Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы синтеза стереорегулярных полимеров

    В последнее время найдены методы получения стереорегулярных полимеров. В молекулах таких полимеров замещающие группы всех звеньев расположены в одной плоскости и по одну сторону основной цепи макромолекул. Благодаря такому расположению замещающих групп нет препятствий к сближению макромолекул относительно друг друга и возникновению, упорядоченных участков. Стереорегулярные полимеры характеризуются наиболее высокой степенью кристалличности. Синтезы стереорегулярных полимеров осуществляют преимущественно на катализаторах, возбуждающих анионную полимеризацию и не растворимых в мономере [59, 60], Стереорегулярные полимеры можно получить и катионной полимеризацией, но при низких температурах (—40 , —60°). [c.764]


    Укажем лишь на главнейшие успехи в области новых методов синтеза полимеров. К их числу принадлежит открытие Циглером и Натта новых катализаторов для полимеризации олефино-вых углеводородов, позволивших получить стереорегулярные полимеры открытие способов получения привитых и блок-сополимеров открытие циклополимеризации диеновых мономеров применение дегидратационной полимеризации открытие реакции полирекомбинации различных соединений проведение поликонденсации на границе раздела фаз, образованных двумя несмешивающимися жидкостями развитие гидролитической полимеризации циклических соединений новые методы модификации целлюлозы получение координационно-цепных полимеров. Ниже мы остановимся вкратце на каждом из перечисленных исследований. [c.34]

    Практические достижения в области стереоспецифической полимеризации опережают развитие теории этого вопроса. Мы уже видели, насколько широкие возможности для синтеза стереорегулярных полимеров открывает применение комплексных катализаторов Циглера—Натта. В то же время существующие взгляды на механизм этих процессов имеют характер более или менее вероятных гипотез. Главный вывод из уже приведенных данных состоит в том, что оба компонента катализатора, входя в состав каталитического комплекса, играют в нем активную роль. Для биметаллических комплексов, содержащих мостичные связи, можно было бы предполагать, что присоединение мономера идет именно по этим связям, как по более лабильным. Тогда реакцию роста [c.411]

    Первое время после открытия и применения в полимеризации комплексных металлорганических катализаторов считалось, что они не приемлемы для использования в реакциях полимеризации неуглеводородных мономеров. Однако дальнейшее развитие исследований в этой области привело к заключению, что новые катализаторы открывают ранее неизвестные возможности в синтезе стереорегулярных полимеров достаточно широкого круга мономерных веществ. Прежде всего следует обратить внимание на полимеризацию винилхлорида [42]. [c.171]

    Оксиды тяжелых металлов (хрома, молибдена) на носителях типа силикагеля, оксида алюминия, алюмосиликатах также способствуют полимеризации различных ненасыщенных углеводородов (олефинов, диенов) и синтезу стереорегулярных полимеров. Промоторами таких катализаторов являются оксиды щелочноземельных и тяжелых металлов (стронция, вольфрама, железа, кобальта и т.п.). Оксидные катализаторы менее активны, чем катализаторы Циглера — Натта. Полимеризация в присутствии этих катализаторов протекает при более высокой температуре, а получающиеся полимеры имеют меньщую длину цепи. При полимери- [c.548]


    Практическое решение задачи повышения когезионной прочности применением стереорегулярного полиизопрена с высокой молекулярной массой и узким ММР весьма проблематично, несмотря на то, что синтез такого полимера вследствие успехов в области полимеризации под влиянием комплексных катализаторов принципиально возможен. Переработка высокомолекулярного полимера чрезвычайно затруднительна и связана с сильной деструкцией полиизопрена, что приводит к резкому снижению молекулярной массы, расширению ММР и, следовательно, к понижению когезионной прочности. [c.227]

