Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость и конформация

    Повышение индекса вязкости масел при добавлении вязкостных присадок можно объяснить следующим образом. Под влиянием колебательно-вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. В разбавленных растворах макромолекулы менее зависят друг от друга в своем тепловом движении, поэтому конформационный набор их весьма разнообразен. При этом вязкость разбавленных растворов вязкостных присадок мало зависит от температуры, и загущенные масла имеют высокий индекс вязкости. С увеличением концентрации вязкостных присадок в маслах расстояние между макромолекулами быстро сокращается, появляется межмолекулярное взаимодействие и набор конформаций, принимаемых макромолекулами, обедняется. Поэтому максимум значения индекса вязкости соответствует определенному значению концентрации вязкостной присадки. Дальнейшее увеличение концентрации вязкостной присадки приводит к снижению индекса вязкости загущенных масел. [c.144]


    Однако увеличение вязкости среды на 4 - 5 десятичных порядков приводит к снижению в 10 - 100 раз. В связи с этим гель-эффект может быть объяснен не только изменением вязкости среды, но и конформацией макромолекулярных радикалов, их равновесной гибкостью (см. гл. 2). [c.234]

    Молекулярную модель эластомеров можно рассматривать как сетку, временными узлами которой являются структурные микроблоки (физические узлы). Отрезки цепей, не входящие в данный момент в микроблоки, изменяют свою конформацию со скоростью теплового движения и за время жизни данных физических узлов они успевают много раз изменить свою конформацию. Так как время жизни микроблоков значительно больше, чем время перехода свободных сегментов из одного равновесного положения в другое, скорость вязкого течения зависит главным образом от скорости разрушения и восстановления микроблоков, а вязкость — от их среднего числа в единице объема полимера. [c.168]

    От всех масел резко отличаются две группы синтетических масел полиорганосилоксановые и фторуглеродные. Полиорганосилоксановые масла по вязкостно-темп( ратурным свойствам превосходят все известные масла и значительно лучше нефтяных масел. Их вязкость с изменением температуры от 100 °С до —34°С увеличивается лишь в 14 раз, в то время как вязкость нефтяного масла возрастает в тысячи раз. Низкий температурный коэффициент изменения вязкости полиорганосилоксанов связан с особенностью их строения. При низких температурах макромолекулы органосилоксанового масла имеют преимущественно спиралеобразную конформацию, что приводит к небольшому числу межмолекулярных взаимодействий между макромолекулами. При повышении температуры спирали разворачиваются, число межмолекулярных связей увеличивается, что приводит к определенной компенсации уменьшения вязкости, вызванного усилением теплового движения макромолекул и их сегментов. Фторуглеродные масла, наоборот, отличаются очень резким повышением вязкости с понижением температуры. Они имеют относительно высокие температуры застывания (не ниже -30°С). [c.662]

    III. 6. Зависимость характеристической вязкости раствора некоторого полимера от молекулярной массы полимера выражается формулой [ii] = 3,5-10- Какова конформация макромолекул данного полимера  [c.209]

    III. 7. Для некоторых белков характеристическая вязкость раствора равна примерно 0,03 дл/г и в пределах ошибки эксперимента не зависит от молекулярной массы белка. Какова конформация макромолекул этих белков  [c.209]


    Теория Д. В. Тищенко объясняет большинство фактов из практики применения полифенольных реагентов. Менее обосновано распространение ее на понизители вязкости других типов. Так, действие лигносульфонатов эта теория также объясняет наличием пирокатехиновых группировок, но ввиду их незначительного содержания Д. В. Тищенко не считает лигносульфонаты эффективными реагентами, что противоречит известным фактам. Неубедительно и объяснение действия гуматов присутствием в них пирокатехина. Многие факты свидетельствуют о том, что между полифенолами и глиной устанавливаются не ковалентные, а водородные и координационные связи. Неприменима эта теория и к неорганическим понизителям вязкости, хотя по своему действию они имеют много общего с реагентами органического происхождения. Теория действия понизителей вязкости не может исходить только из особенностей их строения. Необходимо основываться и на формах связи их с поверхностью глины, на закономерностях коллоидно-химического поведения реагентов, конформации макромолекул, механической характеристике стабилизирующих слоев и т. п. [19]. [c.72]

