Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость прибор для определения

Рис. 47. Прибор для определения растворимости воздуха в воде Рис. 47. Прибор для <a href="/info/358994">определения растворимости</a> воздуха в воде

    Опубликована удобная и относительно точная экспериментальная методика определения равновесных данных для адсорбции из газовой фазы [19], На дно склянки высотой от 40 до 100 мм, вес которой известен, помещается определенная навеска адсорбента. Жидкая смесь известного состава взвешивается в сосуде высотой от 25 до 40 мм. Этот сосуд (открытый) подвешивается на проволочной петле за крючок, прикрепленный к внутренней стороне пробки большей склянки. Притертая пробка большей склянки смазывается не растворимой в углеводородах смазкой, и вся система доводится в течение 4—6 недель до равновесия в термостатируемой комнате. Затем определяются вес и состав оставшейся жидкости, Поровые объемы можно определить в том же приборе, наливая в подвешенный сосуд индивидуальную жидкость, например бензол или толуол. [c.140]

    При отсутствии в лаборатории описанного прибора определение растворимости той или иной соли (если температура невысока и растворитель не очень летуч) можно проводить в широкой стек- [c.62]

    В экспериментальной практике значение 5у определяют применительно к сравнительной большой порции сыпучего материала, состоящей из множества частиц. В этом случае формула (5.6) позволяет рассчитать средний диаметр частиц исследуемой порции сыпучего материала. Параметр определяют на специальном приборе принцип его действия основан на измерении сопротивления, которое оказывает слой определенной порции сыпучего материала потоку прокачиваемого через него газа. Параметр 5 , используют для характеристики свойств сыпучего материала в случаях, когда они зависят от площади поверхности его частиц например, теплопроводность, звукопроницаемость, растворимость, химическая активность во многом зависят от Значения 5у меняются в большом диапазоне (от нескольких сотен тысяч до нескольких миллионов см ) в зависимости от степени дисперсности частиц. [c.147]

    Прочие способы. Очень точное определение производится по Родману, рекомендующему особый прибор с приемниками, охлаждаемыми жидким воздухом. Перегонка нефти при этом производится в вакууме. По новому методу опытной лаборатории Вестингауза определение воды производится конденсацией ее пара в и-образных трубках, опущенных в кидкий воздух. Но так как при этом, кроме воды, в них могут конденсироваться не только пары легких углеводородов нефти, но и растворимые в ней газы, конденсат испаряют через трубки с фосфорным ангидридом, не поглощающим нефтяных паров. [c.36]

    Существуют и другие методы анализа, например биологические. К последним можно отнести метод определения содержания сероводорода в воздухе по изменению интенсивности свечения некоторых бактерий, а также метод анализа некоторых веществ, основанный на наблюдении за движением мелких червей, гибнущих после добавления известной дозы этих веществ. Физико-химические и физические методы, главк-Ум образом в зарубежной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. На первый взгляд, разные методы химического анализа не имеют между собой ничего общего, настолько различны их приемы, аппаратура и применение. На самом же деле принцип определения химического состава любыми методами один и тот же состав вещества определяется по его свойствам. Дело в том, что каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Например, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество. [c.9]


Рис. 1.3. Схема прибора для определения растворимости газа в жидкости Рис. 1.3. <a href="/info/855414">Схема прибора</a> для <a href="/info/587992">определения растворимости газа</a> в жидкости
    При выборе метода исследования необходимо учитывать оснащенность лаборатории приборами (в случае, если имеется инфракрасный спектрофотометр, спектрометр ядерного магнитного резонанса, не позволяющий проводить измерения при повышенной температуре). Поэтому ядерный магнитный резонанс возможен для анализа проб, растворимых при нормальной температуре. Вследствие ограниченной растворимости полиоксиметилена и сополимера, содержащего большие количества полиоксиметилена, для определения количественного состава сополимера останавливаются на ИК-спектроскопии твердого вещества. Аналогично поступают и при определении среднего молекулярного веса, но здесь возникает трудность в приготовлении соответствующих эталонов (изменение интенсивности при смешивании). В крайнем случае можно получить данные, характеризующие растворимую часть сополимера. При определении структуры цепи ЯМР-спектроскопия, обладающая большей селективностью, дает лучшие результаты, чем ИК-спектроскопия. Метод ЯМР-спектроскопии также можно применять только для растворимых сополимеров. [c.419]