    Применение катализаторов на основе металлов переменной валентности в некоторых случаях не позволяет полностью удалить из каучуков остатки катализатора, что может привести к значительному снижению стабильности каучука. С этой точки зрения синтез стереорегулярных каучуков с применением литийорганических соединений обеспечивает получение более стабильных полимеров, чем с применением катализаторов на основе кобальта, титана, ванадия. [c.628]

    Полимеризация окиси пропилена в присутствии некоторых металлоорганических катализаторов, как отмечалось выше, ведет к стереорегулярным полимерам. В продуктах полимеризации содержатся фракции, обладающие способностью к кристаллизации и представляющие собой изотактический полипропиленоксид, т. е. полимер, в цепи которого мономерные звенья имеют одинаковую стереохими-ческую конфигурацию. Относительная доля такого полимера в суммарном продукте широко варьируется подбором катализатора и сокатализатора, их соотношением, температурой синтеза, средой и т. п. Этп же факторы существенно влияют на другие свойства полимеров, в частности на молекулярно-массовое распределение. [c.254]

    Каталитическая система, состоящая из алкилов и галогенидов металлов, использованная Циглером и Натта для синтеза стереоспецифических виниловых полимеров, представляет лишь одну из каталитических систем, в которых центры, контролирующие реакцию роста цепи, возникают на мелких, иногда коллоидного размера, частицах металлов или металлоорганических соединений. В этой главе рассматриваются другие катализаторы и каталитические системы, которые пригодны для получения стереорегулярных полимеров. [c.242]

    Использование металлокомплексных катализаторов циглеровского типа позволяет в промышленности проводить синтез не только димеров, тримеров, но и полимеров на основе этилена, пропилена, бутадиена и изопрена - синтез стереорегулярного изо-тактического полипропилена  [c.583]

    Аналогичными методами удалось решить вопрос об одновременности вступления в реакцию инициирования всех активных центров при синтезе живущих полимеров, установить наличие центров различной активности в случае стереорегулярной полимеризации на гетерогенных катализаторах, отличить деструкцию по закону случая от деполимеризации (с 622), выявить соотношение сшивания и разветвления при действии различных агентов на полимер и т д [c.548]

    Основная область научных работ — химия полимеров. Изучал полимеризацию диеновых и ви-нильных соединений под действием металлоорганических катализаторов, разработал технологию синтеза стереорегулярного изопре-нового каучука СКИ. [c.256]

    Возможность образования с помощью комплексных металлорганических катализаторов стереорегулярных полимеров, отличающихся необычным сочетанием технических свойств, вызвала во всем мире глубокий интерес к изучению закономерностей полимери-зационных процессов с этими катализаторами. Это, естественно, привело к развитию всестороннего исследования структурных особенностей и вызванных ими химических свойств различных металлорганических комплексов, позволивших их использовать не только в получении полимеров различных типов, но и в других областях органического синтеза. [c.5]

    Изотактический П. м. б. получен полимеризацией О. п. в присутствии металлоорганич. катализаторов (См. Окисей органических полимеризация). Существует в оптически активной и рацемич. форме (см. Оптически активные полимеры). Изотактич. П. кристаллизуется в ячейке орторомбич. типа, включающей 2 полимерных цепи, взаимное расположение к-рых таково, что наличие противоположных по конфигурации (D или L) макромолекул не препятствует кристаллизации. Плотность полностью кристаллич. полимера 1,157 г/см , степень кристалличности варьирует в очень широких пределах и зависит, в основном, от способа синтеза. Большинство полимеров этого типа структурно неоднородно и содержит фракции, различающиеся по стереорегулярности фракционирование м. б. осуществлено путем охлаждения р-ров П. в -гексане, ацетоне, изооктане. [c.211]

