Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калий хлористый, действие на железо

    Другие промоторы. Сами по себе окислы металлов также являются катализаторами. Окись хрома (одну или в смеси с глиноземом) применяют для дегидрогенизации. Этой же цели могут служить окись хрома с добавкой окиси церия, смесь окиси магния, окиси железа и окиси калия, окись молибдена (последняя является также катализатором гидроформинга). Соли металлов, в частности соли галогеноводородных кислот, были первыми синтетическими катализаторами в переработке нефти под действием хлористого алюминия проводились процессы крекинга галоидные соли алюминия служат катализаторами процессов полимеризации и изомеризации, а хлористый водород является их промотором. [c.23]


    Хотя газообразный водород не действует вовсе на многие тела прямо, но в состоянии выделения часто взаимодействие происходят. Так, напр., вода, на которую действует амальгама натрия, заключает в себе водород в момент его выделения. Здесь водород выделяется из жидкости и в первый момент своего образования должен иметь сгущенную форму [115] в этом сгущенном виде он способен реагировать на тела, на которые в виде газа не действует. Особенно многочисленны реакции вытеснения металлов водородом в момент его выделения. Металлы, как мы увидим после, способны, во. многих случаях, заменять друг друга они также, а иногда еще и легче, заменяют водород и заменяются им. Мы видели атому пример в образовании водорода из воды, серной кислоты и др. Во всех этих случаях металлы—натрий, железо, цинк — вытесняют водород, находящийся в этих соединениях. Точно таким же способом, каким водород вытесняется из воды, он может быть вытеснен из многих его соединений посредством металлов так, напр., хлористый водород, образующийся непосредственно чрез соединение водорода с хлором, при действии очень многих металлов дает водород, как серная кислота. Из соединений водорода с азотом металлы калий и натрий также вытесняют водород только из соединений углерода с водородом металлы не вытесняют последнего. В свою очередь водород способен вытеснять металлы особенно легко совершается это при нагревании и с такими металлами, которые сами водорода не вытесняют. Если взять соединения многих металлов с кислородом и при накаливании пропускать чрез эти соединения водород, то водород отнимает кислород от металлов, так сказать, заступает их место, вытесняет нх, как металлы вытесняют водород. Если чрез соединение меди с кислородом пропускать при накаливании водород, то получается металлическая медь и вода СиО + Н = Си + Н 0. Такого рода двойное разложение называется восстановлением по отношению к металлам, которые при этом восстановляются в металлическом виде из своих соединений с кислородом. Но необходимо помнить, что не все металлы прямо вытесняют водород из его соединения с кислородом и др., и обратно водород способен вытеснять не все металлы из их соединения с кислородом так, он не вытесняет калия, кальция, алю- [c.101]

    Галогениды, в особенности хлористый свинец, хлористое олово, иодистый свинец, иодистое олово и иодистый цинк, более активны, чем окиси (самыми лучшими были окись олова и окись никеля) в случае смешанных катализаторов окись никеля, окись олова, окись железа повышают количество масла окись молибдена и окись хрома повышают главным образом количество бензина при отношениях окиси никеля к окиси железа 2 1 и окиси никеля к окиси олова и окиси железа 1 1 I получаются такие же результаты, как и при одной окиси никеля среди галогенидов хлористое олово, хлористый аммоний, йодоформ и иодистый калий оказывают сильное активирующее действие [c.315]


    Препараты, отделявшиеся от электролитов продолжительным промыванием, теряют часть своей активности, но она может быть восстановлена добавлением солей, например хлористого лития, хлористого калия, хлористой меди, молочнокислого железа и т. д. Соли закисного железа действуют в разведении даже 0,001 моль/л. Добавление цианистого калия к препаратам, содержащим электролит, не оказывает влияния но прибавление его к препаратам, из которых соли удалены промывкой, вызывает полную потерю активности. Энзим устойчив даже к горячему абсолютному спирту и к соляной кислоте, но легко теряет активность при действии аммиака. [c.383]

