Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы олефинами

    Ассоциативный механизм. Олефин адсорбируется по двойной связи. Атом водорода, находящийся на поверхности, присоединяется к одному концу двойной связи, тогда как атом водорода при а-атоме углерода, нахо- [c.97]

    Согласно этому механизму, олефины сначала образуют эфиры серной или фосфорной кислоты, которые, реагируя затем с другой молекулой олефина, дают полимер. С другой стороны, предполагается, что при разложении в соответствую- [c.115]


    Механизм, представленный на рис. 19, детализирован со стереохимической точки зрения. Согласно этому механизму, олефин и мигрирующий лиганд должны находиться в той же самой плоскости и в г ггс-положении друг к другу. Это требование нашло подтверждение нри исследовании поведения модельных систем [119]. Лиганд L присоединяется к ближайшей к нему стороне олефина, т. е. металл и L присоединяются в г мс-положение друг относительно друга. Это было подтверждено многими примерами как для олефинов, так и для ацетиленов [120]. К тому же, если L — алкильная группа, имеющая асимметрический атом углерода, связанный с металлом, то миграция будет происходить с сохранением конфигурации при этом атоме углерода. Это было доказано на нескольких примерах, в которых миграция происходит к карбонильной группе, а не к олефину [84, 121]. Орбитальный анализ миграции карбонильной группы должен проводиться таким же образом, как и на рис. 19, за исключением ориентации лиганда СО. [c.459]

    Различие в поведении этих двух электронных состояний карбена не удивительно. Синглет присоединяется в одну стадию, а присоединение триплета к двойной связи — двухстадийный процесс первая стадия приводит к образованию триплетного дирадикала, который затем должен превратиться (медленно) в синглетный дирадикал, прежде чем произойдет замыкание цикла. Как можно предположить на основании этого механизма, олефины, которые особенно активны по отнощению к присоединению свободных радикалов, очень активны и по отношению к триплет-ным состояниям карбенов, хотя по отношению к синг- [c.157]

    При обычном электрохимическом механизме, как правило, восстанавливаются частицы, адсорбированные на электроде и потерявшие часть степеней свободы, которыми они обладали в растворе. В связи с этим здесь существенную роль могут играть стерические факторы. При восстановлении сольватированными электронами восстанавливаемые частицы находятся в объеме раствора и стерические затруднения проявляются в меньшей мере. Найдено, например, что 2,3-де-метил-2-бутен, в котором двойная связь экранирована метильными группами, создающими стерические затруднения, восстанавливается сольватированными электронами в смеси гексаметилфосфотриамида и этанола почти столь же легко, как и циклические олефины. Отмечено также, что при восстановлении сольватированными электронами стереохимия продуктов восстановления иная, чем при электрокаталитическом гидрировании. [c.445]

    Крекинг парафинов и олефинов. На основании вышеизложенного можно предложить детальный механизм каталитического крекинга такого характерного нормального парафина, как, например, н-гексадекан. Точно такой механизм применим для объяснения крекинга нормальных олефинов, например, к-гексадецена-1, с тем отличием, что в начальной стадии вместо переноса гидридного иона происходит присоединение протона. [c.125]


    В принятых условиях следует ожидать, что около половины полученных олефинов подвергнутся повторному крекингу по ионному механизму рассчитанная кривая построена на основании этого предположения [19]. [c.126]

    Отсюда следует, что при объяснении каталитического крекинга встречаются те же трудности, как и для механизмов реакций алкилирования олефинами и замещения ароматических углеводородов. Предлагаются [c.129]

    Полимеризация олефинов. Как говорилось раньше в связи с обсуждением энергетики реакции табл. 4, присоединение иона карбония, полученного при взаимодействии протона с олефином, является необходимой стадией полимеризации олефинов. Новый ион карбония может снова реагировать с мономерами, образуя полимеры, до тех пор, пока не произойдет отщепление протона, что прекратит реакцию. Так, пропен полимери-зуется по механизму  [c.135]

    Реакция, катализируемая галогенидами металлов. В результате реакции изобутана с хлористым аллилом при температуре —10° С с образуются 1-хлор-3,4-диметилпентан и 1,2-дихлор-4,4-диметилпентан с выходами 35—40% и 13—15% соответственно [53]. Образование обоих указанных продуктов характерно для цепного механизма, аналогичного механизму алкилирования изопарафиновых углеводородов олефинами. Стадии реакции можно представить следующим образом  [c.232]

