Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гиббса полимеров из растворов

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Коэффициент набухания макромолекулы, В разбавленном растворе полимера осмотическая сила, приводящая к диффузии растворителя внутрь полимерного клубка, существенно зависит от энергии Гиббса взаимодействия системы полимер — растворитель. В хороших растворителях чем сильнее взаимодействие полимер — растворитель, тем больше растворителя оказывается внутри полимерного клубка по достижении равновесия. Иными словами, отталкивание между сегментами макромолекулы как бы оказывается выше.- Следовательно, улучшение качества растворителя приводит к увеличению размеров макромолекулярного клубка, т. е. к его дополнительному набуханию. [c.92]

    Физико-химические свойства растворов высокомолекулярных соединений определяются размерами и формой макромолекул в растворе, интенсивностью взаимодействия макромолекул между собой и сродством данного соединения к растворителю. По этому признаку растворители могут быть разделены на так. называемые хорошие (высокое сродство) и плохие (низкое сродство). В хороших растворителях полимеры способны образовывать истинные растворы. В таких растворителях высокомолекулярные соединения находятся не в виде мицелл или пачек, а в виде отдельных макромолекул. Истинные растворы ВМС подчиняются правилу фаз Гиббса. В частности, это означает, что при ограниченной растворимости концентрация насыщенного раствора зависит только от температуры и не зависит от пути образования раствора (при нагревании или при охлаждении). [c.436]

    Одним из наиболее наглядных способов представления областей термодинамической устойчивости как бинарных смесей полимер — полимер, так и тройных растворов полимер—полимер—растворитель являются фазовые диаграммы (бинодали и спинодали, рис. 2.1—2.41). Бинодали для бинарных и тройных смесей могут быть получены путем построения точек помутнения (для оптически прозрачных систем). Для построения спинодалей можно использовать либо метод светорассеяния, либо получение концентрационных и температурных зависимостей свободной энергии смешения Гиббса и на их основе определение условий спинодали, т. е. [c.329]

    Фактически растяжение реальной полимерной цепи во многом зависит от растворителя. Когда полимер растворяют в хорошем растворителе, например растворение полистирола в толуоле, связи сегмент — растворитель энергетически более выгодны, чем связи сегмент — сегмент. Это вызывает растяжение молекулы в растворе, так что связи сегмент — сегмент становятся минимальными, а также будет минимальной свободная энергия Гиббса. Когда же полимер растворяют в плохом растворителе, связи сегмент — сегмент преобладают. Это приводит к свертыванию молекулы в клубок в противоположность тепловому движению, которое заставляет молекулу растягиваться. Если растворитель предельно плохой , то полимер не будет растворяться. [c.611]


    Поскольку растворы полимеров образуются самопроизвольно, их образование, как и всякий самопроизвольный процесс, сопровождается уменьшением энергии Гиббса, т. е. [c.83]

    Растворение целлюлозы, как и других полимеров, подчиняется термодинамическому условию самопроизвольного растворения - изменение энергии Гиббса должно быть отрицательным (см. 7.1). Однако у целлюлозы оба члена этого условия неблагоприятны изменение энтальпии дЯ > О (теплота поглощается), а изменение энтропии AS, хотя и положительно, но мало по абсолютному значению. Это обусловлено сравнительной жесткостью цепей целлюлозы даже в растворе по сравнению с гибкоцепными [c.554]

    ВОЗМОЖНО разделение фаз в ходе отверждения. Обычно низкомолекулярные отвердители, пластификаторы и олигомеры полностью взаиморастворимы. Однако при отверждении с нарастанием молекулярной массы полимера возможно появление несовместимости, особенно в тех случаях, когда предпочтительно происходит реакция образования гомополимера. Как известно, полимеры даже в концентрированных растворах и тем более п расплавах несовместимы и стремятся разделиться на две фазы [15, 16]. Такие системы легко образуют эмульсии типа масло в масле , характеризующиеся низким поверхностным натяжением на границе раздела и, как указывается в [17], склонны к образованию частиц неправильной формы со сложной границей раздела. Изобарно-изотермический потенциал (энергия Гиббса) при смешении полимеров на основе одного моно.мера разной молекулярной массы может быть представлен следую-.щим выражением [15, 16] [c.61]

