Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения в реакциях окисления

    Адсорбция Распределение Обмен ионов Диффузия молекул Образование малорастворимых соединений Образование комплексных соединений Реакция окисления — восстановления [c.187]

    ДФК при рН=0—1 взаимодействует с ионами бихромата с образованием соединения, окрашенного в красно-фиолетовый цвет. Единого мнения о химизме взаимодействия этих веществ и составе образующего соединения нет. Предполагается, что образуется непрочное комплексное соединение продукта окисления ДФК с восстановленными ионами Сг +, причем окрашен продукт окисления ДФК, а не комплексное соединение. Реакцию следует проводить в условиях избытка реагента, так как при избытке окислителя происходит более глубокое окисление ДФК с образованием бесцветных продуктов реакции. Поэтому рекомендуется приливать испытуемый раствор в избыток реактива, а не наоборот. Данная реакция обнаружения хрома очень чувствительна, интенсивная окраска получается даже от одной капли анализируемого раствора, содержащего Сг О . [c.160]


    Псевдоравновесный подход используется при анализе кинетики гетерогенных процессов (растворения солей, экстракции, догорания углерода или его выпадения из газовой фазы), а также процессов электродного окисления, медленных процессов замещения в инертных комплексных соединениях н т. д. [2—6]. Для систем с единственной медленной реакцией характерна возможность однозначно связать концентрацию (п температуры — в адиабатическом случае), а следовательно, и скорость протекания медленной реакции с ее координатой. [c.47]

    Как было указано ранее, определяемый компонент часто переводят в соединение, обладающее значительным поглощением. Обычно его связывают в комплексное соединение, хотя могут быть использованы реакции окисления-восстановления, азосочетания и другие. Условия проведения этих реакций должны быть предварительно тщательно изучены для обеспечения воспроизводимости и надежности результатов спектрофотометрического анализа. [c.50]

    В химическом анализе, как известно, используют четыре типа химических реакций 1) кислотно-основные реакции 2) реакции окисления-восстановления 3) реакции образования комплексных соединений и групп 4) реакции осаждения и другие реакции образования новых фаз. [c.271]

    Реакция (13.14) идет в кислом растворе и избытке К1, причем рекомендуется выдерживать реагирующую смесь в темноте в течение 10...15 мин для полноты протекания процесса. Наилучшие результаты получаются, когда кислотность раствора находится в пределах 0,2...0,4 моль/л. При более высокой концентрации кислоты происходит заметное окисление иодида кислородом воздуха, а при более низкой кислотности реакция существенно замедляется. Выдерживание реагирующей смеси в темноте до окончания реакции необходимо еще и потому, что ионы Сг +, появляющиеся при восстановлении дихромата, образуют с тиосульфатом прочное комплексное соединение, что вызывает дополнительный расход тиосульфата натрия, так как связанный в комплекс ЗгОз реагирует с иодом очень медленно. Если титрование тиосульфатом натрия проводить после окончания реакции [c.282]

    Запись данных опыта. Полученное вещество зелено-желтого цвета является комплексным соединением (NH4)2[WO(S N)5]. Какова степень окисления вольфрама в этом соединении Написать уравнение реакции получения этого комплексного соединения. Указать значение добавления хлорида олова. Следует отметить, что соединения вольфрама в степени окисления 4-V неустойчивы и стабилизируются только в комплексных соединениях. [c.238]


    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Ч. Теннантом. И,— серебристо-белый, очень твердый и хрупкий металл, т. пл. 2410° С, нерастворим в кислотах и даже в царской водке, растворяется лишь в состоянии тонкого измельчения. Б соединениях И. большей частью имеет степень окисления +3 и +4, иногда - -1, +2, +6, образует различные комплексные соединения. И. применяют как катализатор реакций гидрогенизации а виде сплавов с платиной его используют [c.112]

    Реакции восстановления, гидрирования, окисления, изомеризации, полимеризации в промышленных условиях осуществляются в растворах в присутствии катализаторов — комплексных соединений (ионов металлов УГИ группы Ре, Со, N1, Ни, а также Си, Ад, Иц, Сг, Мп). Сущность каталитического действия заключается в том, что ионы металлов выступают как доноры или акцепторы электронов. Химическое взаимодействие между реагирующими молекулами, координированными около центрального иона металла, облегчается благодаря поляризации молекул и понижению энергии отдельных связей. Центральный ион металла является мостиком, облегчающим электронные переходы между реагирующими молекулами. [c.295]

