Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы технологические Методы оценки

    ГОСТ 27.203-83. Технологические системы. Общие требования к методам оценки надежности, [c.288]

    Вероятностные методы оценки опасности взрыва или пожара используются для классификации технологических установок, производственных помещений и отдельных технологических процессов и оборудования. При этом для анализа технологических систем используют аппарат теории надежности, а надежность системы и ее элементов отождествляется с их взрыво- и пожароопасностью. [c.437]


    Структурный метод оценки надежности. Метод предназначен для оценки надежности человека-оператора в системах управления. С увеличением степени автоматизации роль человека как звена в системе управления постоянно возрастает, так как человек переходит на более высокие уровни управления. Отказ человека-оператора в системе управления современным технологическим процессом приводит к значительным потерям. [c.69]

    Должны развиваться работы по ценообразованию для нагнетателей аппаратов различ[1ых конструкций, методы расчета стоимости монтажа, ремонта оборудования. Следует систематизировать данные по стоимости энергии, теплоносителей и др. Все это требуется для создания четкой систе.мы экономических расчетов разнообразного теплообменного оборудования, а в дальнейшем — единой системы экономических расчетов типового оборудования технологических, энергетических и транспортных объектов, пригодных как для текущих, так для прогнозных экономических оценок. [c.316]

    Перед сооружением головного промышленного образца ХТС необходимо детальное обследование принятого в проекте варианта с использованием метода математического моделирования. При этом может быть получена, хотя и предварительная, но достаточно обоснованная оценка характеристик системы. Анализ результатов моделирования поможет вскрыть слабые стороны проекта, обнаружить узкие места, оценить согласованность отдельных элементов. Такое обследование позволит внести необходимые коррективы в проект, улучшить принятый вариант, а параметры элементов и параметры технологического режима ХТС выбрать наиболее обоснованно. [c.52]

    Современные вычислительные средства и метод математического моделирования позволили перейти от интуитивной системности исследований к количественному системному анализу химических производств. В соответствии с методологией системного анализа выделяются уровни иерархической структуры рассматриваемой системы начиная с молекулярного и до интегральных оценок с учетом взаимосвязей между отдельными уровнями. Каждый из уровней характеризуется соответствующим математическим описанием. С теоретической точки зрения такой подход позволяет познать явления, начиная с молекулярного уровня, а с практической — получать более адекватное представление о производстве по математическому описанию, выявлять более рациональные способы ведения процесса и решать задачи оптимизации на уровне технологической схемы. [c.74]


    Показатели, характеризующие свойства и процесс функционирования ХТС, можно определить одним из двух способов а) путем обработки информации, полученной в ходе натурного эксперимента, и б) методом математического моделирования процесса функционирования сложной системы на ЦВМ. Второй метод весьма эффективен для оценки вариантов структуры технологических связей между элементами сложной системы на стадии ее проектирования. [c.34]

    Так, например, опыт практической реализации задач оценки переменных состояния и идентификации химико-технологических процессов с применением фильтров Калмана [9, 10, 12] позволил обнаружить ряд существенных ограничений данного подхода к решению этих задач в области химической технологии. К источникам таких ограничений можно, например, отнести форму представления математического описания системы в виде дифференциальных операторов и их конечно-разностных аппроксимаций при численных операциях. Реализация математических моделей в такой форме на ЦВМ с применением методов формальной алгебры в условиях большого уровня помех и грубых начальных оценок параметров состояния часто связана с плохой обусловленностью матриц, а отсюда и с неустойчивостью, плохой сходимостью вычислительных процедур. [c.474]

    Для Роскомхимнефтепрома проведен системный анализ задачи финансирования новых технологических разработок [5]. Предложены критерии оценки. На основе метода анализа иерархий разработан математический аппарат оценки перспективных проектов. Разработана универсальная компьютерная оболочка системы поддержки принятия решения на двух [c.105]

    В практике строительства отечественных магистральных трубопроводов начинает распространяться метод полевого проектирования, при котором основную часть рабочих чертежей магистрали разрабатывают прямо на трассе в процессе окончательных изысканий. Затем с экономической части проекта рассчитывают необходимую емкость сливо-наливных устройств, анализируют решения по выбору технологических установок, рассматривают степень намечаемой автоматизации и механизации технологических процессов и т. д. Здесь же дают экономическую оценку выбранной системы управления и эксплуатации, а также решений по организации строительства. На базе анализа основных технологических и строительных решений определяют общую сметную стоимость строительства, устанавливают необходимый объем капитальных вложений и их эффективность, выделяют производительность труда и эксплуатационные издержки. Одновременно определяют и анализируют технико-экономические показатели проектируемого объекта. [c.376]

    Первая часть (гл. 1 и 2) посвящена описанию места и роли качественного этапа системного анализа и основ математического аппарата нечетких множеств. Приводятся сведения о возможностях человека воспринимать информацию от объекта с оценкой достоверности получаемой информации. Даны лингвистические предпосылки качественного этапа системного анализа, обосновывающие сопоставление нечетких терминов числовым системам. Анализируется связь технологических параметров нечетко определенных характеристик и словесного описания сложных ФХС. Развивается диаграммный метод представления качественной информации, используемый при анализе ФХС и рассматриваемый в последующих главах. [c.6]