    Растворы нейтральных солей хотя и не действуют на железо столь разрушительно, как кислоты, но все же, благодаря образованию микроэлементов, оказывают некоторое корродирующее действие. В этом отношении для железа особенно опасны соли соляной кислоты хлористый аммоний, хлористый натрий (поваренная соль), хлористый калий, хлористый магний и др. [c.25]

    При окислении бензойного и других ароматических альдегидов в качестве катализатора наиболее часто применяются соли кобальта [20, 41, 50, 66, 103, 122, 195]. Используются также фталоцианины меди и железа, соли никеля, хрома, ванадия, АдгО и ВаСОз, алкоголяты натрия и калия, хлористый литий [50, 123, 205] и гетерогенные катализаторы (Р1 и Рё на носителях) [62, 109]. Инициирующее действие солей кобальта [20, 41, 103, 122] обусловлено окислительно-восстанови-тельными превращениями катализатора в системе перекись — соль кобальта — альдегид. При окислении бензальдегида катализатор проявляет и ингибирующую функцию, что отражается в достижении предельного значения скорости реакции и Б появлении индукционного периода [41, 50] с ростом концентрации катализатора. При окислении ароматических альдегидов проявляется и регулирующая функция катализатора [66, 195, 206]. Так, при окислении бензальдегида в бензоле концентрация ацетата Со оказывает сильное влияние на выход бензойного ангидрида [66]. Регулирующая функция катализатора в некоторых случаях может быть обусловлена влиянием солей металлов на окисление альдегида надкислотой [39]. [c.144]

    Металлы, имеющие каталитическое действие в виде металлоорганических соединений, следующие алюминий, кобальт, железо, хром, цирконий, ванадий, натрий, калий, литий, цинк и др. Их каталитическое действие проявляется эффективно особенно в присутствии хлористого никеля и четыреххлористого титана [187 [. [c.321]

    Влияние катализаторов. При окислительно-восстановительных процессах добавки незначительных количеств некоторых веществ часто в значительной мере увеличивают выход по току, ускоряя течение процесса в желательном направлении или задерживая вредные процессы. В качестве таких катализаторов могут быть использованы соли металлов с высоким перенапряжением водорода и соли металлов, дающие две степени окисления, например хлористые соли титана, ванадия, железа. Эти соли играют роль промежуточных восстановителей. Восстанавливая химическим путем органическое вещество, соли переходят в высшую степень окисления, после чего, снова быстро восстанавливаясь на катоде, вновь реагируют с органическим веществом. При окислении неорганических веществ, например сернокислых калия или аммония в надсернокислые, действуют как катализаторы добавки ионов С " и Р . Па устранение потерь продуктов окисления от восстановления на катоде огромное влияние оказывает незначительная добавка хромовокислой соли. [c.361]

    Из уравнения видно, что константа скорости реакции третьего порядка зависит от квадрата объема системы. Для установления константы скорости реакции по ходу реакции определялась концентрация хлористого железа. Брали пробу, к ней прибавляли раствор хлорной ртути, который окислял оставшееся хлористое олово, не действуя на хлористое железо. Последнее определялось путем титрования бихроматом калия. Изучено влияние температуры на константу скорости этой реакции. [c.212]

    В книге Ф. М. Иванова и В. И. Овчарова [78] указывается, что наиболее интенсивно корродирует арматура бетоне при одновременной добавке смеси хлористого натрия й хлористого кальция. В условиях капиллярного подсоса вЛаги глубина коррозийных язв на арматуре достигала 1—2 мм за 15 месяцев. Продукты коррозии представляли собой зеленовато-черную слизистую массу, по-видимому, состоявшую в основном из хорошо растворимого хлористого железа. Хорошее защитное действие оказывает на арматуру обработка ее погружением в 1 %-ный раствор двухромовокислого калия. Обработанная таким образом арматура не корродировала в холодном бетоне в течение 100 циклов периодического увлажнения и высушивания. [c.88]