    Механизм процесса и структура получаемого продукта. В химич. термодинамике постулируется, что путь реакции (т. е. механизм) не влияет на термодинамику процесса. Это справедливо, если несколькими способами можно одни и те же начальные вещества превратить в одни и те же конечные. В случае синтеза высокомолекулярных полимеров это условие трудно выполнимо. Полимеры при одинаковой химич. структуре практически всегда будут отличаться средними мол. массами, молекулярно-массовым распределением (ММР), стереорегулярностью, кристалличностью, природой концевых групп и др. Напр., при П. ацетальдегида и высших альдегидов возможно образование (в зависимости от применяемых катализаторов и темп-ры реакции) изотактических или аморфных атактич. полимеров. В случае образования изотактич. продукта Т р на 8 °С меньше. [c.307]


    В последние десятилетия широкое распространение получила анионно-координационная полимеризация в присутствии комплексных катализаторов Циглера — Натта. Этот метод используется в промышленном синтезе стереорегулярных полимеров. Кроме того, этот метод является единственным для полимеризации а-олефинов (пропилена, бутена-1 и др.). В состав катализаторов Циглера — Натта входят металлоорганические соединения I—П1 групп и хлориды IV—VH групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана. Так как алкильные производные алюминия обладают электроноакцепторными свойствами (алюминий на четыре валентные орбиты имеет три электрона), а металлы переходной валентности являются электронодонорами (имея на -орбитах неспаренный электрон), они легко образуют координационные связи. Такие комплексные катализаторы нерастворимы, и их строение точно не установлено, но па основании данных, полученных при изучении строения растворимых комплексных катализаторов, предполагается, что они представляют собой биметаллический комплекс с координационными связями. При изучении структуры растворимого комплексного катализатора, полученного из дициклопентадиенилхлорида титана и диэтилалюмииийхлорида методом рептгеноструктурного анализа, было установлено, что он имеет следующее строение  [c.89]

    Имеющиеся в настоящее время данные позволяют сформулировать основные принципы механизма действия комплексных цата-лизаторов, а также выявить некоторые общие закономерности реакций полимеризации олефинов. Однако многие проблемы, касающиеся важнейших деталей механизма полимеризации на системах Циглера—Натта (например, структуры активных центров, причин регулярного построения цепи, природы основных актов обрыва цепей и т. д.), еще не нашли своего экспериментально обоснованного решения. По каждому из таких вопросов в литературе высказан ряд соображений, часто имеющих гипотетический, а нередко и взаимоисключающий характер. Многие из этих предположений, затрагивающих аиболее важные, но трудно доступные экспериментальной проверке стороны механизмов элементарных актов, включены в данную монографию. Их следует рассматривать как рабочие гипотезы, которые представляют определенную научную ценность в качестве исходных посылок при постановке новых целенаправленных экспериментов. Ряд вопросов, например взаимодействие между компонентами комплексных катализаторов, кинетические аспекты процессов полимеризации на катализаторах различного типа, синтез стереорегулярных и оптически активных полимеров, технологическое оформление промышленных процессов полимеризации, вообще еще не были освещены даже в частных монографиях. [c.8]

    Книга представляет собой монографию по синтезу и свойствам стереорегулярных полимеров, в которой собран и систематизирован обширный материал по линейной и стереорегулярной полимеризации и сополимеризации этиленовых и ацетиленовых углеводородов, виниловых соединений, в том числе виниловых эфиров и акрилатов, и окисей олефинов. Приведен краткий обзор теории радикальной и ионной полимеризаций и подробно рассмотрены вопросы каталитической полимеризации и механизм таких реакций, в том числе на гетерогенных катализаторах Циглера — Натта. Особое внимание уделено способам получения и свойствам катализаторов для стереорегулярной полимеризации. Рассматриваются также вопросы очистки полимеров, их физические и механические свойства. В книге содержится обширная библиография. [c.127]

    Особенно большоезначениеанионная полимеризация приобрела после открытия синтеза стереорегулярных полимеров, имеюш,их строго определенное регулярно повторяющееся расположение в пространстве звеньев макромолекулы. Впервые стереорегулярные полимеры были синтезированы в 1955 г. итальянским химиком Дж. Натта с помощью комплексного катализатора. В качестве такого каталитического комплекса применяют смесь триэтилалюминия (С2Н5)зА1 и четыреххлористого титана (катализатор Цигле- [c.452]

