Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение полимеров и диффузия

    Показатель степени у интенсивности увеличивается при повышении температуры и понижении молекулярного веса, что, по-видимому, связано с понижением вязкости среды и, следовательно, с увеличением вероятности удаления низкомолекулярных радикалов из полимера. Диффузия метил-изобутирата (молекула которого по своему строению близка к молекуле [c.42]


    Для выяснения строения полимеров диффузионным методом наиболее перспективным является изучение диффузии в полимеры низкомолекулярных веществ с короткой углеводородной цепью, длина которой сравнима с эффективной длиной сегментов макромолекулы полимера. [c.263]

    Устойчивость высокомолекулярных соединений к коррозии зависит не только от их химического состава, но отчасти и от их строения. Полимеры в кристаллическом состоянии набухают или реагируют со средой медленнее, чем в аморфном состоянии. Это различие вызвано тем, что диффузия агрессивной среды в полимер с большим содержанием кристаллической фазы происходит медленнее. [c.18]

    Вследствие повышения температуры внутренних слоев полимеров диффузия галогенсодержащих частиц из зоны пиролиза и поверхностной зоны в предпламенную возрастает. Как следует из табл. 5, скорость диффузии галогенсодержащих частиц обусловлена как строением полимера, так и температурой внутренних слоев и изменением теплопроводности материала. Диффузия галогенсодержащих частиц сопровождается также процессами, в которых частицы реагируют с фрагментами продуктов деструкции полимера, например галогенводороды реагируют с двойными связями, сложноэфирными группами, радикалами R0 [79, с. 226—228]. Поскольку горение полимеров является диффузионным и гетерогенным, скорость ингибирования в предпламенной зоне определяется скоростью химических актов и диффузией горючего и ингибиторов из материала. [c.63]

    В настоящее время отсутствует общая количественная теория, связывающая какие-либо параметры строения полимеров с коэффициентами диффузии в них электролитов. Анализ закономерностей диффузии электролитов в различных полимерах показал, что целесообразно все полимеры разделить на две группы в зависимости от содержания в них какого-либо полярного растворителя. Например, в зависимости от содержания воды они делятся на полимеры, хорошо и ограниченно растворяющие воду [более 1% (масс.)], и полимеры, плохо растворяющие воду [менее 1% (масс.)]. [c.117]

    В настоящее время отсутствует количественная теория, связывающая какие-либо параметры строения полимеров с коэффициентами диффузии и проницаемости эта проблема находится в стадии накопления фактического материала. [c.32]

    Большой интерес представляют последующие две главы, посвященные растворимости твердых органических веществ и диффузии в твердом состоянии (гл. 4, автор К. Роджерс, США) и явлениям механической релаксации в полимерах (гл. 5, авторы А. Вудворд и Дж. Сойер, США). По этим проблемам до последнего времени не было опубликовано сколько-нибудь полных обобщающих работ, и теперь эти главы, носящие по существу характер небольших монографий, восполняют пробел в литературе по физической химии полимеров. Авторы обеих глав привлекают обширный экспериментальный материал и достаточно полно излагают вопросы теории. Особая ценность главы о релаксационных явлениях определяется тем, что впервые сделана попытка систематизировать и рассмотреть с единых позиций всю совокупность экспериментальных данных, полученных при изучении релаксационных явлений в области так называемых переходов, и установить связь со строением полимеров, что является исключительно важной теоретической и прикладной задачей современной науки [c.6]


    Активность ионита, как катализатора, определяется в значительной степени его химическим составом и строением, пористой структурой, адсорбционной способностью по отношению к реагентам [3]. Химическая структура полимера (расстояние между полимерными цепями, густота поперечных сшивок) определяет избирательность действия ионита. Пористая структура органического катализатора влияет на активность через внутреннюю диффузию компонентов. Различают диффузию в порах ионита и диффузию в массе полимера. Последняя связана с объемной растворимостью компонентов реакционной смеси внутри ионита и зависит от химической структуры полимера. [c.175]

