Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры пространственные, скорость образования

    При поликонденсации, которая протекает по ступенчатой схеме, размер молекулы непрерывно увеличивается с относительно низкой скоростью (сначала из мономеров образуется димер, тример, тетрамер и т. д. до полимера) до образования полимера с молекулярной массой 5000 — 10 ООО. Полученные в результате поликонденсации молекулы устойчивы и могут быть выделены на любой стадии процесса. Они содержат те же функциональные группы, что и у исходных мономеров, и могут участвовать в дальнейших реакциях друг с другом или с другими мономерами. Это используется в промышленности для получения олигомеров и полимеров с пространственно-сшитой структурой. Схема образования полиамидной смолы — капрона — служит [c.333]


    Особенностью резольных смол является наличие в их структуре метилольных групп (— СНгОН), благодаря чему они могут вступать в дальнейшую реакцию поликонденсации, приводящую к образованию полимера пространственной структуры— резита. Процесс превращения в резит, т. е. отверждение, происходит при нормальных условиях медленно, при повышенных температурах его скорость сильно возрастает. В присутствии кислых катализаторов резольные смолы отверждаются с большой скоростью и при нормальной температуре. [c.118]

    Поликонденсация в растворе (в пиридине) протекает с большей скоростью, чем поликонденсация соли в твердой фазе. Полифениленсульфид плавится при температуре 295°С, устойчив до 400° С на воздухе. Его применение при высоких температурах лимитируется температурой плавления, поэтому из него сначала формуют изделия (пленки, волокна), а затем прогревают их в атмосфере азота при 400° С. В результате сшивания за счет образования сульфидных связей образуется неплавкий, нерастворимый, термостойкий полимер пространственного строения. Полифениленсульфиды обладают исключительно высокой адгезией к стеклу. [c.495]

    Аналогичный эффект наблюдается при увеличении скорости инициирования и температуры. Формирование трехмерной структуры через стадию образования разветвленного полимера доказывается следующими экспериментальными данными. Максимумы на кривых накопления разветвленных полимеров с меньшей молекулярной массой соответствуют во времени наибольшей скорости образования соединений с большей молекулярной. массой, а максимум на кривой накопления таких полимеров-наибольшей скорости формирования пространственной структуры. В период автоускорения трехмерной полимеризации наблюдается рост параметра, характеризующего выход трехмерного полимера, отнесенного к содержанию свободных двойных связей. Образующиеся разветвленные полимеры способны к радикальной полимеризации в тонком слое и в растворах в среде воздуха и в вакууме, причем скорость образования трехмерной структуры повышается с ростом их разветвленности. [c.81]

    Строение мономера оказывает влияние не только на рост цепи макромолекулы, скорость этого процесса и взаимное расположение звеньев в цепи, но и на структуру образующихся макромолекул. Мономер с одной двойной связью, в котором замещение группы достаточно стабильно, всегда образует макромолекулу линейной структуры. В случае полимеризации мономеров, совмещающих легко подвижные замещающие группы, возможность протекания вторичных процессов более вероятна, что приводит к возникновению в молекулах боковых ответвлений. Если же в мономере имеется несколько одинаковых реакционноспособных двойных связей, то они могут одновременно принимать участие в реакции роста цепей, а это ведет к образованию полимеров пространственных структур  [c.112]


    В некоторых случаях для образования пространственного каркаса в полимере требуется ввести в него специальные реагенты (отверди-тели). Так, твердение эпоксидных смол осуществляют большей частью в присутствии малеинового ангидрида в качестве отвердителя, обеспечивающего образование связей между цепями. В других случаях отвердители вводят для повышения скорости процесса. Из некоторых термопластичных новолачных смол под действием соответствующих отвердителей, способствующих образованию связей между цепями (обычно гексаметилентетрамина), получаются при нагревании под давлением неплавкие и нерастворимые продукты. [c.224]