    Интересным примером синтеза стереорегулярных полимеров при помощи реакции поликонденсации в отсутствии стереоспецифических катализаторов является образование полимера из фенилсилоксана [511]. Вначале образуется синдиотактическая цепь  [c.101]

    Наиболее полно изучены реакции цис-транс-изомери-зации п миграции двойных связей под влиянием свободных радикалов. Однако в связи с широким развитием работ по синтезу стереорегулярных полимеров диепов иод действием катализаторов координационно-ионного типа существенный интерес приобретают сопутствующие этим процессам вторичные реакции взаимодействия готовых полимерных ценой с ката.)Шзато])ами ионного типа, приводящие к изменению TpyKTyjibi и свойств полимеров. [c.408]

    Окиси тяжелых металлов (хрома, молибдена) на носителях типа силикагеля, окиси алюминия, алюмосиликатах также способствуют полимеризации различных ненасыщенных углеводородов (олефинов, диенов) и синтезу стереорегулярных полимеров. Промоторами таких катализаторов являются окислы щелочноземельных и тяжелых металлов (стронция, вольфрама, железа, кобальта и т. п.). Окисные катализаторы менее активны, чем катализаторы Циглера — Натта. Полимеризация в присутствии этих катализаторов протекает при олее высокой температуре, а получающиеся полимеры имеют меньшую длину цепи. При полимеризации пропилена на хромоокисном катализаторе образуется смесь атактического и изотактического полипропилена. Полимеризация диеновых углеводородов приводит к образованию стереорегулярных полимеров. Механизм действия этих катализаторов изучен недостаточно. [c.546]

    Синтез стереорегулярных полимеров также осуществляется по реакции цепной полимеризации. Катализаторами этой реакции являются комплексы металлорганических соединений с галогенидами металлов переменной валентности. Иногда в качестве катализаторов используется окись хрома, нанесенная на твердый носитель (5Ю2+А120з). Проведение реакции полимеризации на твердой поверхности является пока обязательным условием получения стереорегулярных полимеров. Процесс синтеза стереорегулярных полимеров в присутствии указанных катализаторов протекает очень быстро, при обычной температуре и атмосферном давлении. Образующийся полимер имеет очень большой молекулярный вес, достигающий сотен тысяч и даже миллионов. [c.640]