    Адгезия полимеров сводится к диффузии длинноцепных молекул или их отдельных участков и к образованию вследствие этого прочной связи адгезив - субстрат. Учитываются такие особенности полимеров, как цепное строение и гибкость макромолекул, способность сегментов макромолекул совершать микроброуновское движение, Объясняется зависимость работы адгезии от скорости расслаивания склейки. Такое объяснение подтверждается зависимостью раз-рывной прочност и образца полимера от скоросги разрыва [c.7]

    В твердом полимере растворимость кислорода н коэффициент его диффузии существенно меньше, чем в жидкости аналогичного строения (например, мономере). Окисление полимера протекает в условиях, когда [О ] мала по сравнению с жидкофазным окислением, и поэтому отношение [Н ]/[1Ю2) сравнительно велико. Отсюда вытекают следующие особенности окисления полимеров в твердом состоянии  [c.243]

    По мере возрастания молекулярной массы полимера энергия активации вязкого течения перестает зависеть от молекулярной массы. Это отражает отмеченное выше обстоятельство, что движение макромолекул при течении осуществляется в результате диффузии их отдельных участков. Энергия активации вязкого течения линейных полимеров зависит от химического строения звена и увеличивается с возрастанием жесткости цепи. [c.154]

    Большое влияние на газопроницаемость полимера оказывает его строение. В табл. 31 приведены значения коэффициентов проницаемости диффузии и сорбции водОрода для различных полимеров. [c.490]

    В книге, состоящей из 40 глав, основное место, естественно, уделяется описанию различных методов исследования полимеров. Представлены все методы определения молекулярных весов полимеров, их молекулярновесового распределения, обсуждаются разнообразные спектральные методы, применяющиеся для анализа строения и структуры гомо- и сополимеров УФ-, ИК-, КР-спектро-скопия, эмиссионная спектроскопия, спектроскопия ЯМР, масс-спектроскопия, спектроскопия ЭПР, нейтронное рассеяние, аннигиляция позитронов. Ряд глав посвящен хроматографическим методам, таким, как газовая и жидкостная хроматография, в том числе и при высоких давлениях, тонкослойная хроматография, ионообменная хроматография, ситовая хроматография, включая гель-про-никающую хроматографию, хроматография с обращением фаз. Методы анализа структуры полимеров обсуждаются при рассмотрении электронной микроскопии, рентгеноструктурного анализа, дифракции электронов и ряда других методов. Физические свойства полимеров оцениваются с помощью таких методов, как дилатометрия, определение температур плавления и стеклования полимеров, их электрических характеристик, анизотропии, диффузии и поверхностного натяжения. Представлены также методы исследования различных видов деструкции полимеров. [c.6]

    Термодинамические характеристики растворов полимеров, как было показано, тесно связаны с цепным строением, размерами и гибкостью макромолекул, а также с энергией их взаимодействия с растворителем. Эти основные параметры определяют также многие другие свойства растворов полимеров, по которым, в свою очередь, можно судить о строении и свойствах макромолекул. Так, например, гибкость цепей отражается не только на высоких значениях энтропии смешения, но и на условиях передвижения молекул в растворах при диффузии, течении и др. В этом отношении изучение разбавленных растворов полимеров представляет тем больший интерес, что оно выясняет строение и свойства индивидуальных макромолекул, лежащих в основе всех полимерных материалов. [c.188]

    В книге собраны и систематизированы результаты работ советских и зарубежных исследователей по проблеме проницаемости полимерных материалов. Рассмотрены основные представления о переносе низкомолекулярных веществ (преимущественно газов) в полимерах, обусловленном активированной диффузией. Вопросы проницаемости полимерных материалов изложены в зависимости от структуры полимеров н характера взаимодействия полимеров с наполнителями и пластификаторами. Приведены сведения о влиянии на проницаемость химического строения, размера н формы диффундирующих молекул и макромолекул. [c.2]


