Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массы перенос законы Фит

    Общие законы массо- и теплообмена рассмотрим вначале в линейном приближении без учета зависимости коэффициентов переноса от концентрации или температуры. [c.169]

    Частные случаи общего дифференциального уравнения переноса (4.0), отражают линейные законы переноса импульса (Навье-Стокса для вязкой жидкости), массы (Фика для диффузии) и энергии (Фурье). Ко.эффициенты пропорциональности в этих уравнениях известны как динамический [c.150]


    Теоретический анализ процессов массопереноса в капиллярно-пористых материалах не представляется возможным, и поэтому единственным реальным способом анализа здесь оказывается объединение всех возможных элементарных видов переноса целевого компонента в некоторый единый эффективный массо-перенос. При этом существенно, что практически все элементарные виды переноса имеют градиентный характер, т. е. количество переносимого целевого компонента пропорционально градиенту его концентрации или давления. Все это дает основание описать сложную совокупность элементарных видов переноса массы единым эквивалентным переносом в форме диффузионного уравнения Фика (см. закон диффузии (5.1))  [c.515]

    Химические (реакционные) процессы, которые протекают со скоростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Вследствие этого скорость реакций подчиняется законам макрокинетики и определяется наиболее медленным из последовательно протекающих химического взаимодействия и диффузии. Общие закономерности протекания химических процессов и принципы устройства реакторов рассматриваются в специальной литературе .  [c.13]

    На границе двух различных фаз гидродинамическая обстановка обычно очень сложная. Основным понятием в учении о потоках является открытый Прандтлем очень тонкий пограничный слой (расположенный у границы текущей среды), для которого характерен гораздо больший градиент скорости, т. е. более быстрое ее изменение [6]. Независимо от Прандтля Нернст установил подобное же изменение концентрации у границы фаз 17]. Это явление также оказалось общим (как и открытые независимо друг от друга законы для потоков теплоты, массы и импульса). Таким образом, для тонкого слоя вблизи границы фаз характерно резкое изменение концентрации, температуры и скорости. Скорость переноса для любого потока имеет размерность  [c.67]

    Под названием внешняя гидродинамика кипящего слоя мы объединяем все явления взаимодействия потока газа (жидкости) со слоем в целом — критические скорости начала псевдоожижения и уноса, закон расширения слоя. К внутренней гидродинамике кипящего слоя относятся явления, обусловленные нестационарными движениями твердой фазы и ее перемешиванием внутри слоя, дисперсия скоростей и перемешивание в газовом потоке, механизм переноса импульса, теплоты и массы. Перенос теплоты от кипящего слоя к стенкам аппарата или погруженным в него поверхностям принято называть внешним теплообменом , в отличие от межфаз-ного теплообмена между зернами и проходящим потоком газа [c.7]


    Ниже описываются основные соотношения теории переноса — законы сохранения массы, количества движения и энергии, — а также рассматриваются важные для процессов переработки термодинамические свойства полимеров. Вводятся, кроме того, тензоры напряжений и скоростей деформаций. Один из разделов посвящен очень важному для изучения процессов переработки полимеров методу смазочной аппроксимации. [c.96]

    Аналоговое моделирование основано на аналогиях, существующих в описании некоторых фильтрационных процессов с другими физическими явлениями (диффузией, процессом переноса тепла, электрического тока и т.д.). Основная причина существования аналогий-это однотипность уравнений, описывающих физические процессы различной природы. Аналогия устанавливается на основании того факта, что характеристические уравнения (например, закон Дарси и закон Ома) выражают одни и те же принципы сохранения (массы, импульса, энергии, электричества и т.п.), лежащие в основе многих физических явлений. Существующие аналогии позволяют разрабатывать аналоговые модели. [c.376]

    Второй причиной, приводящей к отклонению идеальных моделей от реальных, является уменьшение скорости химических превращений вследствие локального массо- и тепло-переноса. Чтобы учесть это, необходимо вместо уравнений формальной кинетики, отражающих законы собственно химических превращений, применять уравнения макрокинетики [34,36, 37], учитывающие влияние локального массо-и теплопереноса. [c.39]