    Согласно классификации, предложенной Н. А. Плата с сотр. [4], можно выделить следующие основные отличия реакций полимеров от реакций их низкомолекулярных аналогов в связи со спецификой полимерного состояния вещества I) реакции, присущие только полимерному состоянию вещества распад макромолекул на более мелкие образования или до исходных молекул мономеров и межмакромолекулярные реакции 2) конфигурационные эффекты, связанные с изменением механизма или скорости химической реакции вследствие присутствия в макромолекулах звеньев иной пространственной конфигурации ( эффект соседа ) 3) конформационные эффекты, связанные с изменением конформации макромолекулы в массе полимера или в растворе, после того как прошла химическая реакция 4) концентрационные эффекты, влияющие на изменение скорости реакции вследствие изменения концентрации реагирующих групп около макромолекулы в растворе 5) надмолекулярные эффекты, связанные с распадом или формированием новых надмолекулярных структур в массе или растворе полимера, способных изменить скорость реакции и структуру конечных продуктов. [c.220]

    Облучение полимеров сопровождается образованием двойных связей. Деструкция и образование пространственных структур при облучении полимеров всегда протекают одновременно, но соотношение скоростей этих двух процессов настолько меняется в зависимости от химического строения полимеров, что одни полимеры полностью деструктируются под влиянием ионизирующих излучений, а в других преобладают процессы сшивания макромолекул. [c.294]

    В начальной стадии процесса поликонденсации образуются метилольные производные карбамида или меламина (стр. 393). Они характеризуются высокой реакционной способностью и легко взаимодействуют между собой с выделением побочного продукта—воды. Поликонденсация проходит в водном растворе, который постепенно становится все более вязким, не теряя при этом прозрачности и оставаясь бесцветным. Только на последних стадиях образования пространственного полимера он утрачивает растворимость в воде и становится стекловидным и хрупким. Скорость реакции заметно возрастает с повышением температуры или при добавлении катализаторов (кислоты и соли сильных кислот), Поли конденсацию заканчивают на стадии образования водного раствора полимера требуемой вязкости. Такие растворы можно сохранять при комнатной температуре в течение 1—3 месяцев. [c.417]

    Андрианов и Соколов [250] исследовали термическую и термоокислительную деструкцию кремнийорганических линейных и пространственных полимеров. Деструкция линейных полимеров облегчается высокой подвижностью и спиралевидной формой линейной молекулы, в связи с чем в этом случае наблюдается образование низкомолекулярных циклических полимеров. Деструкция пространственных полимеров направлена в основном на отрыв органического радикала, причем скорость отрыва зависит от пространственной структуры полимера, затрудняющей деструкцию. [c.267]

    Изучение пространственного распределения ПЦ представляет принципиальный интерес. При выяснении особенностей кинетики и механизма реакций в твердой фазе, количественном сопоставлении скоростей реакций в жидкой и твердой фазах, и т. д. в первую очередь необходимо учесть реальное распределение активных центров по объему. В твердых телах (а иногда и в достаточно вязких жидкостях) вследствие замораживания трансляционной подвижности пространственное распределение ПЦ может отражать либо гетерогенность распределения молекул, из которых образуются активные центры, либо гетерогенный характер процессов, приводящих к образованию радикалов. Начальная гетерогенность может возникнуть из-за макро- или микроскопического разделения фаз при кристаллизации, скопления дефектов, сферо-литной структуры полимеров и т. п. Причиной гетерогенного механизма образования активных центров является, например, зарождение их в приповерхностном слое и трековые эффекты при радиолизе. Представления об ионизации Б треках лежат в основе теории процессов радиолиза. Размеры и геометрия областей, в которых происходит ионизация, зависят от энергии и массы ионизирующей частицы, однако в любом случае образующиеся ионы или возбужденные молекулы распределены небольшими группами или роями вдоль пути ионизирующей частицы. Если стабилизирующиеся вторичные активные центры (радикалы и др.) образуются непосредственно в результате диссоциативной ионизации или рекомбинации первичных ионов, то их пространственное распреде- [c.201]