    Выход флуоресценции (Ф ) молекул, способных к внутреннему вращению, в значительной степени зависит от вязкости и температуры среды. Это явление можно охарактеризовать как внутреннее тушение флуоресценции, обусловленное вращением части молекулы относительно ее остатка (отклоняющейся от плоской конформации в течение возбуждения). Для таких молекул изменение выхода флуоресценции можно выразить через время релаксации внутреннего вращения р  [c.277]

    Крайний случай конформационно о изменения — денатурация белков, которая может быть вызвана нагреванием или обработкой различными реагентами, например сильными кислотами и основаниями, мочевиной, гуанидингидрохлоридом и додецилсульфатом натрия. Денатурация приводит к развертыванию молекулы белка, и он переходит в более или менее разупорядоченное состояние (здесь уже почти нет ни спиралей, ни (3-слоев, ни любых других типов регулярной укладки цепи). В денатурированном состоянии амидные группы пептидной цепи образуют водородные связи с окружающими их молекулами воды таких водородных связей значительно больше, чем внутримолекулярных. Специфическая биологическая активность белка при денатурации теряется, изменяются и физические свойства, например меняется константа седиментации, вязкость и поглощение света. Легкость, с которой происходит денатурация белка, и тот факт, что денатурация в принципе обратима, свидетельствуют о том, что различия в энергии между свернутыми конформациями и открытой конформацией статистического клубка невелики. [c.105]

    Имеющиеся экспериментальные данные свидетельствуют о том, что трехмерные структуры белков характеризуются плотнейшей упаковкой атомов. Коэффициенты упаковки белковых молекул в нативном состоянии имеют значения от 68 до 82%. Для сравнения напомним, что у правильных сферических тел этот коэффициент равен 74%, а у молекул воды и циклогексана - 58 и 44% соответственно. По плотности упаковки атомов белковые молекулы близки кристаллам малых органических молекул (70-78%). Нативные структуры белков имеют также незначительные коэффициенты сжимаемости, близкие, например, коэффициентам сжимаемости олова и каменной соли. Высокая компактность глобулярных белков подтверждается большой плотностью, малой вязкостью и малыми молекулярными объемами нативных белков в растворе. Так, наблюдаемые у них величины плотности (1,3-1,5 г/см ) выше, чем у сухих белков и близки величинам плотности кристаллов низкомолекулярных органических соединений. Это свойство пространственных структур белковых молекул безупречно с физической точки зрения и очень образно передает определение их как "апериодические кристаллы" - термин, использованный Э. Шре-дингером для характеристики состояния хромосом [52]. Таким образом, есть все основания заключить, что нативная конформация белка представляет собой плотно упакованную структуру с максимальным числом внутримолекулярных контактов между валентно-несвязанными атомами. [c.102]

    Важной отличительной чертой конформаций, стабилизированных кооперативными взаимодействиями, является то, что переход молекул в неупорядоченное состояние совершается достаточно резко независимо от того, чем он вызван изменением температуры, состава или ионной силы растворителя или другого фактора. Часто такой переход приближается к случаю все или ничего , т. е. сильно отличается от постепенного сдвига конформационного равновесия в малых молекулах. Подобные резкие переходы могут быть обнаружены путем измерения любого физического параметра полисахарида, который зависит от общей конформации его молекулы. Характерные сигмоидные кривые иллюстрируют конформационные переходы ксантана, за которым следили по изменениям вязкости, оптического вращения в монохроматическом свете, площади детектируемого сигнала в спектре ЯМР (рис. 26.4,3) или амплитуды кривой кругового дихроизма при соответствующей длине волны, а также другими методами. [c.294]


