медленно, в зависимости от температуры, напря-н ения, плотности полиэтилена и формы образца, образуются трещины второй — быстрое разрастание трещин, вызываемое действием среды. [c.44]

    Мутации, т. е. наследуемые изменения в генетическом материале, представляют собой важное биологическое явление. Будучи первоисточником всех биологических изменений, они наряду с механизмами переноса генов обусловливают генетическую изменчивость, поставляющую материал для эволюции. Мутации и индукция новых мутаций мутагенами представляют собой ценный инструмент в генетических и биохимических исследованиях. Во-первых, изменения, которые вызывает мутация в определенном гене, позволяют не только идентифицировать этот ген, но и точно указать его место в хромосоме с помощью метода генетического картирования. Во-вторых, анализ мутантных щтаммов, у которых нарущены различные этапы сложной цепи биохимических процессов, может вскрыть детали организации генетического и биохимического аппаратов. В-третьих, знание механизма действия различных мутагенов может помочь в установлении корреляций между мутагенным и канцерогенным действием множества факторов окружающей среды, таких, как химические агенты, радиоактивное излучение и другие физические факторы. [c.8]

    Механизм нагружения, который не рассматривается в данной монографии, представляет собой деформирование цеппых молекул под действием силы инерции, т. е. через распространяющиеся волны напряжения. Хрупкие термопластичные материалы (ПС, сополимер стирола с акрилонитрилом, ПММА) при скоростях одноосной деформации менее 3 м/с или скоростях деформирования менее 50 с ведут себя классически [30]. В данной области при увеличении скорости деформирования увеличиваются прочностные свойства и уменьшается удлинение. При скоростях деформирования 50—66 с происходит переход к разрушению, вызванному волной напряжения, которая сопровождается десятикратным уменьшением кажущейся работоспособности материала [30]. Скелтон и др. [40] изучили полимеры ПА-6, ПЭТФ и ароматический полиамид (Номекс). Данные волокна также ведут себя классически при температурах окружающей среды и в интервале значений скоростей нагружения 0,01 — 140 с . При температурах —67 и —196°С получено уменьшение прочности, начиная со скорости нагружения 30 с".  [c.146]

    Средах, на основе справочного материала был правильным, конструктор или проектировщик должен знать основы теории коррозии и защиты металлов. Поэтому не случайно, что Справочник по коррозии болгарских авторов X. Рачева и С. Стефановой открывается разделом Коррозия металлов , в котором в доступной форме изложены основные положения теории коррозии и защиты металлов. Рассмотрение теоретических положений химической и электрохимической коррозии металлов, а также отдельных видов коррозии (атмосферной, подземной и др.) завершается изложением методов защиты. Большое внимание уделено ингибиторам коррозии, механизму их защитного действия и областям применения. В конце раздела дано описание коррозионного поведения основных металлов в наиболее характерных коррозионных средах. [c.6]

    Широкую формулировку общих модельных представлений следует начать с обсул<дения взимодействия процессов водородного охрупчивания и анодного растворения. Анодное растворение, протекает ли оно как процесс, определяемый конкуренцией между локальным разрушением пленки и репассивацией [99] (как впервые предложил Логан [321]), или как процесс, облегченный податливостью материала в вершине трещины (согласно формулировке Хоара [322]), или же ио какому-либо другому локализованному механизму, является хорошо известным явлением в КР. В некоторых системах (нанример, в медных силавах) процесс типа растворения является, ио-видимому, единственным действующим фактором [323, 324]. С другой стороны, во всех рассмотренных системах сплавов в определенных внешних условиях может происходить растрескивание, вызванное поглощением водорода. Из этого можно заключить, что даже несмотря на то, что для протекания КР обычно требуется довольно специфическое сочетание состава и микроструктуры сплава, состава среды и некоторых других условий (таких как определенная область потенциалов), в соответствующим образом выбранной системе растрескивание может быть вызвано как водородом, так и процессами растворения, при условии необходимой модификации среды (нанример, приложенного потенциала). [c.133]

    Движение дисперсных материалов в вертикальном потоке обычно рассчитывается как простая совокупность движения отдельно взятых частиц, скорость каждой из которых определяется только действием сил тяжести, инерции и сопротивления среды [59, 77, 109]. Влиянием же взаи м-ных соударений на скорость частиц как в moho-, так и в полидисперсных системах пренебрегают и в лучшем случае учитывают лишь тормозящее воздействие ударов о стенки. В действительности механизм движения полидисперсного материала в потоке газа в значительной степени определяется соударениями между частицами различного размера. [c.161]

    Антикоррозионные присадки предохраняют от коррозии узлы и детали машин и механизмов, выполненные преим, из цветных металлов, особенно при повыш. т-рах. Ингибиторы коррозии представляют собой в осн. полярные ПАВ. Механизм их действия заключается в образовании иа разл. пов-стях защитных комплексов с каталитически активными соед. металлов, накапливающихся в объеме смазочного материала в результате хим. растворения, либо стабильных оксидных, гидроксидных и др. пленок, устойчивых к воздействию агрессивных сред. В качестве ингнбнтороп кислотной коррозии используют бензотриазол, осерненные минер, масла, сульфиды алкилфеиолов, производные тиофенолов, три- [c.90]