    Уголь из сахара, приготовленный при 400° и проактивированный при 1000° под давлением меньше 2 мм нагревание в атмосфере азота не показывает влияния на каталитическую активность, в то время как нагревание в атмосфере кислорода иногда увеличивает ее значительно азотнокислый натрий, хлористый калий, хлористый барий не влияют на каталитические свойства угля из сахара окись железа и золь платины ингибируют эти свойства желатина (0,1% раствора) действует таким же образом [c.81]

    Полимеризация этих соединений происходит под действием хлорного железа, эфирата трехфтористого бора, едкого калия, хлористого алюминия и алюминийтриэтила с четыреххлористым титаном. Выходы полимеров и их молекулярные веса уменьшаются с усложнением заместителей. [c.193]

    Металлический калий получают в промышленных масштабах электролизом расплавленного едкого калия. Есть и другие способы получения этого металла прокаливание углекислого калия с порошкам магния в атм-осфаре воцадрода или нагреваитие едкого кали со смесью карбида железа и углл. При применении двух последних способов восстановленный калий под действием высоких температур реакций улетучивается и пары его конденсируются под слоем керосина. Можно также получить калий, нагревая его хлористую соль с кальцием в вакууме или фтористую соль с карбидом кальция без доступа воздуха. Спектроскопически чистый калий, свободный от растворенных газов, может быть получен термическим разложением нитрида калия KN3 в токе авота или в вакууме. Реакция начинается при 320° и при 360° идет достаточно быстро. Выход калия составляет 80%. [c.46]

    Это было обнаружено Миерсом, который проводил статическое исследование действия капель чистой воды или сильно разбавленного раствора хлористого калия, помещенных на железо и окруженных смесью газа, содержащей кислород и азот в различных пропорциях. Результаты приведены на фиг. 35. Число капель, которые вызывали коррозию, уменьшалось с увеличением содержания кислорода в газовой смеси, в то время как скорость коррозии в капле, вызывающей коррозию, возрастала [7]. [c.132]

    Этот способ является весьма перспективным вследствие возможности осуществления процесса в высокоинтенсивных аппаратах непрерывного действия и уменьшения капитальных и эксплуатационных расходов. В качестве реакционной среды применяют расплавленный карналлит а также смесь хлоридов калия и натрия или чистые хлориды, например, расплав Na l для. хлорирования смеси Ti02 и древесного угля при 900°. При содержании в расплаве 2% хлорного железа интенсифицируется массопере-нос хлора к поверхности частиц двуокиси титана. Установлено что количество хлора, транспортируемого растворенным хлорным железом от поверхности пузырька к твердой хлорируемой поверхности, примерно в 100 раз больше количества растворенного хлора, транспортируемого через расплав. Аналогично действует также добавка в расплав хлористого алюминия При температурах выше 750° скорость процесса хлорирования тормозится массопередачей реагирующих веществ в расплаве, окружающем пузырек хлора и твердые частицы ТЮг и кокса Процесс может быть осуществлен в барботерах, снабженных механическими мешалками, аппаратах газлифтного типа и других, в которых не происходит осаждения твердых частиц суспензии. [c.742]

    Остаток на филь.ре промывают холодной ео1дой до тех пор, пока пе будет удалено все хлористое железо, а затем действуют на него разбавленной соляной кислотой. Если полученный раствор снона дает осадо.к тур нбулевой сини с железосинеродисты-м- калием, то это указывает а ири-сутствие в исследо р.анко и) объекте закиси железа. [c.236]