    При повышении температуры могут происходить различные реакции между частицами как во внешней, так и во внутренней сферах комплексного соединения, часто приводящие к изменению координационного числа и степени окисления комплексообразователя. Процессы во внешней сфере чаще всего протекают при низких температурах, а во внутренней сфере — при высоких температурах. [c.229]

    Встречаются комплексы, в которых окисляется как центральный ион, так и лиганды независимо друг от друга. Так, например, с помощью потенциометрического титрования установлено, что при окислении оксалатов платины (И) получаются два потенциала один из них отвечает окислению платины, а другой — оксалат-ионам. Таким образом, течение окислительно-восстановительных реакций комплексных соединений зависит от природы связи различных лигандов с центральным ионом. [c.136]

    Эти методы основаны на простом разделении катионов и анионов. Естественно, разделяют не катионы и анионы, как таковые, а после обмена их с Н+- или ОН -ионами, вследствие чего не происходит нарушения принципа электронейтральности (однако термин катионно-анионное разделение встречается в литературе). При необходимости полного освобождения раствора от солей его пропускают сначала через катионит, а затем через анионит. При этом происходит обмен катионов с Н+-ионами, а затем обмен анионов с ОН -ионами. Этот метод имеет более важное значение для разделения катионов. При переводе части катионов химической реакцией (комплексообразования, окисления—восстановления, изменения значений pH) в анионы, например в хлор- или гидроксо-комплексы, можно отделить эти ионы от других, не вступающих в эти реакции в данных условиях. Оставшиеся в растворе катионы или образовавшиеся анионы можно затем уловить ионитом. Таким методом можно провести разделение алюминия и титана (трудно разделяемых с применением обычных химических реакций) после обработки анализируемых соединений разбавленной соляной кислотой и проведения ионного обмена на сильнокислотном катионите. Ионы алюминия удерживаются ионитом, из колонки вытекает раствор комплексного соединения титана. [c.380]


    Нежелательное действие солей металлов переменной валентности можно подавить связыванием ионов металлов в виде недиссоциирующих или нерастворимых в полимере соединений, например образованием комплексных соединений металлов (медь, кобальт, никель) с некоторыми кислотами (дитиокарбаминовая и некоторые другие). Это позволяет вывести ион металла из сферы реакции и ослабить или подавить его вредное каталитическое действие на радикальный распад пероксидных соединений в полимере (рис. 18.8). Но это только часть общей задачи защиты полимеров от окислительной деструкции. Вторая, не менее, а часто более важная задача состоит в подавлении развития цепного процесса окисления с целью существенного удлинения индукционного периода. [c.266]

    В первой части книги, где рассмотрены теоретические основы химии, увеличена доля материала, содержащего наиболее фундаментальные понятия, используемые в большинстве естественных наук и в смежных специальных дисциплинах. Прежде всего это периодический закон химических элементов, являющийся базой всех понятий о строении веществ — от атомов до комплексных соединений, — и закон действующих масс как основа количественных расчетов реагентов в равновесных химических системах. Кроме того, в общетеоретической части представлены законы и понятия стехиометрии, строение и фазовые состояния веществ, закономерности протекания химических процессов, образование растворов и ионно-обменные процессы, протекающие в них, реакции окисления—восстановления. [c.3]

    Преимущество 2,1-изомера нитрозонафтола видно из сравнения спектров поглощения комплексных соединений обоих изомеров с кобальтом (рис. 52). В ближней УФ-области для соединения кобальта с 2,1- изомером X 307 нм, е = 5,3 10 для соединения кобальта с 1,2-изомером X 460 нм, е = 3,0 10 . Реакция определения кобальта с 2,1-изомером более чувствительна. Преимуществом 2,1-изомера является также образование комплекса СоРз без дополнительного окисления кобальта (II), что требуется при использовании 1,2-изомера. [c.160]

    Соединения никеля в присутствии окислителей образуют растворы, окрашенные в бурый цвет. Максимальное поглощение наблюдается при X 470 нм, S = 1,3 10 . В настоящее время известно, что в условиях проведения реакции происходит окисление никеля. В присутствии аммиака и щелочи образуются два разных комплексных соединений, отличающихся по спектрам их поглощения [38], [c.183]

    Наиболее важными случаями сочетания таких реакций в анализе являются следующие а) разрушение комплексного соединения вследствие конкурирующей реакции окисления — восстановления, например  [c.92]