    Небольшие червячные машины с Q= (50—100) кг/ч имеют низкий термический коэффициент полезного действия вследствие больших потерь тепла в окружающую среду. В то же время мощные (автогенные) машины характеризуются значительно лучшим энергетическим балансом, так как необходимое тепло генерируется в самом материале. Однако в автогенных машинах не исключена возможность перегрева материала при его интенсивной вихревой конвекции в канале червяка. Поэтому, вообще говоря, необходимо зонное регулирование температуры с подводом извне и отводом тепла наружу. При зонном регулировании важно также учитывать (особенно при переработке резиновых смесей и для любых пла-стицирующих экструдеров) температурные зависимости коэффициентов трения материала о червяк и корпус. Отсутствие всеобъемлющей теории экструзии вынуждает использовать для исследования процесса статистические методы регрессионного анализа и экстремального планирования многофакторного эксперимента [9—12]. Этот подход, однако, позволяя решать конкретные частные задачи, не вскрывает механизма процессов переработки. [c.248]

    Число разрушений конструкций из титана и его сплавов, произошедших по вине коррозионного растрескивания, к настояшему времени достаточно мало. Однако в ряде сред и условий эксплуатации титановые сплавы оказываются склонны к коррозионному растрескиванию. К основным механизмам коррозионного растрескивания титановых сплавов относятся солевое высокотемпературное растрескивание и растрескивание при комнатной температуре. Растрескивание при комнатной температуре в основном происходит в водных и метанольных средах, содержащих хлориды при прямом контакте сплава с рядом жидких и твердых металлов, газов в ряде других сред, например, тетраоксиде диазота — N2O4, дымящей азотной кислоте и т. п. Солевое растрескивание происходит под действием внешних или внутренних напряжений при непосредственном контакте материала с твердыми хлоридами в присутствии кислорода и водяного пара при температурах выше 250 °С. Такое растрескивание носит преимущественно межкристаллитный характер. В зависимости от степени коррозионного воздействия на титановые сплавы, хлориды по степени интенсивности воздействия можно распределить следующим образом  [c.78]

    Изменение свойств материала может происходить не только в результате воздействия различного рода сред, но и от вида приложенного нагружения. Наиболее опасным видом нагружения является циклическое нагружение, которое проводит к появлению и развитию трещин, а затем и к полному разрушению тела. Такой тип разрушения называют усталостным, а сам процесс - усталостью Изменение состояния материала при усталостном процессе отражается на его механических свойствах, макроструктуре, микроструктуре и субструктуре. Происходящие изменения можно разделять на стадии, которые зависят от исходных свойств материала, вида напряженного состояния и особенностей влияния внешней среды. Усталостное разрушение значительно отличается от разрушения, вызванного действием постоянной нагрузки. В основе усталостного разрушения металла лежит дислокационный механизм зарождения микроскопических трещин. Возникновение уста.постных трещии связывают с результатом циклического деформирования кристаллической решетки, когда максимальное значение напряжения за период цикла способно провести к пластическим сдвигам. Происходит интенсивное увеличение количества дислокаций и их движение, как в прямом, так и в обратном направлении. Существуют [c.401]

    При крашении кубозолями окрашиваемый материал пропитывают водным раствором лейкоэфира, затем проявляют окраску путем перевода кубозоля на волокне в нерастворимую форму кубового красителя, из которого был получен данный кубо-золь. Превращение кубозоля в кубовый пигмент осуществляется действием окислителей в кислой среде. Этот процесс протекает в две стадии 1) гидролиз лейкоэфира в кислой среде до лейкосоединения и 2) окисление полученного лейкосоединения до исходного кубового красителя (схема 24). В настоящее время некоторые исследователи считают, что этот процесс идет по радикально-цепному механизму возникающие в системе гидроксильные радикалы непосредственно атакуют сульфоэфирные группировки кубозоля, превращая его в исходный кубовый краситель. [c.128]

    В процессе изготовления изделий уже могут образоваться поверхностные субмикродефекты, которые при действии жидкой среды развиваются в разрушающие трещины. Поверхностные дефекты в случае воздействия среды, естественно, оказываются более опасными, чем внутренние, в которые среда в начальный период времени не проникает. Механизм разрушения по макродефектам близок к хрупкому. Такой механизм предопределяет значительное влияние скорости проникания жидкости в субмикро- и микротрещины к локальным местам разрушения материала в результате растекания жидкости или ее поверхностной диффузии. Объемная диффузия может оказывать влияние, по-видимому, только в случае действия достаточно сильных растворяющих агентов. [c.150]

    Вопросы образования дефектов внутри металла и охрупчивания при взаимодействии алюминиевых сплавов с влажным воздухом, водой и паром при различных температурах описаны мало. Сведения получены в основном за последние О лет. В сплавах систем А1—Mg, А1—2п——(Си), А1——Мд в этих условиях при 17—127 °С внутри металла в слоях, смежных с наружным оксидным и более глубоких, происходит образование дефектов на атомном и субструктурном уровнях. Сущность действующих при этом механизмов, количественные и качественные характеристики дефектов представлены в работе [6.22]. В указанных условиях сплавы наводораживаются и одновременно в них образуются избыточные вакансии. Последнее связано с избирательным (преимущественным) окислением магния и (или) лития из состава сплавов. Сведения о дефектах установлены при электронномикроскопических исследованиях тонких фольг (толщина 500 нм) сплавов, полученных электрополировкой массивных заготовок. Экспозиции во влажных средах подвергались как готовые тонкие фольги, так и материал в массивной форме. [c.243]


Смотреть страницы где упоминается термин Материалы механизм действия среды: [c.43]    [c.8]    [c.180]    [c.149]    [c.185]    [c.290]    [c.267]    [c.245]   
Коррозионная стойкость материалов (1975) -- [ c.67 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.67 ]

Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм действия



© 2025 chem21.info Реклама на сайте