    Структурные модели учитывают специфику изменения физических свойств полимеризационной системы повышение ее вязкости при достижении критической концентрации перекрывания макро-молекулярных клубков полимера и нарастание скорости повышения вязкости в результате взаимного проникновения сжатых до -размера клубков полимера с их перепутыванием и образованием устойчивой сетки зацеплений. Полагают [91], что в ряде случаев причиной гель-эффекта является пространственная сетка макромолекул, образованная физическими или химическими связями, либо их совокупностью. Физические связи возникают в результате меж-молекулярного взаимодействия, образуя локальные зацепления макромолекул. По достижений некоторой длины цепи растущий радикал способен подвешиваться к уже сшитой структуре образовавшихся ранее макромолекул, что приводит к резкому падению ега подвижности. Согласно згой концепции полимеризацион-ную систему в вязких средах можно рассматривать как микро-гетерофазную. [c.67]

    Строение мономера оказывает влияние не только на рост цепи макромолекулы, скорость этого процесса и взаимное расположение веньев в цепи, но и на структуру образующихся макромолекул. От строения мономера зависит возможность образования линейных цепей, цепей с длинными боковыми ответвлениями, полимеров пространственной структуры. Соединения с одной двойной связью, в которых замещающие группы достаточно стабильны в условиях процесса полимеризации, образуют макромолекулы преимущественно линейной структуры. При мягких условиях полимеризации таких мономеров сравнительно редко протекают вторичные процессы, связанные с возникновением в звеньях макромолекул свободных валентностей, которые могут явиться началом образования боковых ответвлений. В случае полимеризации мономеров, содержащих легко подвижные замещающие группы, возможность протекания вторичных процессов более вероятна, что приводит к возникновению в макромолекулах боковых ответвлений. Например, в процессе полимеризации хлористого винила наблюдается некоторое уменьшение количества хлора в полимере. Это указывает на то, что в растущих макромолекулах полимера возникают свободные валентности и дальнейшее присоединение молекул мономера может происходить в нескольких направлениях. [c.114]

    Соотношение между шероховатой и гладкой зонами поверхности разрыва сильно зависит от густоты пространственной сетки резины (числа поперечных связей в 1 см ), о которой можно судить по величине равновесного модуля резины. Чем меньше высокоэластический модуль (т. е. реже пространственная сетка), тем быстрее растет шероховатая зона и тем скорее зеркальная зона разрыва полностью вытесняется шероховатой. С увеличением числа поперечных связей скорость образования и роста надрывов уменьшается, образующиеся тяжи становятся тоньше, и характерная для низкомодульного полимера шероховатая поверхность первой зоны переходит в матовую. Зеркальная зона, постепенно вытесняя щероховатую, покрывается все более многочисленными и тонкими линиями скола. [c.113]

    На рис. 9 показана зависимость скорости реакции сшивания частично омыленного поливипилацетата (ОПВА) терефталевым альдегидом (ТФА) от скорости сдвига. Видно, что практического влияния условия проведения реакции на кинетику не оказывают. Вместе с тем, как видно из рис. 10, влияние на вязкость системы и точку гелеобразования — заметное. При этом малые величины скорости сдвига уменьшают время гелеобразования, т. е. повышают эффективность сшивания за счет уменьшения вероятности обрыва, цепи развития сетки. Очевидно, что именно к этому эффекту должно привести разворачивание клубка, если определяющим в реакции обрыва цепи является внутримолекулярная реакция сшивания удаленных по цепи звеньев. При больших значениях скорости сдвига время гелеобразования снова увеличивается. Но при этом происходит качественное изменение структуры геля образуется не единая пространственная сетка, а мелкие набухшие в растворителе агрегаты. Причиной этого является влияние силового поля на структуру полимера в момент начала ее образования, вблизи точки геля. Разрывы/ слабосшитой системы приводят к увеличению времени гелеобразования и к появлению сетки в локальных областях. Протяженных участков сетки в этих условиях, по-видимому, образоваться не может. [c.120]

    Пластический разрыв полимеров внешне сходен с разрывом вязких металлов. Как и у металлов, плa тичe кий разрыв полимеров наблюдается в ограниченной области скоростей деформации или времени действия нагрузок. При малой нагрузке или малой скорости растяжения происходит переход к высокоэластическому разрыву, характерному для резин. Это объясняется тем, что при напряжениях ниже предела текучести сужений не образуется и пластический разрыв переходит в высокоэластичеокий, что как раз и объясняется наличием в каучуках пространственной сетки, образованной временными узлами. Переход через предел текучести связан с преодолением и разрушением этих узлов. [c.121]