    Электролитические свойства комплексных соединений и их электропроводность. Диссоциация комплексного иона и константа неустойчивости комплексных соединений. Комплексные ионы при обменных реакциях. Комплексные ионы в реакциях окисления-восстановления. [c.197]

    При окислительно-восстановительных реакциях комплексных соединений происходит либо изменение зарядности иона-комплексообразователя без существенного нарушения состава комплекса (пример 1), либо полное разрушение комплекса с образованием более простых по составу продуктов окисления (пример 2)  [c.200]

    Составить уравнения реакций окисления желтой кровяной соли K4[Fe( N)g] перекисью водорода в кислой среде и комплексного соединения K4( o( N)el кислородом воздуха в нейтральной среде. [c.201]

    Комплексные соединения в реакциях окисления-восстановления. а) Смешать в пробирке по 2 мл растворов перекиси водорода и едкого кали, прилить 2 мл раствора Кз[Ре(СЫ)в]. Происходит выделение кислорода (испытать тлеющей лучиной). Составить уравнение реакции. [c.203]

    Научная новизна. Осуществлено комплексное исследование реакций окисления сульфидов, меркаптанов, пространственно затрудненных фенолов, енолятов натрия, а также алкоксихлорирования олефинов и хлорирования ароматических эфиров, спиртов и вторичных аминов алкилгипохлоритами, и показана возможность использования этих реакций в синтезе ценных органических соединений. [c.4]

    Обычно при переработке некондиционных концентратов и про продуктов обогащения извлекаемый элемент осаждают из раств, ров в виде гидроксидов, кислот, солей или комплексных соедин ний. Прокаливание осадков приводит к получению оксидов ил безводных солей, более или менее загрязненных посторонни примесями и представляющих собой химический концентрат. Д осаждения в большинстве случаев используют реакции образов ния малорастворимых химических соединений (фосфатов, йодатс и др.), гидролитическое разложение растворов, разложение рас воримых комплексных соединений нагреванием, окислением и/, восстановлением. Иногда применяют цементацию, электроосажд ние, соосаждение с соединениями других элементов, кристаллиз цию. [c.100]

    В последнее, время появились работы, посвященные изучению реакций с участием комплексных соединений [1, 2]. При этом речь идет, как о реакциях превращения собственно комплексных соединений (реакции замещения во внутренней сфере), так и о реакциях образования и разрушения комплексных соединений различного типа в процессах окисления-восстановления. Обобщение обильного экспериментального материала и истолкование полученных данных облегчается при использовании различных квантово-химических моделей, дающих возможность уяснить физическую сущность процесса и произвести по-луколичественную оценку энергетических параметров реакции. Наиболее перспективен в этом отношении, по нашему мнению, метод молекулярных орбиталей. [c.7]

    При проведении фотометрической реакции, необходимой для повышения чувствительности, определяемый компонент переводят в соединение, обладающее значительным поглощением. Чаще всего определяемое вещество связывают в комплексное соединение с различными органическими реагентами. Кроме того, могут быть использованы реакции окисления — восстановления, диазосочетания и доугие. [c.480]

    Атомам в соединениях и комплексных ионах приписывают степень окислении, чтобы иметь возможность описывать перенос электронов при химических реакциях. Составление уравнения окислительно-восстановительной реакции основывается на требовании выполнения закона сохранения заряда (электронов). Высшая степень окисления атома, как правило, увеличивается с ростом порядкового номера элемента в пределах периода. Например, в третьем периоде наблюдаются такие степени окисления На + ( + 1), Мя" + ( + 2), А1 -" ( + 3), 81Си( + 4), РР5(5), 8Рв( + 6) и СЮЛ + 7). Степень окисления атома часто называется состоянием окисления атома (или элемента) в соединении. Реакции, в которых происходят изменения состояний окисления атомов, называются окислительно-восстановительными реакциями. В таких реакциях частицы, степень окисления которых возрастает, называются восстановителями, а частицы, степень окисления которых уменьшается, называются окислителями. В окислительно-восстановительной реакции происходит перенос электронов от восстановителя к окислителю. Частицы, подверженные самопроизвольному окислению — восстановлению, называются диспропорционирующими. В полном уравнении окислительно-восстановительной реакции суммарное число электронов, теряемых восстановителем, равно суммарному числу электронов, приобретаемых окислителем. Грамм-эквивалент окислителя или восстановителя равен отношению его молекулярной массы к изменению степени окисления в рассматриваемой реакции. Нормальность раствора окислителя или восстановителя определяется как число его эквивалентов в 1 л раствора. Следовательно, нормальность раствора окислителя или восстановителя зависит от того, в какой реакции участвует это вещество. [c.456]