Рис. 5. Прибор для определения растворимости солей. Рис. 5. Прибор для <a href="/info/358994">определения растворимости</a> солей.
    Германий особой чистоты, пригодный для использования в полупроводниковых приборах, получают специальными методами. Сначала германий подвергают фракционной перекристаллизации, при которой используются различия в растворимости примесей в твердой и жидкой фазах и малая скорость диффузии в твердой фазе. Затем вытягиванием из расплава полученных слитков чистейшего германия изготовляют монокристаллы. В процессе образования монокристаллов в германий вводят строго определенные дозы примесей для придания ему нужного вида проводимости (электронной или дырочной) и определенного значения удельной электропроводности. [c.206]

    При вьшолнении этой работы воспользуйтесь прибором для определения эквивалента металла (см. рис. 31). Вода в приборе должна быть заменена насыщенным раствором хлорида натрия, так как в растворе этой соли растворимость СОа меньше, чем в воде. Приведите прибор в рабочее состояние, для чего с помощью уравнительного сосуда при открытом зажиме установите жидкость в бюретке на нулевое деление, присоедините к измерительной бюретке колбочку и, закрыв пробки и зажим, тщательно проверьте прибор на герметичность, как указано в работе 5. [c.35]

    Студент для определения произведения растворимости хлорида серебра воспользовался прибором, изображенном на рис. 13.11. Измеренное значение э. д. с. оказалось равным — 0,12 В. Потенциал серебряного электрода в растворе ионов серебра подчиняется уравнению  [c.320]

    Определение серы в сталях [1018]. Метод применим для анализа образцов, растворимых в соляной кислоте. Навеску стали, содержащую 2—3 мкг серы, промывают бензолом, затем ацетоном, высушивают на воздухе и помещают в прибор для разложения п отгонки. Дистилляционную колбу соединяют с колбой-приемником посредством холодильника и соединительной трубки и продувают систему током азота в течение 30 мин., а затем добавляют 50 мл [c.203]

    Рис. 12.2. прибор для определения растворимости твердого вещества. [c.542]

    В настоящем пособии более подробно остановимся на методе Раста, позволяющем определять молекулярный вес органических соединений в приборе для определения температуры плавления. Этот метод применим для веществ, растворимых в расплавленной/ камфоре и устойчивых до 190 "С. Метод состоит в определении понижения температуры плавления камфоры при растворении в ней определенного количества исследуемого вещества. Для определения молекулярного веса требуется всего 10—60 мг вещества точность определения 5—10%. [c.89]

    Несмотря на то, что взаимная растворимость воды в углеводородах и углеводородов в воде весьма мала, скорости поглощения влаги углеводородными топливами очень велики. Часто бывает достаточно нескольких секунд контакта топлива с воздухом обычной влажности для насыщения его водой. Создаваемые этим трудности при криоскоппческом определении молекулярных весов по температурам застывания бензольных растворов многократно пытались преодолеть специально конструируемыми приборами, в ко- [c.359]

    Менее точными становятся аналитические определения, когда компоненты газа неизвестны и их число велико. Следует учесть, что почти каждый реагент, применяемый в приборах для общего анализа, в некоторой степени растворяет любой газообразный компонент. Присутствие хорошо растворимых газов плохо отражается на точности анализа, поэтому хорошо растворимые газы желательно определять и удалять в начале анализа. В данном случае речь идет [c.129]


    Для определения растворимости газа можно употреблять прибор, изображенный на фиг. 76. [c.182]

    В описанных приборах в качестве вытесняющей жидкости употребляется вода. Если исследуемый газ сильно растворим в воде, то измерения этими приборами уже будут неточными. Для определения удельного веса легко растворимых в воде газов можно заменить воду ртутью (в приборе фиг. 111, б). Углеводородные природные газы в воде плохо растворимы, поэтому их удельный вес можно определять с точностью до 1—2% на всех приборах, конструкция которых основана на методе истечения и в качестве вытесняющей жидкости применяется вода. [c.302]

    Для определения количества смол, растворимых в ацетоне (так называемых ацетоновых смол ), стаканы с отфильтрованным ацетоном помещают в открытые карманы бани прибора Бударова, нагретой до 110°С, или в гнезда прибора ЛСА РТ и выдерживают их там до полного испарения ацетона. Затем по разности массы стаканчика после испарения ацетона и чистого определяют содержание ацетоновых смол . [c.58]