    Выше мы отмечали, что во всех полимерных расплавах существует пространственная структура, образованная вторичными (ван-дер-ваальсовыми) связями. Еще раз оговоримся, что, несмотря на наличие этих связей, расплав полимера является истинной жидкостью в том смысле, что даже самые малые напряжения сдвига вызывают необратимую деформацию — течение. Однако при этом вязкость расплава очень велика. Существование пространственной структуры, образованной физическими связями, не препятствует этому течению, поскольку процесс разрушения связей под воздействием теплового движения молекул протекает достаточно быстро. Поэтому при малой скорости деформации расплавы не обнаруживают никаких эластических свойств, ибо скорость релаксации высокоэластических деформаций выше скорости их накопления. Входовые эффекты, соответствующие малым скоростям деформации, оказываются настолько малы, 86 [c.86]

    Общая скорость образования пространственных полимеров складывается из 1) скорости конденсации и получения смолообразных термоплавких продуктов (резола или новолака), 2) скорости желатинизации и перехода в резитольное состояние, для которого характерны высокоэластические каучукоподобные свойства, нерастворимость, но набухаемость в растворителях, и 3) скорости перехода в конечное, твердое, неплавкое состояние (в резит). [c.420]

    Этот метод был использован для изучения сополдмеризации по-лиднэтиленгликольмалеинатсебацината со стиролом, приводящей к образованию эластичных продуктов (Тс от —30 до —40°С). Как видно из рис. 34 (см. с. 110), графики в координатах объемная усадка — время имеют перегиб, свидетельствующий о самоускоре-нии реакции по достижении определенной степени сополимеризации. Это наблюдение согласуется с теоретическими представлениями и экспериментальными данными ряда исследователей о синтезе полимеров пространственной структуры [285, 379—381]. Обнаружено также, что начальная скорость реакции растет, а конечный уровень отверждения, характеризующийся максимальной усадкой Ат, снижается при повышении температуры. Чем выше температура, тем с большей скоростью образуются свободные радикалы, а это приводит к увеличению начальной скорости сополимеризации и уменьшению конечной степени отверждения р. Вы- [c.126]

    Широкие перспективы для получения новых материалов на основе каучуков и каучукоподобных полимеров открывает радиационная графтполимеризация и совулканизация. В настоящем обзоре этот специальный и весьма интересный вопрос не рассматривается, так как выходит за пределы поставленной нами задачи этому вопросу посвящено большое количество исследований и обширная библиография. Отметим, однако, что такая радиационная модификация не только дает возможность получать новые материалы с ценными свойствами, по и позволяет интенсифицировать радиационную вулканизацию. Так, например, доза облучения, необходимая для получения практически полностью зашитого НК (97% геля в каучуке), равна 33,4-10 рад если же в НК ввести 15,6% 2,5-дихлорстирола, подобный эффект наступает уже при 1,1-10 рад, т. е. скорость образования пространственной сетки возрастает в 30 раз [188]. [c.53]

    С увеличением размера замещающих групп в производных этилена возрастают пространственные затруднения, препятствующие сближению молекул мономера и радикала. Во многих случаях размеры замещающих групп в молекуле мономера могут быть столь велики, что рост цепей, т. е. образование полимера, становится невозможным. При наличии в мономере только одного заместителя полимеризация происходит во всех случаях, вне зависимости от размера замещающей группы, но скорость роста цепи убывает по мере увеличения размера заместителя. Исследования показывают, что полимеризация возможна для любых мо-новинильных производных, даже содержащих весьма громоздкие заместители, например  [c.106]

    Полимеризацию следует проводить при низкой температуре Q спиртовом растворе или в растворе хлорбензола. Реакция между диизоцианатом и диамином протекает с высокой скоростью, приближаюн1ейся к скоростям ионных реакций. По окончании выделения тепла реакции смесь нагревают до 100—130° для полного завершения процесса. Более высокая температура способствует дальнейшей полимеризации с образованием пространственных полимеров. [c.436]