    Комплекс полиокса с карбамидом содержит две молекулы карбамида на мономерное звено, не растворим в бензоле, имеет высокую кристалличность и температуру плавления около 145 °С. Комплекс с тиокарбамидом того же состава образуется более медленно. Оба комплекса растворимы в воде. Исследование ИК-сиектров комплексов позволяет предположить изменение конформации полимера ири комилексообразовании, о чем свидетельствуют также изменения вязкости. [c.274]

    При увеличении степени диссоциации возрастает электростатическое отталкивание одноименно заряженных групп макромолекул, что приводит к существенному изменению их конформации в растворе, а именно цепи, свернутые в клубок, распрямляются и стремятся принять форму, приближающуюся к линейной. В результате этого увеличивается эффективный размер молекул и существенно изменяются физико-химические свойства растворов, например, возрастает вязкость, изменяется интенсивность светорассеяния. При уменьшении степени диссоциации макромолекулы, наоборот, сворачиваются, приобретая конформации с наибольшим значением энтропии в системе. Если pH раствора поддерживают постоянным, то в результате электростатического взаимодействия ионизированной части полярных групп и теплового двилсения уста [(а вливаются определенные конформации молекул. Состояние равновесия зависит от величины заряда полииона, состава раствора, температуры. [c.151]

    Как влияет изменение конформаций макромолекул на вязкость и светорассеяние растворов полиамфолитов  [c.155]

    Сопоставление этих уравнений показывает, что, во-первых, с увеличением вязкости значения А"р и уменьшаются, а во вторых, значительно более чувствительна к величине эффективной вязкости среды, чем Ар. Отношение с увеличе-. нием степени превращения растет, а следовательно, растет и скорость реакции полимеризации. Значения А р начинают существенно изменяться при > 0,5. Очевидно, что увеличение вязкости приводит к замедлению диффузионных процессов. В реакции роста макрорадикала принимают участие и макро-, и микрочастицы, т. е. макрорадикал и молекула мономера. Вместе с тем обрыв цепи происходит легче всего за счет рекомбинации двух макрорадикалов. Поэтому должна уменьшаться значительно медленнее, чем Л д, а вместе с тем их отношение должно расти, и, следовательно, должна возрастать скорость полимеризации в целом, что и наблюдается как гель-эффект. Диффузионные ограничения с ростом вязкости для малых молекул возрастают в значительно меньшей мере, чем для фомоздких макрорадикалов. Кроме того, макрорадикалы по мере увеличения степени полимеризации, находясь в растворенном состоянии, будут стремиться занять термодинамически наиболее выгодную конформацию статистического клубка. [c.233]

    Будучи гибкой, полимерная цепь непрерывно флуктуирует, приобретая всевозможные конформации. Множественность конформаций непосредственно связана с вязкоупругими свойствами полимеров и во многом определяет их высокоэластичпость. Молекулярная масса, характеризуемая степенью полимеризации, влияет на текучесть полимерных расплавов и растворов, а также на деформируемость и прочность полимерных тел. С ростом степени полимеризации механическая прочность и вязкость полимеров увеличиваются. С вязкостью полимерных веществ связаны релаксационные процессы, протекающие при различных механических воздействиях. Очевидно, что чем выше молекулярная масса, тем больше время, необходимое для устаповлеиия равновестюго состояния нри механическом воздействии на него. [c.48]

    Конформация цепи определяется степенью ионизации — удаленностью pH от ИЭТ. В ИЭТ раствор полиамфолита показывает минимальные вязкости, степень набухания, растворимость и заряд. Это позволяет использовать зависимость указанных свойств от pH раствора для определения ИЭТ амфолитов. Переход а-спираль— клубок можно наблюдать и по изменению оптического вращения. Удельное вращение [а] раствора складывается из двух членов, одпн из которых соответствует внутреннему вращению, зависящему от асимметричных С-атомов каждого звена, другой — конформа- [c.287]