    Материал книги охватывает важнейшие проблемы современной инженерной химии приложение законов физической химии к решению инженерные задач, явления переноса массы, энергии и количества движения, вопросы теории подобия, теорию химических реакторов, проблемы нестационарные процессов. Специальные главы посвящены методам математической статистики и вопросам оптимизации химико-технологических процессов. [c.5]

    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]

    В вязком режиме кристалл растет от зародыша радиусом К о кристалла радиусом причем кристалл полностью увлекается колеблющимся раствором. Поэтому перенос вещества подчиняется законам молекулярной диффузии. С учетом сферической симметрии дифференциальное уравнение изменения массы кристалла будет иметь вид [12]  [c.149]

    Обобщенный технологический оператор Т является совокупностью простейших операторов, соответствующих различным типам процессов химического производства. К ним следует отнести операторы смешения, деления, изменения энтальпии, изменения давления, химического превращения. Оператор деления может быть двух типов простой делитель потоков и выделение отдельных чистых веществ (или фракций). На основании физико-химических и технологических свойств процессов при разработке технологической схемы необходимо выбрать для каждого из них соответствующий оператор Т. Поскольку основные процессы химической технологии базируются на явлениях переноса массы, энергии, кинетики реакций в условиях относительного движения фаз, определяющих гидродинамическую обстановку в аппарате, то математическое описание технологического оператора будет основываться на законах сохранения массы, энергии и импульса, законах термодинамики многофазных систем, законах тепломассопереноса и т. д. На этапе расчета технологической схемы каждому технологическому оператору необходимо сопоставить адекватный в смысле воспроизведения реальных условий оператор математического описания процесса, такой, что [c.76]

    В гетерогенной системе может происходить перенос вещества диффузией между разными фазами кроме того, между молекулами в данной фазе может проходить химическая реакция. Если химический процесс является равновесным, то между веществами (концентрациями веществ) в равновесной смеси устанавливается строго определенное распределение. В гомогенной или гетерогенной системах связь между равновесными концентрациями веществ устанавливается с помощью закона действующих масс. [c.156]


    Создавая математическую модель, исследователь формализует рассматриваемый процесс или элемент, представляя его в виде математической связи между входными и выходными параметрами. Точность воспроизведения сущности рассматриваемого процесса на модели будет зависеть от степени изученности его. Составление математического описания, например, процесса получения и выделения продуктов реакции основывается на степени изученности процесса и составляющих его элементов, на знаниях о всех существенных внешних и внутренних связях. Источником этих сведений обычно являются фундаментальные исследования в области термодинамики, химической кинетики и явлений переноса. Основываясь на фундаментальных законах термодинамики, можно записать уравнения для определения тепловой нагрузки на конденсатор, подогреватель, кипятильник, найти равновесные составы химической реакции и т. д. На основе законов химической кинетики можно установить механизм реакции, определить скорости образования продуктов. Как для процесса в целом, так и для отдельных его элементов записываются фундаментальные уравнения переноса массы, энергии и момента. С точки зрения машинной реализации математического описания процесса получения и выделения продуктов реакции этой задаче свойственны причинно-следственные отношения между элементами, так как модели и реактора, и колонны в своей структуре содержат большое число взаимосвязанных подзадач. В этом смысле к математической модели технологического процесса применимы общие принципы системного анализа. [c.8]

    Детерминированная составляющая на основе фундаментальных законов переноса массы и энергии позволяет строго теоретически определить скорость протекания того или иного процесса, а следовательно, и кинетическое время /к, необходимое для достижения конечного состояния или завершенности процесса при данной скорости. Однако в промышленных аппаратах действительное время завершения процесса может и не соответствовать времени /к, полученному на основе кинетических законов, так как зависит от условий протекания процесса в аппарате, от характера распределения потоков в аппарате, от их структуры, непосредственно связанной с конструкцией аппаратов, внешним подводом энергии, наличием в аппарате перемешивающих устройств, отражательных перегородок, колпачков, насадок, различной структуры потоков отдельных фаз в многофазных системах и т. п. Очевидно, то расчет процессов сводится к определению и сравнению и прпчем всегда должно выдерживаться соотношение [c.24]