    Зольные вещества, присутствующие в маслах и незаметные в силу особенностей светопреломления или растворимости, частью тоже осаждаются при разведении масел керосином и т. п. жидкостями. Зола от веществ, растворенных в масле (соли нафтеновых и сульфонафтеновых кислот) определяется оожиганием навески в 20—40 г в платиновом или фарфоровом тигле по общим правилам (зола в керосине и в нефтп). В виду трудности испарения всего масла, парам его не препятствуют спокойно гореть, если они воспламенились. Оставшийся кЛсс прокаливают снерва осторожно, но- 4 том все сильнее и сильнее до полного сгорания углерода. Обратным взвешиванием тигля определяют вес золы. Гольде рекомендует вести сожигание при помощи беззольного (или, по крайней мере, с известным содержанием золы) фитиля, свернутого из мягкой фильтровальной бумаги. Такой фитиль при помощи платиновой проволочки укрепляется в центре тигля в вертикальном положении и зажигается после пропитывания маслом, налитым в тигель.. В сл чае чистых масел опыт длится 3—4 часа, но масла, содержащие асфальт или много золы (напр., компаундированные масла, консистентные жиры и пр.), быстро засоряют фитиль. После сожжения масла тигель прокаливают и взвешивают. Простой прибор для определения золы предложил Конрадсон (69). [c.230]

    Самым прар титаым прибором для определения -веса газа является Общеизвестный прибор Шйлдинга, в котором наблюдается скороса истечения одного и того же объема г за и воздуха через очень тонкое отверстие. Эти скорости относятся как квадраты их плотностей. Применение именно этого прибора для определения уд. веса газов лз нефти удобно потому, что растворимостью газов можно ирС небречь. К тому же всегда, есть возможность насытить воду исследуемым газом. Если определение скорости истечения газа и вовдуха следует непосредственно одно за другим, можно не вводить поп )а- " вок на барометрическое давление и температуру. [c.381]

    Определение термоокислительной стабильности в статических условиях. Испытание ведут в приборе ТСРТ-2 при температуре 150""С в течение-5 ч и оценивают массу осадков и смол, образующихся при окислении топлива. Окисление осуществляют в герметичной металлической бомбе в присутствии катализатора (медной пластинки) кислородом воздуха при объемном со-отнощении его к топливу 3,5 1,0 (175 мл воздуха и 50 мл топлива). Образовавшиеся осадки отфильтровывают и взвешивают определяют растворимые и нерастворимые смолы (по ГОСТ 1567—56 или по ГОСТ 8489—58). [c.203]

    Химическое взаимодействие с водой происходит при использовании гидридкальциевого лабораторного метода. Он основан на измерении количества водорода, выделяющегося при реакции между гидридом кальция и содержащейся в масле водой (как эмульгированной в масле, так и растворенной в нем). Прибор, предназначенный для определения содержания воды в масле этим методом, позволяет проводить анализы с довольно высокой точностью, однако метод очень трудоемок. Дополнительные осложнения возникают при обработке результатов анализа с целью определения содержания в масле эмульгированной воды в этом случае надо иметь график растворимости воды в данной партии масла при разных температурах, а построение такого графика связано с затратами времени. [c.37]

    Косвенное экстракционно-пламеннофотометрическое определение кадмия основано на экстракции МИБК соли щелочного металла иодидкадмиевой кислоты, распылении экстракта в низкотемпературное пламя и фотометрировании излучения щелочного металла. В качестве комплексообразующего реагента при определении кадмия используют иодид лития, имеющий низкую собственную растворимость в органической фазе данной экстракционной системы и, хотя его концентрация в водной фазе велика влиянием реагента на аналитический сигнал при определении микрограммовых концентраций кадмия можно пренебречь. Кроме того интерференционные фильтры пламенных фотометров имеют высокие факторы специфичности на литий. Интенсивность излучения щелочного металла линейно пропорциональна концентрации кадмия в водной фазе. Градуировочный график строят в координатах показания прибора — концентрация кадмия в стандартных растворах. Предел обнаружения кадмия 1 мкг/мл. Воспроизводимость 3% (отн.). [c.46]