    Равновесное состояние смеси полимера и растворителя подчиняется правилу фаз Гиббса П = К + 2 - Ф, где П — число независимых параметров состояния, К — число компонентов системы, Ф — число фаз. Два других параметра состояния — температура и давление. В конденсированных системах (где отсутствует фаза пара) давление не играет существенной роли и обычно постоянно. Поэтому из этих двух параметров остается один — температура. Следовательно, в двухфазных смесях П = 3 - Ф. Состояние смесей полимер— растворитель имеет сходство с состоянием смеси двух ограниченно растворимых жидкостей — в определенном интервале температур и соотношений компонентов смесь является однофазной системой, т. е. образует один истинный раствор, а за пределами этого температурного интервала — двухфазной, причем обе фазы являются истинными, несмешивающимися растворами полимера в растворителе. Первая фаза — это разбавленный раствор полимера, а вторая — раствор с повышенной концентрацией полимера. По аналогии с ограниченно смешивающимися жидкостями говорят, что одна из фаз — насыщенный раствор полимера в растворителе, а вторая — насыщенный раствор растворителя в полимере. Однако следует иметь в виду, что в случае полимеров вторая фаза также может быть разбавленным раствором полимера — содержание растворителя в ней составляет около 90 %. В связи с этим ее не вполне уместно называть насыщенным раствором растворителя в полимере. [c.821]

    Вскоре после опубликования в 1877 г. результатов измерений осмотического давления Вант-Гофф использовал их в качестве основы при разработке теории растворов. Развитие термодинамики (в большой мере благодаря работам Гиббса) в течение этого же периода времени обеспечило прочные теоретические основы для изучения осмоса в растворах и связанных с ним явлений. Было показано, что так называемые коллигативные свойства представляют собой проявления по существу одного и того же свойства растворов и что, таким образом, одинаковую термодинамическую информацию можно получить на основе любого из свойств. Так как осмотическое давление поддается исследованию труднее, чем другие свойства, после 19 20 г. было выполнено очень небольшое число измерений осмотического давления. Новый интерес появился благодаря его применению в качестве метода исследования растворов полимеров и использованию обратного осмоса в процессах разделения. [c.116]

    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (ДЯ<6), так и ростом энтропии. В таких системах Лг > О и % < 7г (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера обусловлены энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Лг < 0) происходит поглощение теплоты (АН >0), и силы оттал14Ивання между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодействия. В этих системах возможно достижение температуры Флори (положительная энтальпия смешения компенсируется избыточной энтропией), ниже которой доминируют силы притяжения между макромолекулами (Лг < 0). [c.324]


    Мы осуществили другой подход к определению поверхностного натяжения полимеров, основанный на изучении концентрационной зависимости поверхностного натяжения о растворов полимеров в жидкостях [25]. Типичный характер такой зависимости приведен на рис. 4. Основываясь на экспериментальных данных и исходя из адсорбционного уравнения Гиббса, мы пришли к заключению, что в определенной [c.313]

    Химия растворов гидроокиси алюминия и химия растворов кремневой кислоты во многих отношениях аналогичны. Мономерные виды существуют при pH = 3, например А1 (Н20)б " " , и при pH = 14, например Л1 (0Н)4 . В области между этими крайними значениями существуют твердые фазы (золи, гели или кристаллы). Имеются доказательства, что в переходных областях pH, близких к этим пределам, могут существовать растворимые полимерные комплексы. Равновесие между этими полимерами исследовали Брос-сет с сотрудниками и другие авторы [80—82]. Полагают, что в сильно кислых растворах ион алюминия находится в виде гексагидрата [Л1 (ОН2)б] , представляющего собой умеренно сильную кислоту. Ионы типа [Л1 (ОН2)б ОН] не могут существовать в заметных концентрациях ввиду их быстрой полимеризации. Некоторые поли-меризованные катионы, очевидно, могут существовать при pH от 3 до 5 в виде димеров, тримеров и т. д. с возможным преобладанием гекса-мерных колец следующей предполагаемой структуры шесть алюмо-кислородных октаэдров связаны в кольцо общими ребрами, положения мостиков занимают гидроксильные группы, остальные координационные положения (два для каждого иона алюминия) заняты либо водой, либо гидроксильными группами в зависимости от pH. Эта структура состава [А (0Н)12 (ОН2)12-п (0Н) ] аналогична кольчатой структуре А1 (ОН)з (гиббсит или байерит). Имеются, данные, что положение и вид кривых титрования растворов солей алюминия щелочью зависит от вида аниона. Отсюда можно [c.35]