    Первое слагаемое в (1.173) и (1.174) (сумма в квадратной скобке) выражает закон Фика в полном потоке переноса массы, второе слагаемое — эффект термодиффузии, третье слагаемое характеризует закон Стефана. Обозначим через е отношение скорости вдува в частицу к скорости набегающего потока (Vt—Vi), т. е. [c.65]

    Отметим еще раз, что полный поток переноса массы получен из соотношений между термодинамическими потоками и силами одинаковой тензорной размерности. В гетерогенной системе в неравновесных процессах участвуют только три силы градиент давлений (концентраций), градиент температур и вектор разности скоростей между несущей фазой и частицей. Именно наличие вектора разницы скоростей и определило теоретически закон Стефана. [c.67]

    Детерминированная составляющая на основе фундаментальных законов - закона Ньютона, переноса массы и энергии и т. п. - позволяет строго теоретически определить скорость протекания того или иного процесса, а следовательно, и время для достижения конечного состояния или завершенности процесса при данной скорости. Однако в промышленных аппаратах действительное время завершения процесса может не соответствовать времени, полученному на основе классических законов, так как оно зависит от условий протекания процесса в аппарате, характера структуры потоков, обусловленного конструкцией аппарата, внешнего подвода энергии, наличия в аппарате устройств, изменяющих характер и направление движения пара и жидкости, и т. д. [c.9]

    Скорости подвода реагентов к реакционной поверхности и отвода от нее продуктов реакции (стадии переноса вещества) определяются процессами конвекции и диффузии они зависят от вязкости среды и других факторов, которые не учитываются законом действия масс. Поэтому часто к гетерогенным взаимодействиям закон действия масс неприменим, о если лимитирующей стадией гетерогенной реакции является само химическое взаимодействие, а не диффузионные или какие-либо иные сопутствующие процессы, можно ожидать совпадения между измеренной скоростью реакции и вычисленной по закону действия масс. [c.119]

    Абсорбция и адсорбция газов зависят от переноса молекул газа из общей массы к поверхности жидкости или твердого тела. В случае жидкости молекулы газа в дальнейшем диффундируют во всем объеме жидкости, тогда как на поверхности твердого тела они удерживаются физическими (Ван-дер-Ваальса) или химическими (хемосорбция) силами. Когда поверхность жидкости или твердого тела вступает в контакт с покоящимся газом, диффузия молекул газа протекает по законам молекулярной диффузии, и скорость ее зависит от температуры и давления газа и типа газовых молекул. Скорость переноса молекул Na в мольных единицах на единицу площади за единицу времени описывается законом Фика  [c.103]

    Перенос массы в результате диффузии описывается уравнением Фика, которое для одномерного потока записывается в виде (первый закон Фика)  [c.766]

    В рассматриваемой системе скорость сушки, согласно законам переноса массы, может быть представлена уравнением  [c.654]

    Аналитический метод создания математических моделей основывается на использовании закона сохранения субстанции (энергия, масса) и закономерностей переноса субстанции. Модели, использующие только закон сохранения, называются статическими в отличие от динами- [c.15]

    Такая интерпретация уравнения (II,12а) позволяет выявить аналогию между переносом механического движения (трения), тепла и массы, рассматриваемую в главе X. Кроме того, она отвечает физическому механизму, лежащему в основе закона внутреннего трения. Так, при движении в потоке газа двух соседних элементарных слоев с несколько отличными [c.28]