    Независимо от природы диффундирующего вещества, полимеры могут быть расположены в ряд, характеризующийся постепенным понижением коэффициентов проницаемости Порядок расположения полимеров в этом ряду в значительной степени определяется зависимостью коэффициентов диффузии от химической природы и строения молекул полимера, тогда как значения коэффициента растворимости зависят в основном от природы диффундирующего низкомолекулярного вещества. Обращает на себя внимание наличие нескольких групп полимеров с близкими коэффициентами проницаемости. Максимальные значения коэффициентов проницаемости характерны для высокоэластичных каучукоподобных полимеров, минимальные — для жестких полимеров, имеющих в своем составе большое число полярных групп. Наибольшей газопроницаемостью обладают полимеры, в которых взаимодействие цепных молекул осуществляется [c.65]

    Гетерогенные процессы у полисахаридов отличаются от гетерогенных реакций НМС. На характер гетерогенных процессов у полисахаридов, как и других полимеров, влияет их надмолекулярная структура, а у полисахаридов в древесине также ультраструктура клеточной стенки и анатомическое строение древесины. Все эти детали структуры определяют доступность полисахарида для химического реагента. Результаты гетерогенного процесса будут зависеть поэтому не только от скорости самой химической реакции, но и от скорости диффузии реагента в глубь клеточной стенки древесины или в глубь волокна технической целлюлозы. Класси- [c.281]

    Так, в работе [213] для разбавленных [1 % (масс.)] растворов спин-меченого поливинилпиридина (ПВП) в этаноле и зондов одинакового с меткой химического строения определены температурные зависимости времени корреляции вращательного движения [при р = 0,5 % (мол.)] и коэффициента поступательной диффузии [при р = 20 % (мол.)]. Полученные результаты для полимеров различной молекулярной массы приведены на рис. XI. 19. [c.292]

    На основании общих представлений теории строения жидко стей (глава VI) механизм диффузии газа в полимерах состоит е перемещении молекул газа отдельными импульсами через отвер стия (дырки), которые образуются и исчезают в полимерах I непосредственном соседстве с молекулами диффундирующего ве щества. Эти отверстия в эластических полимерах появляются I результате флюктуации плотности при тепловом движении отрез ков цепей, ieм больше гибкость цепи, тем больше вероятность та ких флюктуаций и обмена местами между молекулами газа и звеньями полимера, тем больше газопроницаемость. У стеклообразных полимеров возможность независимого перемещения звеньев отсутствует. Если жесткие цепи упакованы рыхлО, т. е. в полимере имеются постоянно существующие поры, это способствует газопроницаемости. Если цепи упакованы плотно, это препятствует газопроницаемости (поливиниловый спирт). [c.491]

    Перечисленные методы дают сведения не только о строении макромолекулы (взаимное расположение атомов, строение мономерных звеньев и характер их чередования в цепи, наличие разветвлений и т. д.), но также о типе химической связи между ее атомами, о физической структуре полимера (взаимное расположение и конформация цепей, упорядоченность их укладки, кристалличность), о характере теплового движения частиц (подвижность макромолекул и их фрагментов, процессы диффузии), о механизме синтеза полимеров и их химических превращениях, о процессах, протекающих вблизи фазовых границ (например, адгезия полимера к твердой подложке), о природе взаимодействия макромолекул с растворителями и т. д. [c.16]

    Природа агрессивной среды, ее агрегатное состояние, химический состав, размеры и конфигурация молекул в значительной степени влияют на интенсивность сорбционно-диффузионных процессов в полимерах. Сорбция органических жидкостей и их паров в полимерах определяется размерами и конфигурацией ее молекул. Например, коэффициенты диффузии бутана и пентана нормального строения в полиизобутилене в 2 раза больше, чем диффузия этих же углеводородов изо-строения диффузия н-бутана л-пентана в вулканизатах натурального каучука в 1,5 и 2,5 раза больше, чем изобутана и изопентана соответственно [15]. [c.8]

    Превосходящих величину сегмента, диффузия замедляется, а переходный слой приобретает такую форму, в которой микрообъем одного полимера глубоко (на глубину бк) внедряется в матрицу другого. Общая схема строения слоя изображена на рис. V- 10. [c.210]