    Полиэлектролитное набухание наблюдается также при изучении зависимости вязкости раствора слабого полиэлектролита от pH или от степени ионизации. При добавлении кислоты (или щелочи) к слабому полиоснованию (или слабой поликислоте) образуется полисоль, которая хорошо диссоциирована в водном растворе. Поэтому по мере нейтрализации увеличивается число одноименных зарядов в цепи, между ними возникают силы электростатического отталкивания, приводящие к тому, что конформации полиэлектролитных клубков становятся более вытянутыми. Изменение конформации сопровождается увеличением вязкости рас-твора в десятки и сотни раз (рис. IV. 4). Максимальное разворачивание наблюдается не в точке полной нейтрализации, а при а = 0,6 0,8. При более высоких значениях а вязкость уменьшается, что объясняется повышением цонной силы раствора и экранированием зарядов в цепи. Повышение ионной силы приводит к подавлению полиэлектролитного набухания. Поэтому максимум на кривых зависимости приведенной вязкости от pH снижается при повышении концентрации полиэлектролита или при введении в раствор низкомолекулярных солей. [c.122]

    Значение pH раствора полиамфолита, при котором средний суммарный заряд на цепи равен нулю, называется изоэлектрической точкой (ИЭТ). Величина ИЭТ не зависит от концентрации полиамфолита и является важной константой полиамфолита. На различии в ИЭТ основано фракционирование смесей белков, например, методом электрофореза. При определении ИЭТ учитывается суммарный заряд макромолекул, обусловленный не только диссоциацией кислотных и основных групп полиамфолита, но и специфическим связыванием посторонних ионов из раствора. ИЭТ определяется с помощью электрокинетических методов (в частности, электрофореза) либо косвенным путем по изменению свойств, связанных с зарядом макромолекул. Значения степени набухания, растворимости полиамфолитов, осмотического давления и вязкости их растворов в ИЭТ проходят через минимум. Вязкость в ИЭТ минимальна (рис. IV. 7), поскольку вследствие взаимного притяжения присутствующих в равном количестве противоположно заряженных групп полимерная цепь принимает относительно свернутую конформацию. При удалении от ИЭТ цепь полиамфолита приобретает суммарный положительный (в кислой области pH) или отрицательный (в щелочной области pH) заряд [c.127]

    Следует отметить, что даже для тщательно обеспыленных полимерных систем наиболее типично гетерогенное зарождение кристаллизации. В расплаве или растворе полимера в определенном интервале температур всегда присутствуют агрегаты макромолекул, характеризующиеся достаточно большими временами жизни. Они и выполняют роль гетерогенных зародышей. Кристаллизация на гетерогенных зародышах начинается уже при небольших переохлаждениях системы и характеризуется относительно короткими периодами индукции. Скорость гетерогенного зародышеобразова-ния в значительной степени зависит от температурной предыстории системы. Если кристаллический полимер с определенной надмолекулярной структурой многократно расплавлять и расплав нагревать до одной и той же температуры, не слишком превышающей Тпл, то при последующем его охлаждении и кристаллизации исходная морфологическая картина каждый раз в точности повторяется. Эта память расплава объясняется тем, что кристаллизация каждый раз начинается на одних и тех же зародышах, которые в условиях опыта не разрушаются и вследствие высокой вязкости расплава за время опыта даже не успевают существенно переместиться в пространстве. Однако если тот же расплав сильно перегреть, то гетерогенные зародыши разрушаются и последующая кристаллизация уже характеризуется гомогенным зарождением. Она начинается при относительно больших переохлаждениях системы и характеризуется большими индукционными периодами по сравнению с таковыми при кристаллизации на гетерогенных зародышах. Гомогенный зародыш, по всей вероятности, представляет собой одну макромолекулу, принявшую в результате флуктуации кристаллоподобную складчатую конформацию. [c.188]

    Адсорбция полимеров на неиористых и особенно на пористых адсорбентах происходит медленно. Время достижения адсорбционного равновесия быстро растет с увеличением молекулярной массы. Скорость адсорбции полимеров на поверхности непористого адсорбента определяется скоростью достижения макромолекулами поверхности и скоростью их распределения на поверхности. Скорость диффузии макромолекул к поверхности зависит от концентрации макромолекул в растворе, от природы растворителя и его вязкости, а следовательно, и от температуры. Распределение макромолекул на поверхности связано с доступностью для адсорбции макромолекул площади поверхности, т. е. с рельефом и химией поверхности адсорбента и степенью ее заполнения макромолекулами. Все это определяется природой и возможными конформациями макромолекул, их межмолекулярным взаимодействием с адсорбентом, с растворителем и друг с другом. [c.335]