    Основным прибором в газо-жидкостной хроматографии (ГЖХ) является колонка — металлическая или стеклянная трубка диаметром несколько миллиметров и длиной несколько метров. Колонка заполнена пористым материалом, пропитанным жидкостью (жидкой фазой). Исследуемое вещество в газообразном или в жидком состоянии вводят в доток инертного газа-носителя, обычно азота, гелия или водорода, и пропускают через колонку, нагретую до определенной температуры. Компоненты анализируемой смеси обладают различной растворимостью в жидкой фазе и поэтому выходят с другого конца трубки неодновременно. Многократно адсорбируясь и десорбируясь с поверхности носителя, они находятся в колонке строго определенное для каждого из них время. Этот период называют временем удерживания, и его регистрируют специальным детектором. [c.84]

    Метод предназначен для оценки антидетонационной эффективности нерастворимых или ограниченно растворимых в бензинах АДД, использование которых осуществляется путем их подачи во впускную систему двигателя раздельно от основного бензина. Сущность метода заключается в определении изменения октанового числа (по моторному методу) основного бензина в зависимости от количества АДД, вводимой в двигатель раздельно от бензина. Испытание проводят на одноцилиндровой установке УИТ-65 для определения октановых чисел бензинов, дооборудованной автономной системой подачи АДД во впускной патрубок двигателя раздельно от основного бензина, приборами для регулирования (в заданных пределах) и измерения мощности, потребляемой электронагревателем топливовоздущной смеси (ТВС), а также приборами для измерения расходов испытуемого бензина и АДД. Схема топливной системы установки УИТ-65, дооборудованной для проведения испытания, приведена на рис. 13.23. [c.422]

    Кулонометрию используют при анализе тонких металлических покрытий, для определения растворимости, исследования кинетики химических реакций и определения образующихся при этом продуктов, установления строения комплексных соединений И Т. Д. Особое значение имеет кулонометрия при создании автотитраторов для кислотно-основного и окислительно-восстановительного титрования. Общий прогресс приборостроения позволяет обеЙ1ечить каждую лабораторию простыми и надежными кулонометрическими приборами, [c.252]

    Техника проведения амперометрического титрования. При проведении амперометрнческого титрования с применением твердых электродов используют те же приемы, что и при снятии вольтамперных кривых (обработка электродов, присоединение их к прибору). Однако показания прибора всегда фиксируют визуально. Для этой цели можно использовать амперотитраторы. Поскольку метод амперометрического титрования относится к инструментальным методам титриметрического анализа, все приемы последнего должны строго соблюдаться. Исследуемый раствор разбавляют в мерной колбе до метки соответствующим фоном (а не водой). В ряде случаев к исследуемому раствору добавляют вещества для снижения растворимости осадка (например, спирт) или для создания определенной кислотности раствора. [c.165]

    Рассмотрим в качестве примера прибор для волюметрического определения растворенного воздуха в вискозе [315], который может быть использован и для многих других жидкостей с малой растворимостью газов (рис. V. 1). В этом же приборе можно определять суммарное количество растворенных и диспергированных газов. Последовательность операций при работе на приборе такова. Вначале в сосуд заливают низковязкую (нейтральную по отношению к испытуемому раствору) жидкость, например, в случае вискозы — раствор хлорида натрия в щелочи. Эту жидкость тщательно дегазируют путем создания разрежения в приборе. Ее нагревают через рубашку 6 горячей водой. При этом жидкость многократно переливается из реторты 2 в сосуд 4 и обратно. Анализируемую жидкость из стакана засасывают через трубку 5 в прибор до метки 50 или 100 (в зависимости от ожидаемого количества воздуха) при этом низковязкая жидкость перемещается в нижнюю часть сосуда 4, В замкнутом сосуде вискозу подогревают через рубашку 6 под вакуумом, затем доводят до кипения пары и выделяющиеся газы собираются в пространстве над вискозой. После охлаждения сосуда 4 реторту 2 поднимают и гидростатический столб передавливает вискозу в верхнюю часть сосуда 4. Пары конденсируются, а газ передавливается по капилляру 8 в эвдиометр, где и замеряют его объем. По шкале эвдиометра определяют [c.159]