    При контакте ннзкомолекуляр юго реагента с полимером в реакцию сразу вступают только функциональные группы, расположенные на поверхности. К функциональным группам, не расположенным на поверхности полимера, реагент должен предварительно продиффундировать сквозь слон полимера. Продолжительность диффузии определяется не только условия- <4 реакции, химическим строением полимера н низкомолеку- лярного реагента, но и плотностью упаковки макромолекул Полимера. Так как в аморфных областях упаковка макромо- чскул более рыхлая, чем в кристаллических, продолжительность контакта к полнота реакции низкомолскулярного реагек- 3 с макромолекулами, расположенными в аморфных областях, [c.161]

    Зависимость коэффициентов проницаемости от коэффициентов диффузии и растворимости газов в полимерах и отсутствие достаточно четких обоснований для вычисления этих коэффициентов исходя из каких-либо других свойств или строения полимеров не позволяют в настоящее время подойти к теоретическому расчету ко-эффицйента проницаемости заданной системы газ — полимер. [c.85]

    Для выяснения механизма ФГ полисахаридов ГМЦ, оиреде-ления активности ферментных комплексов или индивидуальных высокоочииденных ферментов псиользуют ГМЦ, выделенные из растительных материалов. В этом случае на ФГ гемнцеллюлоз не влияет экранирующее действие целлюлозы, лигнина или других компонентов клеточной оболочки, т. е. образование промежуточных соединений (ES) между ферментом (Е) и субстратом (S) происходит без препятствий и кинетические параметры реакции зависят от свойств и концентрации реагирующих компонентов, значения pH, температуры, ионной силы среды и т. д. ФГ не тормозится диффузией фермента к субстрату через клеточные стенки или слой другого полимера, диффузией и удалением продуктов реакции от места их образования в среде. На гидролиз определенной связи в полисахаридах может влиять надмолекулярное строение ГМЦ, ио эта проблема почти ие исследовалась. [c.226]

    На третьей стадии пленкообразования происходит полная ликвидация физических границ между полимерными частицами Этот процесс становится возможным только при условии сегментальной подвижности молекул полимера Диффузия макромолекулярных сегментов через межглобулярное пространство определяется его строением и температурой процесса Обычно звенья полимеров приобретают подвижность при температуре выше температуры стеклования [c.219]

    Ориентационная вытяжка полиолефинов приводит к значительным изменениям в строении полимера и поведении добавок сферолиты превращаются в фибрилы в аморфных областях увеличивается количество регулярных конфор-меров, а количество нерегулярных — падает [38-42]. Растворимость и коэффициент диффузии добавок обычно падают при вытяжке, но иногда эта зависимость бывает более сложной [40, 43, 44]. На рис. 4.3 показано влияние растяжения ПЭ на стабильность различных антиоксидантов при 60 °С. Кристалличность ПЭ, определенная методом дифференциального термического анализа, не изменяется при вытяжке, тогда как кристалличность по данным ИК-спектроскопии возрастает с 36 до 48%, что указывает на изменение конформационного набора макромолекул [44]. [c.119]

    Коэффициенты О я 8 зависят от химической и физической структуры полимера и диффундирующего газа. Ван-Амерснген [346] показал, что О в большей мере зависит от строения полимера, а 5 — от природы диффундирующего вещества. Как указывалось выше, диффузия в полимерах подчиняется закону Фика. Растворимость газов в полимерах подчиняется закону Генри в областях, далеких от критического состояния. [c.189]