    Гюнтельберг [27] произвел исключительно точные измерения электродвижущих сил указанных элементов, содержащих хлориды лития, натрия, калия и цезия при общей концентрации 0,1 М при 20 и 2 °. В связи с тем, что Гюнтельберг обнаружил в этой работе ошибку, обусловленную присутствием следов иона брома в растворах хлористых солей, соответствующие старые исследования были им повторены, за исключением измерения электродвижущих сил элементов, содержащих хлористый цезий. В этой работе применялись два типа электродов серебро-хлорид серебра, потенциал которых отличался на постоянную величину 0,185 мв. Один из электродов, дававший большую электродвижущую силу, был приготовлен из серебра, полученного путем осаждения из раствора азотнокислого серебра при действии сернокислого закисного железа. Второй электрод был получен путем электролитического осаждения серебра из раствора азотнокислого серебра. Элемент с электродом первого типа имел при концентрации соляной кислоты, равной 0,1 М, электродвижущую силу 0,35316 при 20° и 0,35233 при 25°. Харнед и Элерс [28] получили при этих же температурах соответствующие значения 0,35322 и 0,35239, применяя электроды, приготовленные путем электрического осаждения хлористого серебра на серебре, полученном термическим разложением окиси серебра. Воспроизводимость элементов Гюнтельберга была порядка 0,02 мв, средние значения определялись с точностью 0,01 мв. ц, [c.427]

    Отин и Савенку [36] исследовали действие различных катализаторов при крекинге керосина уд. веса 0,801 при 20° С и вьщипающего от 139 до 295° С при перегонке по Энглеру. Температура опытов изменялась от 100 до 254° С, давление — от 1 до 20 ат, продолжительность реакции во всех опытах была 2 часа. После каждого опыта производили разгонку по Энглеру и определяли химический состав керосина. Различные металлы (калий, натрий, магний, цинк, никель, олово, железо и алюминий), окислы (кальция, магния, цинка, железа и алюминия), хлориды (калия, натрия, кальция, магния, цинка, железа, хрома и алюминия) и сульфаты применялись как катализаторы в количестве 5% вес. на керосин. Со всеми этими катализаторами, за исключением хлористого алюминия, выход продуктов разложения был очень небольшой. При самых жестких условиях (200—230° С) и продолжительности, равной двум часам, выход фракции до 150° С, которой в исходном продукте содержалось 3%, или оставался неизменным (3%) или же увеличивался до 4—6% и до 8% при применении хлорного железа. Только в присутствии хлористого алюминия количество этой фракции возрастало до 34%. [c.149]

    Стёвекер разработал способ приготовления каталитически активных, твердых, пористых гранулированных масс (с высокой адсорбционной способностью) путем сильного механического перемешивания гелей или зернистых осадков, или их сухих остатков (практически не содержащих окиси кремния), или смесей их в присутствии достаточного количества жидкости, таким образом, что образуется тонкая гомогенная паста, которая после формовки высушивается. Если присутствуют необратимые коллоиды второго рода,- то производится обработка без добавления воды или действия пептизирз ющих агентов. Обработанные таким образом катализаторы приготовлялись осаждением сернокислого никеля и хлористого магния углекислым натрием, азотнокислого алюминия хлористым аммонием или хлористым железом и хлористого алюминия железисто синеродистым калием. [c.277]

    Определение содержания полуторных окислов железа, алюминия и титана. Фильтрат после удаления 5102 содержит хлористые соли титана, алюминия, железа, магния, кальция, калия и натрия, а также небольшие примеси солей других металлов. В этом фильтрате определяют в первую очередь суммарное количество полуторных окислов А120д, Рб20з и Т102. При действии аммиака на фильтрат происходит осаждение гидроокисей этих металлов  [c.454]

    По J. KasslerV отделения эфиром можно избежать, действуя на сталь при нагревании разбавленной серной кислотой, причем большая часть ванадия остается нерастворенной немного перешедшего в раствор ванадия осаждают при нагревании взбалтыванием со взмученной в воде окисью цинка и отфильтровывают вместе с нерастворенной частью. Путем такой предварительной обработки стали в полчаса можно удалить от 94 до 99°/(j железа. Выделенный осадок подвергают действию соляной кислоты (плотн. 1,12), прибавляя для окисления концентрированной азотной. Вольфрам превращается в нерастворимую желтую вольфрамовую кислоту, которую потом отфильтровывают, а ванадиевая и молибденовая кислоты остаются в растворе, откуда их извлекают концентрированным едким натром. В дальнейшем ходе анализа ванадиевую кислоту осаждают хлористым марганцем, растворяют ванадиевокислый марганец в серной кислоте и, восстановив сернистой кислотой, титруют марганцовокислым калием. В фильтрате можно осадить молибден сероводородом в слабокислом растворе. Способ пригоден как для низколегированных, так и для высоколегированных сталей, и приблизительно через три часа дает безукоризненные результаты. [c.165]