    Кольборн, Шенборн и Шиллинг [84] разработали прибор для определения равновесия в ограниченно растворимых системах. Он также работает по проточному методу. Для определения равновесия смесей с близкими температурами кипения Ю Чин-чу С сотрудниками [85] предложил видоизмененный аппарат От- [c.96]

    Крепление впаиваемых злектродов. Нередко металлические детали (вводы, диски и т. д.) требуется расположить в определенном положении внутри стеклянного прибора, причем в некоторых случаях обычные способы крепления неприменимы, так как по окончании спаипания невозможно извлечь материалы креплений из прибора. В таких случаях для креплений применяют растворимую керамику . Этот материал готовят из пирофосфата натрия (Ыа РгО ) или калия, прокаленного в муфельной печи при температуре 700°С и размолотого на шаровой мельнице. Порошок пирофосфата прессуют в пресс-формах, имеющих необходимую форму и размеры. После прессования детали обжигают при температуре 240 °С. Полученные детали достаточно прочны и поддаются дополнительной подгонке (шлифовке, сверлению, точению, отпиливанию). После впаивания металлических деталей керамику удаляют, растворяя в воде. [c.160]

    Без направляющей трубки прибор не надежен. Можно применять специальные направляющие зажимы, однако они не представляют особого преимущества. Во время работы в колбе А находится вещество, а в колбе Б — осушитель. Д представляет собой паровую баню, а Е — подходящую подставку. При применении высококачественной вакуумной смазки прибор, собранный из двух обычных 5-литровых колб, держит вакуум в 2 мм в течение суток. Такой эксикатор с двумя отделениями особенно удобен для синтетических работ. Использование его часто дает возможность опустить одну из операций, так как колба А, в которой проводилась реакция или производилось упаривание, может одновременно служить также для высушивания вещества или применяться в качестве сосуда, в котором будет проводиться последующая реакция. Во время высушивания вещество можно перемешивать, вращая весь прибор. Кроме того, в определенных пределах такой эксикатор может быть сделан любого требующегося размера. Желательно покрыть колбы с внешней стороны тонкой пленкой какой-либо растворимой пластмассы, чем сильно снижается возможность несчастных случаев когда покрытые таким образом эвакуированные колбы во время опытов разрывались , разбрасывание осколков было весьма незначительным. Сравнительные опыты при работе с чрезвычайно гигроскопичной сиропообразной массой показали, что в вакуум-эксикаторе указанной формы при одинаковом количестве осушителя процесс можно проводить почти в два раза быстрее, чем в обычном эксикаторе. Если колбу А слегка подогревать, то эффективность описанного прибора окажется по меньшей мере в четыре раза выше эффективности обычного эксикатора (Ф. Пингерт, частное сообщение). [c.431]

    Показатели эффективности. Оксигенаты как компоненты автомобильных бензинов характеризуются прежде всего октановыми числами смешения, давлением насыщенных паров (Рнас) теплотворной способностью. Эти показатели определяются стандартными методами. Однако при определении Р ас бензинов со спиртами следует учитывать хорошую растворимость спиртов в воде. В России используются два метода определения ас в бомбе по Райду (ГОСТ 1756-52) и на приборе Валявского-Бударова (ГОСТ 6668-53). Для исследования топлив с оксигенатами пригоден метод Райда, так как во втором методе бензин контактирует с водой, используемой в качестве напорной жидкости. [c.55]

    Дальнейший прогресс техники исследования равновесия между жидкостью и паром в системах, образованных компонентами с ограниченной взаимной растворимостью, связап с применением для анализа смесей газо-жидкостпой хроматографии или других методов анализа, для которых требуется незначительная проба. В связи с незначительным количеством смеси, нужной для анализа, появляется возможность непосредственно анализировать паровую фазу. Приборы для исследования равновесия между жидкостью и паром, основанпые па использовании газожидкостной хроматографии для определения состава смесей, описаны ниже. Они в равной мере применимы для систем с одной или двумя жидкими фазами. В последнем случае важно обеспечить хорошее перемешивание жидких фаз для достижения равновесия между ними и паром. Эти методы позволяют резко сократить расход веществ и затрату времени на исследование по сравнению с другими методами. [c.30]

    Скорость перемешивания оказывает существенное влияние на скорость растворения. Поэтому в приборе установлен контроль за скоростью вращения корзитпси. Время, необходимое для определения растворения, зависит от растворимости лекарственного вещества и от методов анализа, применяемых для количественного определения вещества в растворе. [c.574]