    Интеркалирование полимера из раствора [62-68] является двухстадийным процессом, в котором полимер замещает предварительно интеркалированный растворитель (рис. 6.5). Для такого обмена, как и для любого процесса, протекающего самопроизвольно, необходимо, чтобы свободная энергия Гиббса была отрицательной. Предполагается, что уменьшение энтропии полимера напрямую связано с ограничением его подвижности, и компенсируется за счет увеличения десорбции интеркалированных молекул растворителя [69]. [c.172]

    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (АЯ<0), так и ростом энтропии. Для таких систем Лг>0 и Х < /2 (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера определяются энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Л2<0) происходит поглощение теплоты (ЛЯ>0), и силы отталкивания между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодейст- [c.371]

    Рассмотрим, следуя Томпе [21], систему, содержащую растворитель 3 и два полимер-гомолога Р1 и Рг с различными длинами цепей. Фазовая диаграмма такой системы может быть представлена в форме треугольника Гиббса (рис. 1-1). Будем считать, что количества Рх и Рг не зависят друг от друга. На диаграмме показаны кривые смешения при нескольких температурах. Если система находится нри постоянной температуре и представляется на фазовой диаграмме точкой внутри области, ограниченной кривой смешения для данной температуры, то однофазный раствор неустойчив и разделяется на две жидкие фазы (в определенных условиях — на одну жидкую и одну гелеобразную фазы). Точки, представляющие на диаграмме составы сосуществующих фаз, лежат на этой кривой смешения. Прямая, соединяющая каждую пару таких точек, носит название соединительнои линии. При температуре, соответствующей полной смешиваемости компонентов системы (для любых относительных количеств Рх и Р2), кривая смешения на диаграмме отсутствует. При понижении температуры в определенных областях состава компоненты системы перестают смешиваться, что выражается в появлении кривой смешения. Дальнейшее понижение температуры вызывает постепенное увеличение области сосуществования двух фаз (кри- [c.11]

    Самопроизвольное растворение аморфных полимеров протекает только при условии, что энергия Гиббса системы, определяемая как AG = АН — TAS отрицательная [76]. Это условие может быть выполнено в двух случаях. Если АН <С О, это означает, что энергия, выделяющаяся при образовании сольватной оболочки растворителя вокруг макромолекулы превышает энергию связи между молекулами как растворителя, так и полимера. Условие А5 > О выполняется практически всегда вследствие того, что неупорядоченность молекул полимера в растворе больше неупорядоченности его отдельных компонентов макромолекула в растворе может принимать в результате повышенной подвижности сегментов большее число конформаций, чем макромолекула в твердой фазе. Отсюда следует и тот факт, что полимеры с гибкой цепью растворяются легче, чем полимеры с жесткой цепью, так как полимеры первой группы могут иметь в растворе большее число конформаций. Повышение температуры растворения увеличивает значение энтропийного члена T AS, что отвечает росту скорости растворения. [c.49]

    Если растворы полимеров являются термодинамически устойчивыми, равновесными системами, к ним приложимо правило фаз Гиббса, [c.78]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    Термодинамически самопроизвольное растворение высокомолекулярных соединений сопровождается уменьшением энергии Гиббса (AG = АН — TAS < 0). Энтальпия смешения АН отражает энергетические изменения при взаимодёйствии молекул полимера и растворителя, энтропия смешения AS— изменения во взаимном расположении макромолекул и их конформациях. При растворении полимеров с гибкими цепями выделение теплоты обычно невелико (АН 0), но при растворении существенно возрастает энтропия системы (AS >0). При растворении полимеров с жесткими, обычно полярными, цепями число возможных конформаций в растворе резко уменьшается и величины энтропии смешения очень невелики. Одновременно для этих полимеров возрастает выделение теплоты. [c.439]

    Однако на самом деле при растворении полимера обычно АЯсм =0 и АУсмт О. В свою очередь, наличие взаимодействия между компонентами приводит к их взаимной координации, и энтропия смешения в такой системе отличается от А5см, комб. Для получения выражения для изменения энергии Гиббса при образовании реального раствора полимера, т. е. с учетом указанных факторов, используют выражение для АО см атермического раствора, в которое вводят дополнительный член, содержащий некоторый безразмерный параметр [c.85]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]