    Термическая деструкция. Принципиально процесс термического расщепления полимеров ничем не должен отличаться от процесса крекинга углеводородов, цепной механизм которого установлен с полной достоверностью. Устойчивость полимеров к нагреванию, скорость термического распада и характер образующихся продуктов зависят от химического строения полимера. Однако первой стадией процесса всегда является образование свободных радикалов, а рост реакционной цепи сопровождается разрывом связей и снижением молекулярной массы. Обрыв реакционргой цепи может происходить путем рекомбинации или диспропорционирования свободных радикалов и приводить к появлению двойных связей на концах макромолекул, изменению фракционного состава и образованию разветвленных и пространственных структур. [c.284]

    Эта группа может нзаимодсйствовать со следующей молекуло ангидрида с образованием пространственного полимера. Меж ду эпоксидными и гидроксильными группами протекают и по бочные реакоии, однако скорость их незначительна, [c.186]

    Большая скорость процесса в случае полимера 2 4 3 по сравнению с полимером 2 4 1 в совокупности с более высокой обменной емкостью полимера 2 4 3, в частности к железу (см рис 2 43), свидетельствует о более выигрышном пространственном положении иминодиацетатных и гидроксигрупп в ячейке по сравнению с орго-изомером. Таким образом, в отличие от мономерных комплексонов, где орто-положение функциональных групп в молекуле является наиболее эффективным (см, разд 2 3 1), в данном случае более выигрышным оказывается лара-расположение ионогенных групп [545], В этом проявляется специфика поведения полихелатных ионообменников, связанная со стерическими особенностями образования подобных соединений и большой ролью ориентации в пространстве донорных связей жестко закрепленного лиганда. [c.299]

    Величины а и Р, являющиеся функциями и /г ц, связаны со строением и устойчивостью переходного комплекса , образование которого предшествует тому или иному виду присоединения. В этом комплексе конец растущей цепи и приближающаяся к нему молекула мономера взаимно ориентированы таким образом, чтобы они могли постепенно занять те же пространственные положения, что и в полимере. Естественно, что строение переходною комплекса (ориентация реагирующих частиц) при изотактическом и синдиотак-тическом присоединении -неодинаково и связано со значениями параметров А и Е в уравнении Аррениуса. Следовательно, стереоспецифичность реакции тем выше, чем больше А и для каждого способа присоединения отличаются от соответствующих параметров при другом способе присоединения. Различие в значениях Е при двух видах присоединения, оцененное для некоторых систем, оказалось равным 1,5—3,1 кДж/моль также очень близки величины А. Все же с..н< изо и Дсин< 4 зо, а поскольку энергия активации сильнее влияет на константу скорости, чем предэкспонент А (/( = вероятность синдиотактического присоединения в [c.191]

    В гл. II были рассмотрены два возможных пути превращения в зависимости от соотношения скоростей роста обеих фаз. Исходя из того, что низкоконцентрированная по полимеру фаза I состоит иреимущественпо из подвижных молекул растворителя, а концентрированная по полимеру фаза II содержит большую долю ма лоподвижных макромолекул, можно с достаточным основанием принять, что процесс установления равновесия будет проходить для полимерных систем по пути быстрого роста числа и размеров частиц первой фазы и медленного образования и роста зародышей второй фазы. В пределе такая схема распада на фазы пред ставляет собой постепенное обеднение исходного неравновесного раствора растворителем (отделение пер вой фазы) и достижение в конце концов раствором равновесной концентрации, отвечающей составу второй фазы. При этом неравновесный исходный раствор, пре вращающийся в равновесную вторую фазу, остается пространственно непрерывным, а быстро возникающие и растущие зародыши первой фазы оказываются как бы диспергированными в непрерывном остове. [c.176]