    Прикладная наука о транспортных явлениях рассматривает перенос массы, количества движения и энергии. Она включает в себя те теоретические правила, с помощью которых инженеры решают задачи, связанные с течением жидкостей, теплопереносом и диффузией в многокомпонентных средах. Ниже приводится краткий обзор законов переноса , поскольку процессы переработки полимеров включают в себя транспортные процессы. [c.96]

    Поскольку перенос массы, количества движения и энергии происходит из одной части среды в другую, важно правильно прослеживать пути их количественного изменения. Это можно сделать с помощью уравнений баланса , которые представляют собой математическую запись физических законов сохранения массы, ко- [c.96]

    Теоретическое истолкование закона Ньютона (1) можно получить для газов на основании кинетической теории. Согласно предположению, лежащему в основе кинетической теории, молекулы газа находятся в беспрерывном, но беспорядочном движении, так что газ в целом остается неподвижным. Кинетическая энергия этого беспорядочного движения молекул представляет тепловую энергию газа. Предположим теперь, что наряду с беспорядочным движением молекул имеется упорядоченное перемещение конечных, очень больших но сравнению с отдельными молекулами масс газа параллельно некоторой плоскости Ро, причем скорость этого движения и пропорциональна расстоянию у от рассматриваемой плоскости (рис. 6.1). На произвольном расстоянии 1/1 проведем плоскость Г и параллельную Го, и рассмотрим перенос количества движения за счет беспорядочного движения молекул через эту плоскость. Молекулы, которые [c.276]

    При установившемся режиме реакции все три стадии ее протекают с равными скоростями. При этом во многих случаях энергия активации реакции невелика, и вторая стадия (собственно химическая реакция) могла бы протекать очень быстро, если бы подвод реагирующего вещества к поверхности и отвод продукта от нее тоже происходили бы достаточно быстро. Следовательно, скорость таких реакций определяется скоростью переноса вещества. Можно ожидать, что при усилении конвекции скорость их будет возрастать. Опыт подтверждает это предположение. Так, реакция горения угля, химическая стадия которой требует небольшой энергии активации, протекает тем быстрее, чем интенсивнее подается к углю кислород (или воздух). В случае гетерогенных реакций в уравнения закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, обычно представляет собой постоянную величину и поэтому входит в константу скорости. Например, для реакции горения угля [c.196]

    Физико-химические основы технологии базируются на химикотехнологическом анализе процессов с применением ряда фундаментальных и общих законов, понятий и закономерностей по переносу количества массы и энергии к химическим системам, т. е. к системам с физико-химическим превращением веществ. Закон сохранения массы должен соблюдаться для системы в целом и для отдельных компонентов. [c.7]

    При этом все самопроизвольные процессы переноса массы и энергии сопровождаются увеличением энтропии системы, а в изолированной системе в состоянии равновесия энтропия достигает максимального значения. Для обратимых процессов при равновесии системы объемом V закон сохранения энергии можно переписать так  [c.9]

    Химический потенциал как термодинамическую переменную ввел в науку Гиббс. Возникает естественный вопрос как можно было не заметить этой величины раньше при изучении химических процессов Ответ на него кажется несколько неожиданным — все законы химической термодинамики можно получить, ие используя в явном виде химические потенциалы (11, хотя само изложение предмета при этом приобретает. весьма громоздкий вид. Дело в том, что для закрытых систем, не обменивающихся массой с окружающей средой, все относится к внутренним координатам состояния, тогда как основу термодинамического способа рассмотрения составляет метод контрольной поверхности, согласно которому об изменении энергии системы судят по обмену внешними координатами между системой и средой. Тогда внутренние переменные явным образом не входят в (Ш Рассмотрим для примера обратимый переход некоторого количества вещества йп в двухфазной системе при постоянных Т и р н отметим штрихами принадлежность величины к той или иной фазе. Тогда изменение энергии системы с1и=Т(18 — рйУ + [>, —так как йп = —д.п."—йп. В правой части слагаемое 1 — 1")йп является величиной второго порядка малости, так как для обратимого переноса вещества сама разность потенциалов (ц — ц") должна быть величиной бесконечно малой. Поэтому Гиббс как бы рас- [c.72]