    Ключевым термодинамическим параметром, определяющим свойства полимерных растворов, является параметр %, характеризующий изменение энергии Гиббса растворителя при введении в него некоторого участка макромолекулы — обычно мономерной единицы или сегмента. Особенности термодинамического поведения растворов полимеров обусловлены тем, что макромолекулу можно расположить в растворителе больщим числом способов, так как она может принять огромное число различных конформаций. По мере повышения концентрации уже вошедщие в раствор цепи создают осложнения для введения новых цепей (возникают пресловутые ловушки, когда определенный объем заэкранирован звеньями или сегментами уже помещенных в нее молекул). [c.112]

    Такой переход предсказывается широко известной теорией стеклования Гиббса и Ди Марцио [116], которую обычно называют термодинамической, хотя она является статистической, а по физике, заложенной в ней, термокинетической. Эта теория основывается на решеточной модели растворов полимеров Флори — Хаггинса [40, 63], но если в последней узлы решетки, не занятые звеньями полимера, считались занятыми молекулами растворителя, то Гиббс и Ди Марцию считали их пустыми, а долю таких узлов приняли равной доле свободного объема полимера. Гибкость полимерной цепи задавалась разностью энергий шага вперед (аналог траяс-изомера) и в сторону (аналог гош-изомера) на трехмерной решетке. [c.186]

    Самопроизвольное образование растворов полимеров (неограниченное или ограниченное набухание) сопровождается уменьше-нием изсбарпо-изотермичсского потенциала, т. е. в результате получается термодинамически устойчивая система (стр, 315), Многочисленные экспериментальные данные свидетельствуют о постоянстве концентраций таких растворов, следовательно, эти растворЫ обладают некоторыми признаками истинных растворов. Однак основный доказательством термодинамической устойчивости растворов полимеров является подчинение их правилу фаз Гиббса. [c.325]

    Узкая щель ограничивает величину и, следовательно, и конфигурационную энтропию, что и ведет к увеличению свободной энергии Гиббса, в результате чего молекулы полимера переходят в раствор. При достаточно магюм зазоре между непроницаемыми для полимерных звеньев поверхностями в зазоре останется только растворитель. В этой ситуации самопроизвольному уменьшению энергии системы будет способствовать дальнейшее уменьшение ширины зазора к, так как при этом чистый растворитель из зазора смешивается с раствором полимера, который находится вне зазора. При хорошем качестве растворителя смешивание полимера с растворителем (растворение) идет самопроизвольно, т. е. с убылью энергии Г иббса. Аналогичный эффект имеет механизм отталкивания гантелевидных молекул. Различие заключается лишь в способе их описания — механическом или термодинамическом. [c.624]

    В 1 глазы I даются простейшие понятия интуитивной теории вероятностей и метод ансамбля Гиббса в статистической механике, а также намечается связь между этими понятиями и физическим объектом, который будет в дальнейшем исследоваться. Именно глубокие идеи Гиббса позволяют рассматривать задачи вычисления средних значений физических величин как задачи о вычислении лебеговой меры состояний на множестве, носящем название ансамбля Гиббса. Рассматривая полимер в растворе как одно- [c.6]

    Чтобы применить метод ансамблей Гиббса к изучению полимерных цепочек, надо задаться механической или физической моделью полимера. В качестве такой модели для полимера в растворе рассматривают цепь из последовательно сочлененных звеньев. В случае органического полимера углы между всеми парами соседних звеньев имеют строгх фиксированные значения. Это приводит к тому, что, если рассматривать положение к-то звена относительно предыдущего к — 1)-го, для указания его положения достаточно задать одну координату — угол на конусе, ибо геометрическим местом всевозможных положений звена является конус. В следующей главе мы покажем, что, несмотря на расположение полимера в обычном трехмерном конфигурахщонном пространстве, выбором специальных обобщенных координат задачу можно свести к одномерной, если взаимодействие между звеньями не носит дальнодействующего характера. Возможность такой редукции связана также с пренебрежением возможными самопересечениями полимерной цепочки. Поэтому в настоящей главе будет рассматриваться одномерная статистическая механика, а во второй главе развитый аппарат почти автоматически перенесется на модель органического полимера. Одномерные модели, рассматриваемые в настоящей главе, обладая простотой и наглядностью, качественно отражают многие характерные особенности органических полимеров. [c.14]