    На рис. 12.1 представлена принципиальная схема прибора, позволяющего определять растворимость газа в жидкости. Определенную навеску вещества-растворителя помещают в сосуд, в котором проводят операцию растворения, а затем в него подают растворяемый газ до достижения требуемого давления и обеспечивают его циркуляцию при помощи высокоскоростного побудителя газа. Любые посторонние газы, которые могли раствориться в растворителе, удаляют посредством предварительного вакуумирования растворителя. В процессе насыщения растворителя газом давление последнего поддерживают постоянным, регулируя его подачу. После заверщения насыщения определяют изменение объема в градуированной трубке и, применяя соответствующее уравнение состояния, рассчитывают количество растворенного газа. Если растворитель по своей природе нелетуч, небольщую пробу насыщенного раствора отсасывают непосредственно в бюретку вакуумным насосом, как это показано на рис. 12.2. После испарения газа из раствора жидкость сливают из бюретки, а оставщийся газ сжимают до атмосферного давления с помощью ртутного столба через уравнительную воронку и фиксируют его объем. [c.542]

    Главной практической трудностью при создании установки для выращивания кристаллов по этому методу является запаразичивание прибора, особенно соединительных трубок в нем. Поэтому реальные установки, как правило, отличаются от схемы, данной на рис. 3-16. В них предусматривают, например, независимый подогрев соединительных трубок. В некоторых вариантах приборов камеру роста располагают над камерой растворения. Создают также трехкамерные установки, в которых одна из камер, промежуточная между камерой роста и растворения, предназначена для перегрева раствора и его дезактивации. Варианты таких приборов описаны, например, Г. Бакли [1954] и К.-Т. Вильке [1977]. Возможные усложненные схемы приборов даны также в предыдущем издании настоящей книги. В одной из этих схем предусматривалась не только дезактивация раствора, но и его регенерация, т. е. очистка от накапливающихся примесей. Таким образом, реальные приборы для выращивания кристаллов по описываемому методу относительно сложны. Достаточно совершенный кристаллизатор для выращивания кристаллов по этому методу — простой, компактный, удобный в сборке и разборке, — видимо, еще не создан. Этот метод, вообще говоря, предпочтителен при промышленном выращивании кристаллов или в специализированных кристаллизационных лабораториях со сравнительно большой программой выращивания кристаллов определенного вещества. Метод используется для веществ, имеющих существенную зависимость растворимости от температуры при любом знаке этой зависимости. [c.115]

    Лаборатория имеет по существу два взаимодополняющих комплекса приборов (потенциометрический и фотометрический) для определения показателя щелочности или кислотности воды, pH, биологической активности и химического потребления О2, растворимости в воде электролитов по показателю проводимости, содержания нитратов и нитритов, характеризующих зафязненность воды стоками, и хлора I2, третий комплекс аппаратуры анализаторов - фотометр для определения содержания в воде и почве нефтепродуктов. [c.624]

    Методы анализа, основанные на изотопном обмене с тритием, описаны для определения растворимости воды в углеводородах и других неполярных органических веществах. Обычно при этом применяют тяжелую воду НТО и измеряют интенсивность наведенной -радиоактивности с помощью газовых или жидкостных счетчиков. Тайлор и сотр. [7, 30] осуществляли такой протонный обмен, барботируя воздух, насыщенный парами НТО, через жидкий бензол и другие углеводороды. Радиоактивную воду извлекали, абсорбируя ее оксидом кальция, а углеводород удаляли дистилляцией в вакууме. Затем тритий извлекали из сорбента обменной реакцией с парами этилового спирта и определяли радиоактивность с помощью газового счетчика Гейгера— Мюллера. Давление в счетчике регулировали, добавляя необходимое количество аргона. Каддок и Дэвис [10, И] также барботировали воздух через жидкие углеводороды при определении растворимости воды, но радиоактивнрсть измеряли более простым методом с помощью жидкого сцинтиллятора. Схема прибора, применявшегося в этих исследованиях, приведена на рис. 10-1. В дальнейшем обсуждаемая методика была усовершенствована — для насыщения пробы ее встряхивали с водой, содержащей тритий [29, 57, 58]. Так, Джонс и Монк [29] встряхивали несколько миллилитров содержащей тритий воды (активность около 2 мКюри/мл) с 10—25 мл сухой пробы не менее 4 ч в закупоренном стеклянном термостатированном сосуде. Большую часть насыщенной органической фазы сливают в подогретую пробирку и пробу объемом 5 мл переносят с помощью подогретой пипетки в колбу емкостью 10 мл, содержащую 5 мл НгО. Закупоренную колбу встряхивают около 4 ч. Затем отбирают порцию водной фазы объемом 1 мл и оценивают радиоактивность с помощью вы-сокостабильных счетных устройств на основе жидких сцинтилляторов, например 50 г нафталина, 7 г 2,5-дифенилоксазола и 0,05 г [c.520]