    Из классической физики известно, что в явлениях переноса такие законы хорошо описывают потоки теплоты, электричества и массы. [c.288]

    Требуется построить математическую модель конвективной диффузии, сопровождающейся химической реакцией, если известно, что в любой точке плоскости, перпендикулярной к направлению потока, условия процесса одинаковые (рис. 22) и имеет место закон о переносе массы в результате диффузии  [c.84]

    Известно, что фильтрование подчиняется закону о переносе массы (83), т. е. количество профильтровавшего вещества т равно произведению коэффициента фильтрования А > О, модулю [c.90]

    Воспользуемся далее законом о переносе массы в результате диффузии  [c.108]

    Аналитическими методами составления математического описания обычно называют способы вывода уравнений статики и динамики на основе теоретического анализа физических и химических процессов, происходящих в исследуемом объекте, и учете конструкции аппаратуры и характеристик перерабатываемых веществ. При выводе этих уравнений используются фундаментальные законы сохранения вещества и энергии, а также кинетические закономерности процессов химических превращений, переноса тепла и массы. [c.9]

    В уравнении (15.24) величина q = —D grad с отражает плотность молекулярного переноса массы [первый закон Фика, уравнение (3.14)], а q = й с-плотность конвективного потока массы. [c.20]

    При НИЗКИХ температурах (до 65—85° С) перенос вещества внутри материала в контактном слое (в слое материала вблизи нагретой поверхности) определяется одним из основных законов переноса — законом термической маосопроводности, объединяющим в себе молекулярный и молярный переносы массы вещества. Перенос вещества в направлении теплового потока под влиянием градиента температуры создает градиент влагосодержания, который препятствует переносу массы из контактного слоя. Плотность потока массы вещества при наличии перепадов температуры и влагосодержания внутри материала будет определяться известным обобщенным законом перемещения пара и жидкости  [c.279]

    В целом истинно простое метрическое явление, как и хрональное, подчиняется всем законам ОТ. Например, переход метрического вещества через контрольную поверхность системы сопровождается совершением работы (первое начало). Количество метрического вещества, мерой которого служит масса, подчиняется закону сохранения (второе начало). Связь метрического явления со всеми остальными регулируется третьим и четвертым началами. Перенос метрического вещества происходит под действием разности метриалов (пятое и шестое начала), этот процесс сопровождается эффектами заряжания и экранирования (седьмое начало). [c.250]

    Атомам в соединениях и комплексных ионах приписывают степень окислении, чтобы иметь возможность описывать перенос электронов при химических реакциях. Составление уравнения окислительно-восстановительной реакции основывается на требовании выполнения закона сохранения заряда (электронов). Высшая степень окисления атома, как правило, увеличивается с ростом порядкового номера элемента в пределах периода. Например, в третьем периоде наблюдаются такие степени окисления На + ( + 1), Мя" + ( + 2), А1 -" ( + 3), 81Си( + 4), РР5(5), 8Рв( + 6) и СЮЛ + 7). Степень окисления атома часто называется состоянием окисления атома (или элемента) в соединении. Реакции, в которых происходят изменения состояний окисления атомов, называются окислительно-восстановительными реакциями. В таких реакциях частицы, степень окисления которых возрастает, называются восстановителями, а частицы, степень окисления которых уменьшается, называются окислителями. В окислительно-восстановительной реакции происходит перенос электронов от восстановителя к окислителю. Частицы, подверженные самопроизвольному окислению — восстановлению, называются диспропорционирующими. В полном уравнении окислительно-восстановительной реакции суммарное число электронов, теряемых восстановителем, равно суммарному числу электронов, приобретаемых окислителем. Грамм-эквивалент окислителя или восстановителя равен отношению его молекулярной массы к изменению степени окисления в рассматриваемой реакции. Нормальность раствора окислителя или восстановителя определяется как число его эквивалентов в 1 л раствора. Следовательно, нормальность раствора окислителя или восстановителя зависит от того, в какой реакции участвует это вещество. [c.456]