    Испытание. Чистая соль должна давать с водою прозрачный раствор с железосинеродистым калием не должно получаться синего окрашивания (хлористое железо). Фильтрат от осаждения аммиаком при кипячении не должен окрашиваться в синий цвет (медь) и при действии сернистого аммония не должен давать заметного осадка. Свободную соляную кислоту узнают по образованию облачка хлористого аммония, получающегося при поднесении палочки, смоченной аммиаком к слабонагретому, концентрированному раствору свободный хлор или азотистая кислота вызывают появление синего окрашивания смоченной иодцинк-крахмальной бумажки, если последнюю держать близко над нагретым раствором. Содержание железа лучше всего определять путем титрования [c.209]

    При действии концентрированной соляной кислоты на такие руды часть тяжелого шпата переходит в раствор, но затем, когда кислотность раствора уменьшают перед пропусканием сероводорода, ВаЗО снова выделяется, присоединяется к осадку сульфидов и таким образом попадает в сернокислый свинец]. Найденное количество Ва50 надо вычесть из веса сернокислого свинца и прибавить к весу тяжелого шпата, полученному при анализе нерастворимого остатка. В фильтрате от сернокислого свинца определяют, если нужно, серебро и висмут, в виде хлогистого серебра и хлорокиси висмута. Раствор сперва выпаривают с серной кислотой, нейтрализуют аммиаком, подкисляют азотной кислотой и подвергают электролизу для выделения меди. Остающийся после удаления меди раствор скова выпаривают с серной кислотой, отделяют кадмий от цинка, как указано в т. П, ч. 2, вып. 1, стр. 286 (путем двукратного осаждения сероводородом), и определяют его в виде сернокислого кадмия. Из фильтрата после осаждения сероводородом тяжелых металлов удаляют кипячением сероводород, окисляют раствор перекисью водорода, прибавляют хлористого аммония и осаждают избытком аммиака железо вместе с алюминием и марганцем. Осадок гидроокисей отфильтровывают, растворяют в соляной кислоте, еще раз осаждают аммиаком, фильтруют, промывают, прокаливают и взвешивают. После этого растворяют прокаленные окислы в соляной кислоте и, восстановив железо хлористым оловом, титруют его обычным способом марганцовокислым калием. Содержание железа пересчитывают на окись железа. [c.579]

    NbA. 6,1—9,7% FeA, 3,5% ТЮа, 22% ЗЮз, 14% SnO , 0,6% МпО, 7% AI2O3, 3% MgO, 10% СаО, 1,2% WO3, 8,6% NaaO, измельчали до размера частиц 0,2 мм и обрабатьшали при нагревании разбавленной (1 1) соляной кислотой. В раствор переходили железо, алюминий, марганец, магний, кальций, около половины титана, олова и вольфрама потеря продукта по массе составляла 48%. При последующей обработке остатка 30%-ным раствором едкого натра в раствор переходила основная часть кремния и воль( > рама. На продукт, полученный после щелочной обработки, действовали соляной кислотой для перевода труднорастворимых натриевых солей ниобия и тантала в гидратированные пятиокиси. Их выщелачивали плавиковой кислотой. Из плавиковокислого раствора хлористым калием осаждали фторотанталат калия, который пере-кристаллизовывали. Извлечение тантала из шлака в товарный фторотанталат составляло 60—66%. [c.520]