    Представления о механизме теплового движения и вязкого течения в жидкостях получили дальнейшее развитие в теории аномально вязких систем Эйринга [20]. Современные представления об активационных механизмах вязкого течения и диффузии основываются на представлениях Френкеля и Эйринга о тепловом движении в жидкостях. Вязкое течение, по Эйрингу, происходит в результате перехода от равновероятной картины самодиффузионного перемещения кинетических единиц по всем направлениям пространства в покоящейся жидкости к несимметричному распределению вероятностей перехода частиц в вязком потоке, где перемещения частиц с наибольшей вероятностью происходят в направлении тангенциальной силы. Уточнение в расчет вязкости Эйринга внесено одним из авторов [21 ]. Было учтено, что перескоки частиц происходят по всем направлениям пространства, а не только в направлении действия тангенциальной силы. При малых напряжениях сдвига распределение вероятностей является линейной функцией напряжения сдвига, вследствие чего скорость деформации сдвига пропорциональна напряжению сдвига, т. е. наблюдается ньютоновское течение с постоянной вязкостью. При больших напряжениях, реализуемых в высоковязких жидкостях со сложным строением (полимеры, дисперсные системы и др. [22—26]), линейное приближение нарушается и вязкость уменьшается с увеличением напряжения или скорости деформации сдвига. [c.13]

    Теория Медлея [116] и Маршала [117]. Эти теории используются для объяснения зависимости коэффициентов диффузии от строения полимеров, ограниченно растворяющих воду. Например, в полиамидах в отличие от полимеров, хорошо растворяющих воду, растворенная вода не может образовать в полимерной матрице сплошного водного пространства, по которому перемещается электролит. Поэтому в полимерной матрице вода находится около полярных концевых групп и в меньшей степени около амидных связей. [c.123]

    Большое влияние на аутог зию имеет форма макромолекулы. Отмечается, что полимеры с регулярным строением макромолекул (если только они не находятся в закристаллизованном состоянии) должны обладать большей способностью к аутогезии, чем полимеры с молекулами нерегулярного строения . Полимеры, построенные из молекул с редкими и длиннымк-р-азветвлениями, имеют повышенную склонноЬть к аутогезии, что обусловлено большим числом концов цепей, способных диффундировать в толщу материала . Полимер, макромолекулы которого имеют большое число коротких ответвлений, обладают меньшей способностью к аутогезии, так как при этом создаются стерические затруднения для диффузии самой макромолекулы и отдельных ее частей. Полимеры с пространственной структурой, образованной за счет химических связей между макромолекулами (сшитые полимеры), мало способны к аутогезии .  [c.16]

    Химическое отделение Направление научных исследований электрические и механические свойства молекулярных кристаллов термодинамика смесей жидкостей диффузия газов фториды металлов и неметаллов неводные растворители спектроскопия неорганических комплексов вольфрама термическая диссоциация неорганических комплексных соединений кондуктометрическое титрование кинетика неорганических реакций реакции лигандов магнетохимия химия металлорганических соединений ароматические соединения окисление фенола биосинтез нтеридинов химия антибиотиков и других лекарственных веществ ЯМР- и ИК-спектроскопия стероидов и алкалоидов химия терпенов и гетероциклических соединений реакции металлсодержащих хелатов р-дикетонов алкалоиды и природные хиноны физические свойства и строение полимеров гетерогенный катализ. [c.271]

    Кислородостойкость полихлоропрена и особенно полифторопре- на значительно выше стойкости полибутадиена. Процесс окисления полихлоропрена в отличие от процесса окисления полиизопрена или полибутадиена сопровождается отщеплением хлористого водорода, что способствует протеканию последующих процессов окисления и структурирования полимера. В результате этих реакций полихлоропрен приобретает сетчатое строение. Дальнейшая диффузия кислорода в полимер затрудняется, и окисление полихлоропрена заканчивается, хотя в нем остается еще много не вступивших в реакцию двойных связей. Скорость окисления резко снижается, как только количество кислорода, поглощенного полихлоропреном, достигнет 0,35—0,40 моль на одно элементарное звено полимера. Повышение температуры до 100° С не вызывает заметного изменения степени окисления полимера, но увеличивает скорость этoгo процесса. [c.333]