    Известны способы получения ЭПХГ каталитическим окислением ХА [146-149]. Описаны способы получения ЭПХГ эпоксидированием ХА с помощью органических гидроперекисей в присутствии катализатора, в качестве которого используют хлориды и оксихлориды ванадия, вольфрама, молибдена, а также их смеси, соли указанных металлов с органической кислотой или комплексные соединения зтих металлов с карбонильным соединением [150-152]. В одном из этих способов [150] для повышения выхода ЭПХГ подвергают ультрафиолетовому облучению катализатор или его раствор в ХА. В некоторых случаях реакцию окисления предлагается [c.36]

    Формальдоксим H2 = NOH в щелочной среде взаимодействует с Мп(П), образуя растворимое комплексное соединение красно-коричневого цвета. В начале реакции возникает бесцветное комплексное соединение, которое быстро переходит в красно-коричневое вследствие окисления Мп(П) до Мп(1 У) кислородом воздуха. Состав соединения соответствует формуле [Мп(СН2КО)б] . [c.58]

    Ни один из этих элементов в своих соединениях не достигает степени окисления, соответствующей номеру группы. Наиболее устойчивы степени окисления +2 и Ч-З, причем для никеля, за некоторыми исключениями (например, в K [NiFe], см. также опыт 1), наиболее типична степень окисления +2 (конфигурация d ) (опыт 1). Во многих соединениях кобальта он также имеет степень окисления 4-2 (d ) степень окисления 4-3 (d ) характерна главным образом для комплексных соединений кобальта, которые имеют сходство с комплексами хрома (1П). Соединения железа в степени окисления -j-2 (d ) сходны с соединениями цинка реакции иона железа(III) (d ) во многом похожи с реакциями ионов алюминия и хрома(III). Обладающие сильным окислительным действием ферраты (VI) (d ) РеОч напоминают хроматы (VI) и мaнгaнaты(VI) ферраты имеют тот же состав, что и сульфаты, и часто им изоморфны. Реакции соединений железа, кобальта и никеля в своем больщинстве определяются склонностью этих металлов к изменению степени окисления и их способностью к комплексообразованию. [c.635]

    Метод кондуктометрического титрования основан на изменении электропроводности объема раствора во время протекания в нем химической реакции (пейтрализации, осал<дения, замещения, окисления— восстановления, комилексообразования). В результате реакции изменяется ионный состав раствора. Иоиы с одной абсолютной скоростью и эквивалентной электроироводностью заменяются или иа ионы с другими значениями этих характеристик, или в системе образуется плохо диссоциирующее, малорастворимое или комплексное соединение (особенно хелатное). Кондуктометри-ческое титрование применяют для объемного анализа водных и неводных растворов, физиологических и биологических жидкостей 114 [c.114]

    С помощью уравнений, аналогичных (7.2), вводят понятия средней энергии координационной связи (ЭКС) и средней энергии координационной связи в растворе (ЭКСР), определяемые как удельный вклад связей данного типа в тепловой эффект (—ЛЯ°) образования комплексного соединения из иона металла и лигандов в газовой фазе или в растворе соответственно без изменения степени окисления в ходе реакции. В частности, ЭКС в комплексе (х — заряд катиона, у — заряд лиганда по модулю) определяется как — Н°1п для реакции [c.349]

    Индика1 орные электроды при потенциометрическом титровании по методам осаждения и комплексообразования. Различные осадки и комплексные соединения состоят из самых разнообразных ионов, и потому не существует такого универсального индикаторного электрода, который мог бы быть обратимым относительно всех катионов и анионов. Кроме того, не всегда можно располагать металлическим электродом, обратимым относительно своих ионов, из-за большой электролитической упругости растворения ряда металлов (легко окисляющихся Н -ионами раствора) или такими твердофазными веществами, в состав которых входит хотя бы один из ионоБ, образующих в процессе титрования осадки или комплексные соединения, но в другой степени его окисления или восстановления. Малая селективность индикаторных электродов, казалось бы, сильно ограничивает возможность использования потенциометрического метода в реакциях осаждения и комплексообразования. Однако применение электродов второго рода позволяет заметно расширить область применения потенциометрического титрования. [c.61]