    Особую роль играет внутримолекулярная связь для многих биоорганических соединений (белков, полипептидов, ДНК и др.), определяя равновеснь1е конформации молекул. Внутримолекулярная водородная связь проявляется в спектральных характеристиках системы, влияет на дипольный момент молекулы однако вещества, в которых образуются только такие связи, по своей температуре кипения, плавления, вязкости, диэлектрической проницаемости не обнаруживают заметной специфики по сравнению с системами без водородных связей. [c.125]

    Реологическое поведение вязкоупругих жидкостей далеко не всегда удовлетворяет модели Максвелла, что связано, например, с разрушением имеющейся в системе структуры (или с конформаци-онными изменениями в случае полимеров) с увеличением скорости сдвига. При этом модуль Гука и коэффициент вязкости уже не являются постоянными, и метод Кросса оказывается неприменим. [c.55]

    М. Эффективная константа скорости кэф и приведешгая вязкость растворов при постоянных концентрациях H I и хитозана снижаются с ростом содержания Na I. Это убедительно свидетельствует о влиянии конформации макромолекул на взаимодействие по- [c.500]

    Хитозан проявляет ярко выраженные полиэлектролитные свойства в водной среде приобретает заряд, фиксированный на основной цепи макромолекулы. В связи с этим на его молекулярную конформацию оказывают влияние взаимодействие электрических зарядов, расположенных вдоль основной цепи макромолекул, и локальное сопротивление звеньев макромолекул продольному изгибу. Электростатические заряды влияют на форму макромолекул в растворах, набор конформационных состояний включает как статический клубок, так и более компактное "квазиглобулярное" состояние, характеристическая вязкость растворов зависит от молекулярной массы. Необходимо отметить, что хитозан сравнительно однороден по молекулярной массе. [c.388]

    Все а-, р- и 7-глиадины состоят из единственной полипептидной цепи [64—69, 72, 73, 156]. Цистеины в молекулах а-, Р- и 7-глиадинов связаны внутримолекулярными дисульфидными мостиками. Эти дисульфидные мостики расположены так в полипептидной цепи, что их разрыв приводит к значительной фрагментации цепи [79]. В твердом состоянии после экстракции и лиофилизации глиадины имеют компактную структуру, в образовании которой, вероятно, участвуют гидрофобные остатки [163]. При высокой концентрации в растворе они стремятся к агрегированию, видимо, вследствие образования водородных связей между молекулами [8]. В денатурируюш,ей среде (8М мочевина и 0,1М муравьиная кислота) глиадины имеют рыхлую и асимметричную структуру, на что указывают коэффициенты трения. Восстановление дисульфидных мостиков еш,е сильнее увеличивает асимметрию и степень рыхлости, т. е. пространственного расширения молекулы [140]. Присущая ш-глиадинам вязкость в среде 6М гуанидинхлорида указывает на то, что в этих условиях они находятся в виде статистического клубка из-за отсутствия дисульфидных мостиков. Они обладают такой конформацией в присутствии 2М гуанидинхлорида — концентрации, которая не вызывает денатурации, следовательно, в нативном состоянии в растворе конформация ш-глиадинов — это статистический клубок. Аналогичное исследование а-, р- и 7-глиадинов показывает, что они не имеют жесткой глобулярной конформации, но, наоборот, представляют собой молекулы полужесткой структуры с низкой степенью организации [153]. Основываясь на известных N-концевых последовательностях, Перноле и Мосс [154] предложили модели вторичной структуры. Они представили а-, Р- и 7-глиадины в основном как р-структуру, прерываемую р-из-гибами и непериодическими структурами. Практически отсутствует а-спираль ш-глиадины четко различимы, поскольку наиболее выраженная их структура — это р-изгиб, прерываемый [c.196]