    Вследствие своей способности к соединению с кислородом, окись углерода действует как сильное восстановляющее вещество, отнимая кислород от множества тел при накаливании, причем сама превращается в углекислый газ. Но, конечно, восстановительное действие окиси углерода (как Н , гл. 2) распространяется только на такие окислы, которые довольно легко отдают свой кислород, какова, напр., окись меди, но окиси магния или калия не восстановляются. Металлическое железо само способно восстановлять углекислый газ в окись углерода, подобно тому, как оно восстановляет водород из воды. Медь, не разлагающая воды, не разлагает и угольного газа. Платиновая проволока, нагретая до 300°, и губчатая платина при обыкновенной температуре дают в смеси СО -j- О, как в Н -j- О, взрыв. Эти реакции чрезвычайно ясно напоминают те, которые свойственны водороду. При этом, однако, должно иметь в виду следующее важное различие частица водорода заключает в себе № — группу элементов, делимую на две одинаковые части, тогда как окись углерода СО в своей частице представляет нечетное содержание атомов углерода и кислорода, а потому ни в каких реакциях соединения она не может давать двух частиц вещества, содержащего ее элементы. Это особенно видно из действия хлора на водород и окись углерода с первым хлор образует НС, с окисью же углерода образует так называемую хлорокись углерода СОСГ т. е. частица водорода Н - при действии хлора, так сказать, распределяется на две частицы хлористого водорода, тогда как частица окиси углерода СО вполне входит в частицы хлорокиси углерода. Это характеризует реакции так называемых двуатомных или двуэквивалентных радикалов, или остатков Н есть одноатомный остаток или радикал, как К, С1 и др., окись же углерода СО есть неделимый (без разложения) радикал двуатомный, эквивалентный с №, а не с Н, а потому и соединяющийся с Х и заменяющий Н - . Это различие видно в прилагаемом сравнении  [c.284]

    Хлористоводородные растворы представляют все свойства виергической кислоты. Они не только превращают синие растительные цвета в красные, вытесняют из углекислых солей углекислый газ и т. п., но и насыщают вполне основания, даже такие энергические, как, напр., кали, известь и т. п. В сухом состоянии газа, хлористый водород, однако, не изменяет растительных цветов и не производит многих двойных разложений, какие легко совершаются в присутствии воды. Это объясняется тем, что упруго-газообразное состояние хлористого водорода препятствует ему вступать во взаимодействие. Однако, накаленное железо, цинк, натрий и т. п. действуют на газообразный хлористый водород, вытесняя водород, и именно, оставляя половину объема водорода против одного объема взятого хлористого водорода, что может служить и для определения состава хлористого водорода. Хлористый водород с водою действует, как кислота, во многом очень сходная с азотною кислотою, но последняя, содержа легко выделяемый кислород, очень часто действует, как окислитель, способности к чему вовсе нет у соляной кислоты. Большинство металлов (даже не вытесняющих Н из H SO , а разлагающих ее до SO , напр., медь) вытесняет водород из хлористого водорода. Так, при действии на цинк, даже на медь и. олово, выделяется водород [297]. Немногие только металлы сопротивляются его действию, напр., золото, платина. Свинец оттого только действует слабо в сплошной массе, что образующийся хлористый свинец — нерастворим и препятствует дальнейшему действию хлористого водорода на металл. То же самое должно заметить относительно слабого действия хлористого водорода [c.319]