    Механизм гетерогенного каталитического гидрирования двойных связей до конца не выяснен, так как изучение этой реакции весьма затруднительно [253]. Поскольку реакция ге-терогенна, то кинетические данные, хотя и легко получить (измеряя снижение давления водорода), но трудно интерпретировать. Кроме того, возникают трудности, связанные с упомянутым выше водородным обменом. Принимаемый в настоящее время механизм для обычной двухс[)азной реакции был впервые предложен в 1934 г. [254]. В соответствии с этим механизмом олефин адсорбируется на поверхности металла, хо я природа образующейся связи неизвестна [255], несмотря на многочисленные попытки ее выяснения [256]. Реакционный центр на поверхности металла обычно обозначается звездочкой. Ясно. [c.181]

    В безводной апротонной среде, напр. ССЦ, Г., кроме иод-производных, галогенируют (радикальный механизм) олефины в аллильное положение, не затрагивая двойной связи (р-ция Воля-Циглера), алкиларены - в боковую цепь. В присут протонных или апротонных к-т Г. галогенируют разл. ароматич. и гетероароматич. соединения в ядро по ионному механизму. В протонном р-рителе (спиртах или уксусной к-те) р-ция с олефинами проходит с образованием а-бромэфиров, напр.  [c.488]

    Была обнаружена [10] и третья форма влияния металло-алкила на полимеризацию. Она состоит в том, что количество не растворимого в кипящем гептане полимера снижается с ростом ионного радиуса металла (табл. 4). Все эти эффекты согласуются с представлением об активном участии сокатализатора в элементарных стадиях полимеризации. В одном из предложенных механизмов олефин внедряется по связи Л1—С биметаллического комплекса, который, как предполагают, образуется из галогенида титана и алкилалюминия [11]. Механизм, включающий биметаллический комплекс, подтвердился установленным радиоизотопиыми экспериментами фактом присоединения алкильной группы алюминиевого сокатализатора к поли- [c.199]

    Принципы. Согласно современным представлениям органической химии, присоединения галогенов к алкенной функщ1и проходит по ионному механизму Олефины рассматривают как нуклеофильные вещества, и считается, что первой стадией в реакции брома с этиленом является присоединение бромоний-иона с образованием комплекса  [c.336]

    Количество насыш енных (неолефиновых) углеводородов, образуюш,ихся при гидрополимеризации, тем больше, чем выше концентрация серной кислоты. Так, например, в смеси пентенов с 98%-ной серной кислотой 70% исходного продукта превращаются в полимеризат, выкипающий в пределах 90—350° п состоящий в большей части пз парафиновых углеводородов. При этом растворимая в серной кислоте часть, выделяемая при разбавлении ледяной водой, оказывается сильно ненасыщенной и обнаруживает до трех и более двойных связей на молекулу. Реакция протекает по карбониум-ионному механизму. В присутствии концентрированной серной кислоты водород олефинов может переноситься из одной молекулы в другую, причем одна молекула превращается в парафин, а другая в диолефин, который еще раз может служить донором водорода, в то время как моноолефин является акцептором. [c.62]

    Основы расщепления парафинов на олефины описаны в многих работах [61—64]. Герхольд [65] подробно изложил механизм реакции расщепления газорбразных и жидких углеводородов. На рис. 3 представлена зависимость состава продуктов пиролиза пропана от [c.17]

    Реакции синтеза высокомолекулярных углеводородов С — ал— килированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа — кислотному. Реакции С — алкилирования протекают с выделением 85 — 90 кДж/моль (20 — 22 ккалУмоль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие темшфатуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изо — [c.137]


    Металлы, катализирующие обмен На— Оа, также активны в реакции гидрогенизации ненасыщенных соединений. Из числа таких реакций наиболее тщательно изучалась реакция Н2+С2Н4. Хотя многие закономерности зтой реакции хорошо известны, механизм ее до сих нор недостаточно ясен. Изучение гидрирования высших олефинов показало, что реакция с каждым данным олефином имеет свои, только ей одной присущие черты. [c.548]

    Реакция обмена В г, как было показано, имеет первый порядок по Вг и нулевой порядок по СгН4. Однако эти данные недостаточно надежны . Сравнительное изучение [39, 40] реакций мзо-бутена, 1-бутена и цис-бу1виа-2 в присутствии никеля показало, что в системе происходит очень сложный ряд химических превращений, в том числе индуцированная изомеризация 1-бутена в 2-бутен, реакция дейтерообмена, индуцированная цис-транс-изомеризация бутена-2 и, наконец, реакция присоединения по двойной связи. При давлении ниже 200 мм рт. ст. скорости реакций обмена, присоединения и изомеризации для 1-бутена приблизительно равны и имеют порядок /2 по олефину и Нг. С увеличением давления Нг обе эти реакции приближаются к нулевому порядку по олефину и сохраняют порядок 1/2 по Нг- При большом избытке 1-бутена все реакции становятся ингибированными (при температурах от 30 до 150°). Предложенный авторами на основе эксперименталь-дых данных механизм несколько сомнителен ввиду отсутствия данных по изотермам, [c.549]