    Известно, что N1F3 практически не способен входить в состав комплексного соединения в качестве лиганда, тогда как РРз образует многочисленные устойчивые комплексы с переходными металлами в низких степенях окисления, например [Сг(РРз)б], [Ni(PPs)4] и [Ре(РРз)4] . Кроме того, NP3 неядовит, а РРз ядовит. Аналогично, SPe и I4 реакционно инертны, а ТеРб и SI I4 вступают в различные химические реакции, например легко гидролизуются. Приведите возможное объяснение этих фактов. [c.155]

    Все атомы имеют в валентном слое по два электрона, которые они отдают при реакциях окисления — восстановления. Ртуть в отличие от цинка и кадмия образует два ряда соединений соединения двухвалентной положительной ртути Hg2+ и комплексного иона [Hg2l +. [c.416]

    Рассмотрим совокупность равновесных реакций, приводящих к образованию комплексных соединений в оксред-системе, которая состоит из катионов металла в разных степенях окисления, и находится в водном растворе кислоты НьА. Учтем реакции замещения ацидолигандом Нь-sA - молекул воды, координированных в аквакомплексах и в комплексах катионов в окисленном и восстановленшм состояниях, гидролиз комплексов, протолитическую диссоциацию координированных протонированных лигандов, полимеризацию (ассоциацию) комплексов примем также, что комплексообразование протекает в растворах с / = onst. В соответствии с этими представлениями комплексообразование окисленной формы (катион М" +) с s-продуктом протолитической кислоты НйА и гидролиз выразим реакцией [c.621]

    Для окисления Fe (И) в Ре (П1) используют азотную кислоту, а также другие окислители в зависимости от природы анализируемого объекта пероксидисульфат аммония, перманганат калия. Проведению реакции мешает ряд веш,еств. Прежде всего должны отсутствовать анионы кислот, которые дают более прочные ко1 шлексиые соединения, чем роданиды железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также значительные количества хлоридов и сульфатов. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь молибден, вольфрам, титан (III, IV), ниобий, палладий, кадмий, цинк, ртуть. [c.151]

    Оксикислоты образуют комплексные соединения с рением, имеющим степень окисления ниже семи. При изучении влияния оксикислот на реакцию образования комплексного соединения рения с а-фурилдиоксимом было установлено [52], [53], что максимальная окраска в их присутствии развивается в течение 15 мин без добавления оксикислот необходимо 45 мин. Видимо, оксикислоты (щавелевая или винная), фиксируя определенную степень окисления рения (IV), ускоряют образование соединения рения с а-4)урилдиоксимом. При определении рения в присутствии больщих количеств молибдена с добавлением винной кислоты рекомендуется использовать вариант дифференциального метода (стр. 71), при котором большие количества молибдена не мешают определению рения. [c.196]

    Приемы смещения равновесия реакций окисления — восстановления путем связывания одного из компонентов оксред-системы в осадок или комплексное соединение будут рассмотрены в гл. 4. [c.79]

    Идея электровалентности опирается на ионные представления Берцелиуса. Представим себе, что образование комплексного иона, например [СоС14] из свободных ионов Со + и С1 , происходит в две стадии пусть первоначально образуется гипотетический ион [СоС с чисто ионным характером связи без поляризации. Распределение зарядов в таком ионе (2 + на Со и 1— на С1) соответствует формальной электровалентности частиц. При переходе к реальному распределению зарядов произойдет частичная передача донорных электронов от лигандов к иону металла, что сопровождается уменьшением эффективного положительного заряда центрального иона, эффективных зарядов лигандов и полярности связей. Этот процесс иногда трактуют как внутримолекулярную реакцию окисления — восстановления. Итак, эффективные заряды Со +и С1 в [СоС14] по модулю меньше формальных (двух и единицы соответственно). Таким образом, электровалентность не отражает истинной картины распределения зарядов в соединениях. [c.6]


Смотреть страницы где упоминается термин Комплексные соединения в реакциях окисления: [c.203]    [c.375]    [c.93]    [c.179]    [c.23]    [c.351]    [c.135]    [c.165]    [c.231]   
Практикум по общей химии Издание 2 1954 (1954) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные реакции

Реакции окисления



© 2025 chem21.info Реклама на сайте