    Процессы химической технологии по своей природе детер-минированно-стохастические, т. е. существуют вполне определенные связи между физико-химическими параметрами, определяемые фундаментальными законами переноса массы, энергии импульса, а также условиями нестационарности и стохастики (распределение частиц потока массы или энергии во времени). [c.22]

    В ч. 2 Справочника изложены основные законы, определяющие интенсивность переноса энергии, массы и импульса. Эти аконы Затем можно использовать вместе с законами термодинамики в процессе проектирования теплообменников. В испол1,зуемой в даиноп книге терминологии под теплообменниками понимаются все тины оборудования, в котором перенос теплоты является фактором, существенным для процесса или даже контролирующим его скорость. Поэтому такие устройства, как сушилки, трубчатые реакторы и т.д., также обсуждаются детально. [c.70]

    В неподвижной среде процессы переноса могут трактоваться как макроскопические, являющиеся результатом статистического усреднения большого числа непрерывно происходя щих микроскопических событий, в которых участвуют определенные элементы среды. Такими элементами могут быть молекулы, ионы, атомы, электроны, фононы или фотоны. Событиями обычно являются столкновения элементов, обусловленные их непрерывным хаотическим движением, происходящим в соответствии с принципом микроскопической обратимости. Феноменологические законы переноса теплоты, массы и импульса были установлены Фурье (теплопроводность), Фиком (диффузия) и Ньютоном (вязкое трение). Эти законы справедливы в том случае, когда выполняются следующие два условия  [c.70]

    Условие инвариантности комбинаций удля упругих столкновений выполняется автоматически при любых максвелловских функциях fi. fj с произвольными нормировками. Формально можно считать, что смесь нереагирующих компонент является "химически равновесной", если функции распределения имеют максвелловский вид. Хотелось бы отметить, что такой подход имеет физический смысл, поскольку частицы с разной поступательной энергией вносят различный вклад в процессы установления равновесия. Кстати, именно на этом основана модель Ван-Чанга—Уленбека—де Бура, где вводится множественная система квантовых уровней, при которой фактически отсутствуют упругие столкновения и каждое столкновение приводит к изменению уровня. Частицы с неодинаковой кинетической энергией при этом обладают как бы различной химической активностью в процессах неупругого рассеяния. После расчета коэффициентов переноса в такой системе частицы на различных уровнях вновь считаются одинаковыми, и их концентрация находится простым суммированием. Такое объединение упругих и неупругих процессов позволило рассчитать характеристики переноса (сдвиговую и объемную вязкость, время релаксации) многоатомнь1х газов. В этой трактовке условие детального баланса представляет собой частный, вырожденный случай закона действующих масс (с условием,ДЕ= 0). [c.31]

    Перенос массы в результате диффузии формально сходен с за кономерностями переноса тепла или электричества. Воспользовав шись такой аналогией, Фик (1855 г.) сформулировал первый закон диффузии  [c.59]

    Им широко пользуются для различных расчетов в электрохимии. В частности, на законах Фарадея основан самый точный способ измерения количества электричества, прошедшего через цепь. Он заключается в определении массы вещества, выделившегося при электролизе на электроде. Для этого служат приборы, называемые кулонометрами. В лабораторной практике используется медный кулонометр, в котором электролизу подвергается подкисленный раствор USO4 с медными электродами. Важно, чтобы в кулонометре на электроде происходила только одна электрохимическая реакция и полученный продукт был доступен точному количественному опреде-.лению. Например, все количество электричества, прохо-.дящее через медный кулонометр, расходуется на перенос меди с анода на катод, где масса ее определяется гравиметрическим методом. [c.256]


Смотреть страницы где упоминается термин Массы перенос законы Фит: [c.106]    [c.265]    [c.216]    [c.47]   
Биофизическая химия Т.2 (1984) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Закон массы



© 2025 chem21.info Реклама на сайте