    Суммируя изложенное, сделаем следующие заключения. При реакции роста на ионных парах с локализованной связью С—Mt основным фактором, определяющим конечную структуру полимера, является акцепторная способность противоиона. От нее зависит наличие и.чи отсутствие предориентационных эффектов. Тем не менее даже в оптимальном случае (литиевый противоион в неполярной среде в отсутствие независимых электронодоноров) высокая стереоспецифичность активных центров не является обязательным следствием предориентации. Это показывает сопоставление данных, относящихся к изопрену и бутадиену. Следовательно, конечный результат зависит от стереохимии перехода молекулы мономера из состава я-комплекса в растущую цепь, для которого природа мономера весьма существенна. Отсутствие предориентации (которое может быть обусловлено либо координационной насыщенностью противоиона, либо его низкой акцепторной способностью), так же как и я-аллильное состояние концевой связи С—Mt, приводят к избирательности другого рода, а именно к преимущественному образованию 1,2- или 3,4-звеньев. Эта избирательность не сопровождается, однако, способностью соответствующих активных центров к селективному образованию возможного для таких цепей изо- или синдио-тактического построения макромолекул. Синтез стереорегулярных полимеров подобного рода, осуществленный при использовании катализаторов Циглера — Натта (см. гл. V), ни в одном из случаев полимеризации неполярных мономеров в анионных системах зафиксирован не был 1. Последнее относится и к мономерам стирольного [c.74]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    В масштабе общего объема исследований, сосредоточенных на катализаторах Циглера—Натта, вопрос о полимеризации полярных мономеров под их действиел представляется частным. Внимание к нему привлекает некоторый прогресс в детализации механизма соответствующих процессов. Первые работы в этом направлении преследовали чисто синтетические цели успехи в области стерео-специфического синтеза поли-а-олефинов и диенов стимулировали многочисленные попытки получения стереорегулярных полярных полимеров на основе этих эффективных и, как казалось, универсальных инициирующих систем. Затруднения, возникавшие во многих случаях их использования для полимеризации полярных мономеров, в общем удалось преодолеть путем модификации катализаторов, т. е. подбора специальных компонентов и применения дополнительных комплексообразующих соединений (оснований Льюиса). Тем не менее синтез стереорегулярных полимеров в таких случаях пока достигнут лишь для ограниченного числа мономеров (простые виниловые эфиры и некоторые винильные соединения с экранированными полярными группами см. стр. 263). Это обусловлено прежде всего тем обстоятельством, что присутствие полярного мономера способно воспрепятствовать образованию активных центров ионно-координационного тина или вызывать их пассивацию при параллельном генерировании свободных радикалов. Естественное следствие этого — инициирование радикальной полимеризации. Поэтому первая задача, возникающая при разработке синтеза стереорегулярных полимеров из полярных мономеров на основе катализаторов Циглера—Натта, состоит в выяснении условий, необходимых для сохранения ионно-коор-динационного механизма реакций инициирования и роста. Обсуждению этого вопроса следует предпослать краткую характеристику специфических особенностей комплексных катализаторов данного типа. [c.255]

    Координационно-ионная полимеризация в присутствии гомогенных и гетерогенных катализаторов. Стереоспецифические эффекты в реакциях координационноионной полимеризации. Принципы синтеза стереорегулярных полимеров. [c.383]

    Первый синтез стереорегулярного полимера - поливинилизобутилового эфира осуществил Шильдкнехт в начале 1950-х гг. У волокон такого полимера была обнаружена кристаллическая структура с периодом 0,62 нм. В то же время работы в данной области проводил Натта. Он внимательно следил за работами Циглера, который на катализаторах AIR3 получал олигомеры этилена. Натта сразу оценил значение одного из опытов Циглера, в котором на каталитической системе Л1Кз-Т1С14 был получен полиэтилен. Он применил эту систему к полимеризации пропилена и впервые получил стереорегулярный изотактический полипропилен, упомянутый выше. Большое значение в успехе Натта имело примененное им фракционирование полимера в кипящих растворителях, позволившее выделить стереорегулярную кристаллизующуюся фракцию, содержание которой в первых опытах не превышало 40 %. В короткий срок Натта и его сотрудники получили целый ряд других стереорегулярных полимеров а-олефинов, диенов и стирола на катализаторах Циглера-Натта . [c.243]

    Таким образом, несмотря на наличие некоторых общих черт у радикальной н ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных расту1цих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободнорадикальной полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакциоппоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры). [c.36]

    Принципиально иным путем является синтез двойных или тройных сополимеров окиси пропилена с ненасыщенными эпоксидадш, которые отверждаются затем обычной серной вулканизацией [2, 88]. В синтезе промежуточного полимера используют различные металло-оргапические катализаторы, а в качестве сшивающего компонента — моноокись бутадиена, аллилглицидиловый эфир, глицидилакрилат, моноокись винилциклогексена и др., добавленные в количестве нескольких процентов. Разработаны рецептуры отверждения при 150 °С. Склонность готовых каучуков к кристаллизации может быть понижена за счет отделения стереорегулярной фракции на стадии олигомера либо введением в сополимер третьего мономера, например окиси этилена, разупорядочивающего регулярные последовательности. [c.248]