    Для характеристики неупорядоченного состояния лучше использовать средние общие размеры молекулы, а не средние локальные конформации, потому что такие свойства, как объемная вязкость и способность связывать воду определяются общим объемом раствора, охватываемы. подвижной цепью. Математически мол<но показать, что проблема вычисления средних общих размеров сводится к проблеме определения средней ориентации одного углеводного остатка по отношению к следующему за ним остатку и в принципе может быть решена методом построения моделей с помощью ЭВМ [2]. Чтобы рассчитать соответствующие энергии взаимодействий на каждой стадии для их усреднения согласно распределению Больцмана, необходимо рассмотреть все возможные ориентации углеводных остатков относительно друг друга и затем вычислить среднее квадратичное расстояние между концами цепи. Результаты можно сравнить с экспериментальными значениями, в частности полученными методом светорассеяния. Выяснилось, что две основные группы периодичных гомополнсаха-ридов, которые можно распознать по их четко определенным типам конформаций (см. выше), различаются по основным свойствам и в состоянии статистического клубка. Молекулы соединений, имеющих конформацию ленты, как было правильно предсказано [20], охватывают в растворе большее пространство (типичное характеристическое отношение С , 100) по сравнению с молекулами в конформации полой спирали (Сое 10). [c.290]

    Конформация гибкой полиэлектролитной цепи определяется условием минимума для суммы конформационной и электрической свободной энергий. Естественно, что наличие одноименных зарядов в цепи означает их взаимное отталкивание, которое приводит к развертыванию клубка, к увеличению его размеров. Электростатическая свободная энергия клубка вычисляется с учетом ионной атмосферы. Флори построил теорию размеров цепей полиэлектролитов, сходную с предложенной им же теорией объемных эффектов (с. 77). Предполагается, что клубок вместе с иммобилизованным им растворителем в целом электрически нейтрален. Расчет показывает, что электростатические взаимодействия не могут превратить клубок в вытянутую цепь — происходит лишь раздувание клубка. Это согласуется с экспериментальными дап-выми—с зависимостью характеристической вязкости [г ] от м. м. В более строгой статистической теории заряженных макромолекул учитывается, что из-за экранирования противоиоиами заря женные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном их сближении в результате флуктуаций. Из этой теории следует, что конформационные свойства заряженных макромолекул занимают [c.84]

    Авторы рассматривают бимолекулярную реакцию между двумя молекулами (или радикалами) как процесс, состояш ий из трех стадий. Первой стадией является взаимное приближение (и контакт) этих частиц, скорость которого определяется вязкостью среды вторая стадия— создание необходимой для реакции конформации реакционноспособных мест обеих частиц (также связанное с диффузией) третья стадия — сама химическая реакция, которая обычно требует наибольшей энергии активации и определяет скорость суммарного процесса. Однако при столь быстрых реакциях, как взаимодействие двух свободных радикалов, реакция может протекать в диффузионной или сме-ыганной областях. [c.212]

    Известно также, что в растворах карбамида цепи желатина склонны раскручиваться и принимать более вытянутую, асимметричную конформацию [256]. Если сравнить вязкость растворов желатина и продуктов его механодеструкции в воде и растворах ка(рба1мида и рассчитать фактор асимметрии bja ио Куну [257], (рис. 38), то окажется, что во всех случаях продукты деструкции более способны к увеличению асимметрии под действием карбамида, чем исходный желатин, а следовательно, характеризуются большей исходной степенью свернутости, которую они приобрели в ярацессе механодесирукции. [c.88]


Смотреть страницы где упоминается термин Вязкость и конформация: [c.312]    [c.78]    [c.318]    [c.248]    [c.415]    [c.412]    [c.161]    [c.237]    [c.208]    [c.189]    [c.37]    [c.223]    [c.288]    [c.443]    [c.292]    [c.208]    [c.248]    [c.248]    [c.92]   
Смотреть главы в:

Введение в ультрацентрифугирование -> Вязкость и конформация


Введение в ультрацентрифугирование (1973) -- [ c.135 ]




ПОИСК







© 2025 chem21.info Реклама на сайте