    Кальций или металл извести и его соединения представляют во многих отношениях большое сходство с соединениями магния, но также и не мало ясных отличительных свойств [385]. Вообще Са относится к Mg, как калий к натрию. Металлический кальций получен Деви, подобно калию, в ртутном растворе, при действии гальванического тока, но ни уголь, ни железо не разлагают окиси кальция, даже натрий трудно разлагает СаС1 , но гальванический ток легко разлагает сплавленный СаС1 , и металлический натрий при накаливании довольно легко разлагает иодистый кальций. Как для водорода, калия и магния, так и для кальция, связь иода слабее, чем хлора (и кислорода), а потому немудрено, что иодистый кальций подвергается тому разложению, в какое хлористый кальций и его окись вступают с трудом. Металлический кальций имеет желтый [серебристо-белый, на воздухе быстро желтеющий вследствие образования пленки азотистого соединения] цвет и обладает значительным блеском, который сохраняет в сухом воздухе. Уд. вес его = 1,58. Кальций отличается значительною тягучестью он плавится при краснокалильном жаре и тогда на воздухе воспламеняется, отделяя весьма яркий свет, что зависит от того, что при этом образуется порошкообразная, не плавящаяся в жару окись кальция. Судя по тому, что при горении кальция получается весьма большое пламя, должно думать, что он летуч. Кальций туго, но разлагает воду при обыкновенной температуре и во влажном воздухе окисляется, но не столь быстро, как натрий. Сгорая, кальций дает свою окись, или известь СаО, вещество всем известное, о котором нам уже приходилось многократно [c.59]

    Натрий и калий только при белокалильном жаре и очень слабо разлагают MgO, вероятно, по двум причинам. Во-первых, потому, что Mg + О отделяет более тепла (около 140 ООО кал.), чем - - О или Na -f- О (около 100000 кал.), а, во-вторых, потому, что магнезия не плавка в хару печей и не может действовать на уголь, калий или натрий, т.-е. не приходит в то подвижное состояние, которое необходимо для реагирования. Одной первой причины недостаточно для понимания отсутствия реагирования между углем и магнезиею, потому что железо и уголь, соединяясь с кислородом, развивают менее тепла, чем Na или К, а все же их выделяют. Что касается до хлористого магния, то он разлагается Na и К не только потому, что соединение их с хлором развивает более тепла, чем соединение хлора с магнием (Mg + P дает 150000, а Na + P около 195000 кал.), но и потому, что при накаливании происходит сплавление как Mg F, так и двойной соли. Вероятно было, однако, ожидать обратной реакции, и Винклер (1890) показал, что Mg восстановляет окислы щелочных металлов (гл. 13, доп. 370 ). [c.361]

    Закись меди при действии плавиковой кислоты дает нерастворимую однофтористую медь uF. Односинеродистая медь u N также нерастворима в воде и получается чрез прибавление синильной кислоты к раствору хлористой меди, насыщенно[му] сернистым газом. Такая односинеродистая медь дает растворимую двойную соль с синеродистым калием, как и синеродистое серебро. Двойная синеродистая соль меди и калия довольно постоянна на воздухе и вступает в двойные разложения с различными другими солями, подобно тем двойным синеродистым солям железа, с которыми мы познакомились. [c.636]

    Из хлористого церия, смешанного с хлористым калием и нашатырем, Велер получил при действии натрия металлический церий. Этот последний имеет вид серого металла, с оттенком, промежуточным между железом и свинцом. Металл этот мягок, как свинец, удельный вес его нри 12° 5,5 при накаливании он окисляется, а в порошкообразном виде загорается даже при слабом нагревании. Воду он разлагает только при температуре кипения — и то весьма слабо, но из кислот весьма легко выделяет водород, крепкая же азотная кислота дает бурую его окись. Разлагая соли церия гальваническим током, Гиллебрандт получил металл, гораздо более постоянный и плотный. Удельный вес 6,6. Вероятно, у Велера еще оставался в сплаве N3. [c.375]


Смотреть страницы где упоминается термин Калий хлористый, действие на железо: [c.594]    [c.71]    [c.28]    [c.294]    [c.201]    [c.203]    [c.32]    [c.15]    [c.695]    [c.598]    [c.19]    [c.426]    [c.291]    [c.352]    [c.615]    [c.622]    [c.168]    [c.21]    [c.292]    [c.296]   
Вспомогательные процессы и аппаратура анилинокрасочной промышленности (1949) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Железо калий

Железо хлористое



© 2025 chem21.info Реклама на сайте