    В качестве критериев чистоты ферментов используют данные электрофореза, ультрацентрифугирования (седиментограмма), определения молекулярной массы различными методами, по растворимости (кривые растворения), оценки полидисперсности с определением специфической активности каждой фракции, хроматографирования на различных носителях и в нескольких системах, аминокислотного состава (особенно — при обнаружении белковых примесей), включая секвенирование (от англ sequen e — последовательность) на автоматизированных приборах - секвенаторах, ит д [c.56]

    Образец полимерного материала в виде диска зажимают во фланцах прибора. На верхней камере прибора крепят одноходовой кран 7 с дозатором 6 для отбора на анализ пробы газовой смеси постоянного объема. Через штуцеры 5 и 8, заглушенные эластичными прокладками и гайкой с отверстием, предусмотрен отбор пробы жидкости с разных высот для определения растворимости в ней газа. Диффузионный прибор можно монтировать в термокриокамеру. [c.216]

    Сведения о фазовом составе нерастворимых примесей можно получить, основываясь на свойствах различных компонентов суспензий природных веществ менять свою растворимость в дисперсной среде в зависимости от ее активной реакции — pH. Известно, что труднорастворимые в воде карбонаты щелочноземельных металлов растворяются при значениях pH среды 4—4,5 растворение гидроксидов железа происходит при pH 2—3. На рис. 3.3, а изображены экспериментально полученные гистограммы фазового распределения нерастворимых в воде веществ дои после изменения pH дисперсионной среды. Изменение концентрации частиц в суспензии контролировалось фотоэлектронным поточным ультрамикроскопом. Проверке подвергались как суспензии отдельных компонентов, присутствие которых возможно в природной воде (карбоната кальция, гидроксида железа, глинистых веществ), так и смеси имитаторов нерастворимых примесей. Попутно установлено, что для полного растворения гидроксида железа необходимо понижать pH среды до 1,2. Рис. 3.3, б иллюстрирует изменение частичной концентрации взвешенных веществ в подкисленных пробах воды Тбилисского моря, являющегося источником водоснабжения Самгорской водопроводной станции. После растворения карбонатов в пробе дальнейшее снижение pH не привело к изменению концентрации частиц, что обусловлено, как показал контрольный химический анализ, отсутствием нерастворимой фазы гидроксида железа среди взвешенных в воде веществ. Предложенную препаративную экспресс-методику определения фазового состава взвешенных веществ в природной воде целесообразно рекомендовать для характеристики нерастворимых примесей и в других источниках изменение мутности воды при подкислении можно контролировать любым фотометрическим прибором. [c.162]

    Ферроцианид калия при взаимодействии с растворами солей цинка образует труднорастворимый белый осадок ферроцианида калия и цинка Zn3K2lFe( N)e)2. не растворимый в разбавленных кислотах. При малых концентрациях цинка образуется мелкозернистая взвесь ферроцианида калия и цинка. Это позволяет использовать данную реакцию для нефелометрического и фототурбидиметрического определения малых количеств цинка. Определение может быть выполнено визуально методом стандартных серий, на нефелометре или фото-турбидиметрически. В настоящей работе определение выполняется с использованием прибора ФЭК-Н-57 или ФЭК-56. [c.97]


Смотреть страницы где упоминается термин Растворимость прибор для определения: [c.357]    [c.336]    [c.91]   
Методы эксперимента в органической химии Часть 3 (1950) -- [ c.124 ]




ПОИСК





Смотрите так же термины и статьи:

Прибор для одновременного определения плотности отдельных фаз двухфазных жидких систем и взаимной растворимости

Растворимость определение



© 2024 chem21.info Реклама на сайте