    Особую роль водорода как астехиометрического компонента ряда реакций (конфигурационная изомеризация, миграция двойной связи в олефинах и др.) обсуждает Я. Т. Эйдус [41]. Влияние астехиометрического компонента выражается в инициировании реакции, в изменении ее кинетики, избирательности, механизма и пр. Атомы астехиометрического компонента в отличие от атомов реагентов не входят в молекулы конечных продуктов реакции или входят без соблюдения стехиометрических отношений. Таким образом, эти вещества не входят в стехиометрию реакции, не фигурируют в ее суммарном химическом уравнении и являются как бы посторонними компонентами реакционной системы, почему и получили название астехиометрических. [c.77]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    Томас указал, что высокие температуры могут быть необходимы для образования малых количеств олефинов, которые в свою очередь образуют ионы карбония для ряда каталитических ценных реакций, идущих по механизму обмена гидрид-иона, предложенному Бартлеттом для алкилирования олефинов парафинами. В связи с проведением таких реакций с малыми количествами олефинов Грихгфельдер отметил, что, как было найдено Пинесом и Уалхером [37], при изомеризации бутана (полагая, что в этом случае [c.89]

    Еще в 1875 г. Зайцев указывал [112], что среди изомерных олефин в, образующихся из вторичных и третичных алкилгалогенидов при отщеплении НХ, преобладают те структуры, которые получаются отщеплением водорода от углеродного атома, наименее богатого водородом. Таким образом, преимущественно образуются производные этилена, имеющие максимальное количество замещающих алкильных групп. Механизм этих реакций обсуждался Инголдом [65]. Ранее по вопросу об образовании олефинов из галоидных алкилов приводились в литературе весьма противоречивые данные, что свидетельствует о том, что состав продуктов реакции, как и при дегидратация спиртов, сильно изменяется в зависимости от условий реакции. Неф [97], например, наблюдал, что выход олефинов нри реакции с третичными алкилгалогенидами выше, чем в случае применения вторичных галоидпроизводвых. Прямо противоположные результаты, однако, сообщались Брусовым 17]. [c.419]

    НЫМ образом а-олефинамп. Термодинамически вероятно, одиако, получение разветвленных углеводородов и олефинов с двойной связью в глубине молекулы в гораздо больших концентрациях. Очевидно, механизм реакции таков, что допускает лишь относительно слабое приближение к равновесному распределению среди этих изомеров. [c.521]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    В соответствии со стехиометрическими уравнениями и механизмом реакции могут также иметь место реакции крекинга алкилнафтеновых углеводородов до циклоолефинов, алкилароматических углеводородов до алкенилароматических и олефинов до диолефинов (все реакции идут с одновременным образованием парафинов). Диолефины и алкениларо-матичсские углеводороды обладают необычайно большой реакционной способностью, что затрудняет их выделение присутствие этих соединений обычно сказывается в повышенном образовании кокса на катализаторах. [c.117]

    Образование, как правило, олефинов в этих первичных стохиомет-рических реакциях диссоциации дает возможность подойти к концепции, которая аналогична теории, объясняющей низкотемпературные реакции присоединения над кислыми катализаторами, а именно, объяснить образование иона карбония простым присоединением протона (Н+)к олефину. Прежде всего, необходимо рассмотреть механизм и энергетику этой реакции [c.117]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Должно быть объяснено также присутствие алкильного иона, такого, как вто/>-пропил-ион. Вообще вполне целесообразно предположить наличие при крекинге предельных углеводородов некоторого термического крекинга, или окисления, приводящих к образованию олефинов. Последние, в свою очередь, быстро образуют над кислотным катализатором ионы карбония Л+, которые затем и инициируют указанную выше реакцию переноса гидридного иона так образуются требуемые ионы карбония из парафинов. Доказательство переноса гидридного иона между третичными структурами в низкотемпературных системах над кислыми катализаторами может быть найдено в работе Бартлетта [1]. Брюйер и Гринсфель-дер [5] установили обмен вторичного гидридного иона с третичным галоидным ионом в аналогичных системах, распространив таким образом этот механизм на важные структуры типа нормальных парафинов и неза- [c.124]