    Для расчета ДО по приведенным циклам экспериментально определяют изотермы сорбции общего растворителя на каждом полимере и на их смеси (раствор III), полученным в виде тонких пленок из растворов. Для этого по относительному давлению пара растворителя рассчитывают химический потенциал растворителя Afi, - Зная зависимость Afij от концентрации, по уравнению Гиббса — Дюгема рассчитывают химический потенциал Д Л2 для полимера по формуле [c.273]

    Молекулярная теория возникла почти одновременно с мнцел- лярной. Ее сторонниками, в частности Штаудинтером, было показано, что растворение полимеров, как и низкомолекулярных веществ,. идет с уменьшением свободной энергии, т. е. самопроизвольно, тогда как при образовании гетерогенной коллоидной системы свободная энергия возрастает в результате увеличения поверхности дисперсной фазы. Одним из доказательств того, что растворы полимеров термодинамически устойчивы и обратимы, является применение к ним правила фаз Гиббса. Наиболее важной в этой области является работа В. А. Каргина, С. П. Папкова и 3. А. Роговина но исследованию растворов ацетата целлюлозы в различных растворителях. Авторы показали, что в случае ограниченной растворимости ацетата целлюлозы в выбранном растворителе после расслаивания системы на две фазы каждой температуре отвечает определенная концентрация ацетата целлюлозы как в нижнем, так и в верхнем слое. Процесс оказался строго обратимым и термодинамически равновесным, т. е. концентрации слоев были неиз менны при данной температуре, как бы к этой температуре ни подходили— путем нагревания смеси или ее охлаждения. Кроме того, вид диаграммы для этой и других изучаемых авторами систем ацетат-целлюлоза— растворитель был аналогичен диаграммам состоя.ння низкомолекулярных ограниченно смешивающихся жидкостей. [c.150]

    Впервые несостоятельность таких представлений была рассмотрена и доказана работами Каргина, Панкова и Роговина [19], в которых равновесность и обратимость растворов полимеров, как один из признаков истинных растворов вообще, исследовались с прщиенением правила фаз Гиббса. Этот основной закон равновесия фаз был установлен Гиббсом для многокомпонентных гетерогенных систем. В общем виде закон выражает взаимосвязь менл ду числом фаз, компонентов и степеней свободы  [c.243]

    Изложенные выше закономерности растворения полимеров, рассматриваемые но аналогии с процессами смешения двух ограниченно смешивающихся жидкостей, показали применимость правила фаз Гиббса к таким системам. Отсюда следует, что растворы полимеров являются истинными растворами, а не коллоидными системами, к которым неприменимо это правило фаз. Однако высокоасимметрические и большие по размерам молекулы полимеров вносят свои специфические особенности в характеристику самого процесса растворения и свойств образующихся растворов. [c.248]

    Поскольку реакция полимеризации (рост цепи) экзотермична, константа равновесия (1.66) при повышении температуры будет уменьшаться, а равновесие (1.65) будет сдвигаться влево в сторону снижения выхода полимера. Известно, что AG = AG°- -RT nK, где AG° — это энергия Гиббса в соответствующих стандартных состояниях. Для мономера это состояние — жидкость или его одномолярный раствор, для полимера — аморфное или слабокристаллическое состояние или же его одномолярный раствор (в расчете на повторяющееся звено). Поскольку в состоянии равновесия ДС = 0, можно записать  [c.43]

    Устойчивость жидких пен уменьшается при повышении температуры как за счет уменьшения поверхностного натяжения жидкой фазы, так и за счет повышения давления внутри газовых пузырьков. Следует учесть и другой аспект влияния температуры на устойчивость нен, особенно тогда, когда жидкая фаза представляет собой раствор полимера. Поскольку растворитель, как правило, более летуч, чем растворенное вещество, то при повышении температуры он испаряется, вызывая, с одной стороны, увеличение давлершя в газовых пузырьках, и, с другой — увеличение концентрации ПАВ в адсорбционном слое выше критического значения, определяемого теоремой Гиббса, уменьшая тем самым величину поверхностного натяжения жидкой фазы [20, 21]. [c.32]


Смотреть страницы где упоминается термин Гиббса полимеров из растворов: [c.211]    [c.325]    [c.325]    [c.60]    [c.60]    [c.10]    [c.91]    [c.18]    [c.13]    [c.228]    [c.306]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса раствора

Гиббсит

Правило фаз Гиббса и растворы полимеро

Растворы полимеров



© 2025 chem21.info Реклама на сайте