    Подобные результаты были получены на таких полимерах, как акрилаты [153], которые относительно плохо растворимы в мономере. При очень низкой степени превращения (нанример, 2% для бутилакрилата) полимер может начать осаждаться из раствора в виде коллоидных гелей. Можно ожидать, что строение образующегося в этом случае полимера будет сильно-препятствовать диффузии больших радикалов. Эти полимеры имеют не простую прямую цепочку полимерные цепи связаны между собой в нескольких точках. Диены, например изопрен и бутадиен, наиболее склонны к образованию таких перекрестных связей, так как образующийся полимер содержит двойные связи. Сравнительно недавно Бенсон и Норс [154] показали, что, используя смешанные растворители и меняя таким образом вязкость в значительном интервале, можно наблюдать соответствующее изменение величины А)(, в то же время кр не изменяется. Нозаки [155] показал, что если достаточно долгое время подвергать фотолизу водную эмульсию винилового мономера для образования стабильных частиц, то этп последние будут содержать долгоживущие радикалы полимера, которые могут продолжать реагировать с мономером в течение 24 час и более . Гелеобразные частицы этилендиметилакрилата дают спектры парамагнитного резонанса, показывающие, что концентрация частиц с неспаренными спинами [157] достигает 10 — Эти образцы полностью стабильны в отсутствие Ог. [c.520]

    В результате ступенчатого процесса присоединяются другие молекулы олефина, адсорбированные на поверхности полимеризация протекает в поверхностном слое адсорбированного мономера. Поверхностный слой обеспечивает ориентацию молекул мономера, необходимую для получения полимеров, отличающихся стереорегулярностью строения. Разветвление в результате между-и впутримолекулярных реакций передачи цепи предотвращается наличием поверхности. При дальнейшем росте полимер десорбируется с поверхности и на его месте может адсорбироваться следующая молекула мономера. Скорость распространения цепи зависит от скорости адсорбции мономера на новерх-ности, которая в свою очередь определяется скоростью диффузии полимера от поверхпости. Следовательно, скорость реакции зависит от концентрации присутствующего олефина. [c.300]

    Диффузия дисперсных красителей ускоряется при нарушении регулярности строения макромолекулярной цепи полиэфира, обеспечивающей снижение кристалличности и плотности упаковки полимера. Это свойство практически характерно для всех сополиэфиров, кроме сополимеров, содержащих небольшое число этиленадипиновых или этиленгидротерефталевых звеньев [6, 7]. Практическое применение нашло очень небольшое число сополиэфиров, полученных на основе доступных и простых сомономеров  [c.228]

    Аналогично можно определить и приближенные значения Еп, пользуясь факторизацией энергий активации диффузии газов в полимерах Простой эмпирический метол расчета газопроницаемости полимеров в зависимости от их строения предложил Салам ° . В качестве исходного газа был выбран кислород, а исходного полимера — полиэтилен. Структурные элементы цепной молекулы полиэтилена обозначаются некоторой произвольной величиной. Остальные полимеры, в частности производные винилового ряда, рассматриваются с точки зрения усложнения основной полиэтиленовой цепл путем вве- [c.86]

    Наряду с таким чисто эмпирическим и интуитивным подходом представляет интерес другое направление в физике и химии полимеров, связанное с количественным анализом влияния химического строения иа физические свойства полимеров и с предсказанием этих свойств. Это направление появилось лишб 10—15 лет назад. Речь идет о том, чтобы без привлечения какого-либо эксперимента, исходя из данных только по химическому строению повторяющегося звена и типу присоединения звеньев друг к другу, рассчитать важнейшие физические параметры полимера. В результате, написав на бумаге формулу повторяющегося звена полимера, который предполагается синтезировать, можно заранее определить такие характеристики как температура стеклования, температура плавления, температура начала интенсивной термодеструкции, плотность полимера, оптические и оптико-механические параметры (показатель преломления и коэффициенты оптической чувствительности), плотность энергии когезии, растворимость и диффузия,, механические показатели, коэффициент объемного расширения-и др. [c.4]


Смотреть страницы где упоминается термин Строение полимеров и диффузия: [c.114]    [c.455]    [c.101]    [c.377]    [c.172]    [c.107]    [c.318]   
Конструкционные свойства пластмасс (1967) -- [ c.242 ]

Конструкционные свойства пластмасс (1967) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия в полимерах

Полимеры строение



© 2025 chem21.info Реклама на сайте