    Это отщепление является реакцией, обратной алкилированию ароматических углеводородов олефинами. Последняя — хорошо и шестная низкотемпературная реакция над кислыми катализаторами, интерес к которой в последнее время вновь возрос в связи с ее механизмом, особенно над катализаторами Фриделя-Крафтса [6]. Действительно, общая теория замещенпя ароматических углеводородов в кислой среде связана с механизмом каталитического крекинга ароматических углеводородов. [c.129]

    Реакция (1) соответствует бимолекулярной реакции ионного замещения, и реакция (2) формально соответствует механизму крекинга олефина. Ввиду особых свойств бензольного кольца, заключающихся в сильном взаимодействии между шестью углеродными атомами и шестью 7г-электронами, в результате чего образует. я исключительная среди углеводородов молекулярная структура, было бы неразумно для объяснения крекинга ароматических углеводородов искусственно приводить схему (2), основанную на поведении алифатических структур. В итоге можно констатировать, что реакция (1) представляет собой простую конкуренцию между п отоном и ионом карбония за место в ароматическом кольце, тог 1 а как реакция (2) отвечает образованию сильного комплекса протон арен (или катализатор арен) с дальнейшим отщеплением иона карбония. [c.130]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    Макрополимеризация этилена, индуцированная перекисями. Полимеризация этилена путем нагревания его при высоких давлениях в присутствии перекисей или кислорода [14, 42, 60] до высокомолекулярных продуктов объясняется с помощью механизма цепной свободнорадикальнойг реакции. Индуцированная перекисями реакция инициируется свободными радикалами, образовавшимися при разложении перекисей. Индуцированная кислородом реакция предполагает образование в качестве промежуточных соединений перекисей или свободнорадикальных продуктов окисления олефинов. [c.229]

    Каталитическое алкилирование. Каталитическое алкилирование изопарафиновых углеводородов олефинами происходит по цепному механизму, предполагающему образование из изопарафина третичного алкильного катиона. Последний, присоединяясь к олефину (правило 1), образует катион большего молекулярного веса, который после перегруппировки (правило 3), отнимает гидридный ион от молекулы изопарафина (правило 5), образуя соответствующий продукт алкилирования и новый третичный алкильный ион, начинающий новую цопь [I, 52]. [c.230]

    Термическая изомеризация. Как уже говорилось выше, в противоположность ионам карбония свободные радикалы редко подвергаются перегруппировке. Этим объясняется отсутствие скелетной избмеризации олефинов в термических условиях. С другой стороны, в таких жестких условиях, по-видимому, происходит изомеризация с миграцией водородных атомов. Например, пентен-1 при температуре 550—600° С изомеризуется до пентена-2 [21, 22]. В этом случае наиболее вероятен цепной механизм с участием аллильпых радикалов. [c.235]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    Озонирование ацетиленовых углеводородов примерно аналогично озонированию олефинов. Озониды ацетиленовых углеводородов не известны, но Криджи и Ледереру [5] удалось выделить перекиси (XXX) и (XXXI) при озонировании дибензоата 1,4-бутиндиола в смеси уксусной кислоты и четыреххлористого углерода. По приведенному ниже механизму Н = СОООСНз —), перекиси типа (XXX) разлагаются на дикарбо- [c.352]

    Поскольку окислы металлов, рассмотренные в данном разделе, образуют надкислоты с перекисью водорода, то можно предполоншть что механизм реакции в данном случае может быть таким же, как и при энокси-дации олефинов органическими перкислотами. Однако ни п одном случае при таких реакциях не была выделена эпокись. Мы полагаем потому, что реакция проходит через стадию образования промежуточного оксониевого продукта(1Х), который может взаимодействовать с анионом окиси металла, образуя промежуточный продукт (X), легко подвергающийся гидролизу с образованием транс-гликоля. Для случая надванадиевой кислоты [c.371]

    В связи с тем, одиако, что исключается свободнорадикальный механизм или механизм иона карбония на том основании, что изомеры олефинов сохраняют свою конфигурацию, трудно представить, каким образом данный механизм будет способствовать образованию тракс-алкокси-ртутного соединения. Больше того, совершенно невероятно, чтобы двойная связь с 7г-электроиами вошла в координационную связь с кислородом алкоксилыюй группы скорое, чем с атомом ртути. Поэтому несмотря на некоторые недостатки ионного механизма меркурирования двойной связи данный механизм предпочитается в настояш се время всем прочим, так как у него больше преимуществ, чем недостатков. [c.374]


Смотреть страницы где упоминается термин Механизмы олефинами: [c.198]    [c.220]    [c.80]    [c.437]    [c.439]    [c.356]    [c.371]    [c.372]    [c.373]    [c.374]    [c.375]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.339 , c.347 , c.348 ]




ПОИСК







© 2024 chem21.info Реклама на сайте