    Дополнительные сведения, подтверждающие важное значение мостовых связей, мы находим в описании результатов экспериментов по определению фильтруемости сфлокулироваиных осадков и изучению влияния интенсивности перемешивания воды на флокуляцию. В опытах по фильтрации [190, 191] показано, что по мере увеличения дозы ВМФ (синтетических и природных, катионных и анионных) удельное сопротивление осадков уменьшается, а скорость фильтрации соответственно возрастает (пропорционально дозе ВМФ). Причина состоит в образовании пространственной сетки и гидрофобизации поверхности частиц под действием адсорбировавшихся полимеров. Под давлением флокулы проявляют пластические свойства. [c.304]

    Эффективное сшивание наблюдается и при образовании в каучуке кристаллитов с размерами, близкими к размеру частиц сажи в наполненных резинах. Силы межмолекулярного взаимодействия, возникающие в этом случае, называют вторичными поперечными связями. В кристаллитах, образуюхцихся при деформации кристаллизующихся эластомеров, эти связи перераспределяются, носят обратимый характер и количество их может зависеть от соотношения скоростей деформации, рекристаллизации и частоты деформационных воздействий. Связи рассматриваемого типа являются полифункциональными и могут связывать, например, в одном узле пространственной сетки одновременно более пяти молекулярных цепей. В некоторых полимерах такие связи возникают в результате соединения молекулярных цепей тетра- и трифункциональными связями. Обычно влияния связей этого типа и поперечных химических связей, образованных атомами серы, рассматриваются как кооперативные, взаимо-усиливающие. [c.223]

    Стереорегулярность полимера, очевидно, является следствием образования комплекса изопропилатом натрия и аллилнатрием, на поверхности которого адсорбируется мономер с образованием промежуточного комплекса. Последний пространственно ориентирует каждую молекулу мономера, вызывает смещение электронной пары в молекуле мономера и ее присоединение к растущей цепи полимера. Полимеризация идет с высокими скоростями, а образующийся полимер имеет очень большой молекулярный вес (15 000 000—20 000 000). [c.165]

    А1(0К)з + (п + 1)Н20 — R0[-Al(0R)0-] H + 2nR0H Т. к. все алкоксильные группы, связанные с атомом алюминия, гидролизуются примерно с одинаковой скоростью, образующиеся полимеры имеют, как правило, разветвленное строение. Эти полимеры мало устойчивы к действию воды, к-рая вызывает отщепление содержащейся в боковых цепях полимера алкоксильной группы и приводит к образованию нерастворимых полимеров. Большой интерес представляют А. п. структуры I, получаемые гидролизом таких алкоголятов А1, в к-рых одна из алкоксильных групп имеет внутрикомплексную связь с атомом Al или менее склонна к гидролизу в связи с пространственными затруднениями. Полимеры I получают гидролизом алкоголятов алюминия, предварительно обработанных ацетоуксусным эфиром или ацетилацетоном. [c.52]

    Особенности физических свойств аморфных полимеров. Поскольку всякое структурное превращение в А. с. требует времени, что проявляется, как ранее упоминалось, в релаксационных явлениях, многие свойства аморфных полимерных тел очень чувствительны к скорости внешних воздействий, а также к темп-ре. Так, высокоэластич. линейный полимер ведет себя как стеклообразный (иногда даже хрупкий) при достаточно высоких скоростях деформациц или при низких темп-рах (см. Стеклообразное состояние), но проявляет текучесть, характерную для вязкотекучего состояния, т. е. для жидкого по агрегатному состоянию аморфного полимера, при достаточно медленных силовых воздействиях или при достаточно высоких темп-рах. Поэтому полимеры в А. с. являются упруговязкими телами при линейном строении их макромолекул и вязкоупругими телами при образовании прочной пространственной структуры. [c.62]


Смотреть страницы где упоминается термин Полимеры пространственные, скорость образования: [c.128]    [c.69]    [c.392]    [c.80]    [c.129]    [c.84]    [c.34]    [c.255]    [c.58]    [c.16]    [c.18]    [c.18]    [c.202]    [c.255]    [c.185]    [c.265]   
Технология синтетических пластических масс (1954) -- [ c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Пространственные образования

Пространственные полимеры

Скорость образования



© 2025 chem21.info Реклама на сайте