    Особенно интересно выяснить причины, вызываюш ие образование стереорегулярных полимеров при применении катализаторов Циглера—Натта. Многие наблюдения, относяш иеся к этой области, указывают на существование связи между стереоспецифичностью катализатора и гетерогенностью системы катализатор— мономер. Так, образование изотактических поли-а-олефинов до настоящего времени обнаружено лишь при использовании кристаллических нерастворимых катализаторов. Немногие известные процессы полимеризации а-олефинов под влиянием растворимых стереоснецифических катализаторов приводят только к образованию синдиотактических полимеров [39]. Вместе с тем далеко не кагкдый нерастворимый катализатор позволяет синтезировать стереорегулярньш поли-а-о.пефин (табл. 54, 55). При синтезе изотактических полимеров олефинового ряда определяющая роль часто принадлежит кристаллической структуре катализатора. [c.418]

    Эффект стереорегулярности можно поэтому объяснить ориентацией мономера на новерхности кристаллической решетки катализатора либо в стадии образования я-комплекса с катализатором, либо в переходном состоянии. Такое представление делает понятной связь между кристаллической структурой катализатора и его стереоспецифичностью. Необходимо подчеркнуть, что образование макромолекулы изотактического строения является энергетически менее выгодным, так как в этом случае расстояния между ближайшими боковыми группами полимерной цепи оказываются наименьшими. При синтезе изотактических полимеров катализатор навязывает растущей цепи структуру, менее вероятную с термодинамической точки зрения. Поэтому для объяснения механизма стереоспецифичности недостаточно приписать твердому катализатору ориентирующую способность по отношению к растущей цепи. Детальная интерпретация этого явления требует сопоставления пространственных структур катализатора и мономера с микроструктурой полимера. Как полагает Косси [40], для системы пропилен—Ti lg—AlRg можно принять, что начало реакции происходит за счет вакантного места (дефекта) на новерхности кристаллической решетки катализатора (образование я-комплекса мономера с титаном), рост идет но связи Ti—С и снова возникает вакантное место при закреплении очередной молекулы мономера в составе растущей цепи  [c.419]

    Одним из ведущих направлений современной полимерной химии является синтез полимеров на основе этилена, пропилена и других олефиновых углеводородов — продуктов переработки нефти и природаого газа. Успехи в синтезе полиэтилена, полипропилена и других нолиолефинов неразрывно связаны с развитием наших знаний в области металлоорганических ката.пизаторов, благодаря которым при низких давлениях стало возможным получение полимеров регулярного строения. Такие стереорегулярные полимеры отличаются высокой степенью кристалличности, прочностью, высокими температурами плавления. Применение новых катализаторов, в частности, позволяет производить синтетические каучуки, превосходящие по своему качеству натуральный каучук. [c.24]

    Другие элементоорганические соединения, например алюминийорганические, являются исключительно ценными компонентами катализаторов Циглера — Натта, широко применяемых в производстве стереорегулярных полимеров они используются также для синтеза высших жирных спиртов, карбоновых кислот, а-олефинов, циклоолефинов и других важных соединений. Оловоорганические соединения находят все возрастающее применение в качестве стабилизаторов полимеров и материалов на их основе, как катализаторы и т. д. Органические соединения свинца, в частности тетраалкилпроизводные, используются как антидетонационные добавки к моторным топливам. Большое применение нашли фосфорорганические соединения в качестве пестицидов, как пластификаторы и огнестойкие добавки к полимерам. [c.10]


Смотреть страницы где упоминается термин Катализаторы синтеза стереорегулярных полимеров: [c.547]    [c.223]    [c.9]    [c.403]    [c.440]    [c.316]    [c.401]    [c.404]    [c.409]    [c.354]    [c.213]    [c.256]    [c.183]   
Основы химии высокомолекулярных соединений (1961) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры как катализаторы и суб

Стереорегулярность полимера

Стереорегулярные полимеры



© 2025 chem21.info Реклама на сайте