    На качественном этапе системного анализа при решении научных и инженерно-технических задач, направленных на совершенствование, проектирование и управление процессов химической технологии, требуется учитывать различного вида неопределенности. Довольно часто неопределенности обусловлены уровнем знаний (в рамках решаемой задачи) об изучаемой технологической системе. Выделяют общий уровень знаний и знания одного или группы специалистов. Неопределенности могут возникать и но другим причинам. К ним относятся большие погрешности измерений, что рассмотрено при решении задачи но оценке запасов газа в месторождении. Использование качественной информации при экстраполяции функции тепловых потоков в стекловаренной печи обусловлено отсутствием количественных экспериментальных данных в недоступной для измерений области. В процессах получения полиэтилена методом высокого давления и ректификации из-за сложности описания взаимосвязей между параметрами применен подход нечетких множеств. Привлечение качественной информации при синтезе нечетких регуляторов определяется желанием использовать неформализованные знания и опыт оператора. Неопределенности могут являться причиной нечеткости задания целей иссле- [c.352]

    Для оценки эффективности схемы с промежуточным охлаждением абсорбента по системе абсорбер—холодильник—абсорбер были выполнены расчетные исследования процесса при выводе насыщенного абсорбента для промежуточного охлаждения с различных тарелок [95]. Эта задача была решена методом математического моделирования, в основу которого был положен алгоритм, описанный в работе [96]. Эффективность оценивали для этанового и пропанового режима (в нервом случае за ключевой компонент принимали этан, во втором — пропан). Это предопределило методику исследования и режимные параметры процесса для этанового режима давление принято 4 МПа, для пропанового — 1,6 МПа, общее количество отводимого тепла было неизменным для каждого режима и составляло соответственно 170 и 290 МДж/ч (при расчете на 100 моль исходного газа). Ниже приведены состав сырого газа и технологические параметры для обоих режимов  [c.210]


    Одним из важнейших методов в этом отношении является испытание по Муни, широко распространенное в международной прак -тике для определения как качества каучуков, так и принадлежности их к той или иной марке. Типичный прибор для контроля свойств эластомеров и прогнозирования их технологических характеристик, для оценки различий в молекулярной структуре отдельных партий каучуков - вискозиметр Муни - реализует принцип ротационной вискозиметрии со сменными измерительными системами конус - плоскость, плоскость - плоскость, цилиндр в цилиндре. [c.440]

    Эксергетический коэффициент полезного действия. Оценка полной энергии потока еше не позволяет однозначно судить о возможности ее использования. Положим, из системы выходит поток воды объемом 100 м с температурой 40 °С. Тепловая энергия потока равна = 8,4 - 10 кДж (принимаем 7о = 20 °С). Это тепло трудно использовать подогрев воды для ТЭЦ требует очень больших теплообменников из-за малого градиента температур для обогрева помещения необходимы по техническим условиям более высокие температуры таким образом., тепловую энергию потока можно использовать разве только для обогрева теплиц. Из другой системы выходит вода под давлением 3 атм с температурой 130 °С в количестве 18 м . Ее тепловая энергия будет почти такая же (/ = 8,3 10 кДж), но с ее помощью можно выработать технологический пар с давлением 2 атм и использовать для разных целей с учетом ее высокой температуры. Очевидно, что энергетическая ценность этих двух потоков различна, хотя тепловая энергия их одинакова. Поэтому далее будем оценивать потоки по их полной энергии, используя определение работоспособности потока, его возможности совершать полезную работу. Это позволяет сделать эксергетический метод. [c.226]

    Методика расчета расхода воздуха [5] на пульсацию состоит из двух отдельных частей, поскольку система пульсации включает гидравлическую систему технологического аппарата и пневматическую систему генерации импульсов. Метод расчета первой части — графо-аналитический, второй — численный, требующий применения ЭВМ. По имеющейся методике была составлена программа и проведен расчет на ЭВМ ряда работающих и проектируемых систем. Полученный расчетный материал был принят в качестве исходного для выдачи обобщенной номограммы зависимости расхода воздуха от интенсивности пульсации и суммарного гидравлического сопротивления при оптимальных размерах пульсационного тракта. Поскольку расход воздуха зависит от свойств реагентов, гидравлического сопротивления аппаратов и их размеров, то для оценки энергозатрат сначала определяют удельный расход воздуха (Кв), представляющий собой расход, отнесенный к единице объема аппарата, при плотности реагентов, равной 1000 кг/м  [c.204]

    Вопросы, связанные с механизмом действия физических (без-электролитных) методов коагуляции на дисперсные системы, обсуждаются в гл. II. Этот раздел посвящен оценке технологических эффектов, достигаемых нри совмещении указанных методов с обработкой гидролизующимися коагулянтами. [c.276]

    Описанные выше методы оценки и регулирования активного оосто-ятия нефтяного сырья косвенно показывают, что воздействие на сырье вызывает изменение его свойств, обусловленных дисперсностью системы. Непосредственное измерение размеров сложных структуршсс единиц дает исследователю весьма ценную информацию, используя которую можно получить представление о механ.гзме взаимодействия среды и фазы, а такке найти способы регулирования размеров ССЕ для ул -чшения ко.пичесгвенных и качественных результатов технологических процессов. [c.39]

    Наряду с лабораторными методами оценки П.-э. с. существуют также способы их оценки с помощью т. наз. технологических проб непосредственпо на перерабатывающем оборудовании определение вальцуемости и ширицуемости ио качеству поверхпостп, усадке и др. ноказателя.м. Кроме того, в лаборатории частично имитируют работу оборудования на специальных испытательных приборах нанр., согласно стандарту США ASTM 2230 — 63Т смеси продавливают через специальные профилирующие отверстия (метод Гарвея). Качество резиновых смесей оценивают визуально ло десятибалльной системе, сравнивая их с эталоном. В зависимости от пористости резиновой смеси, изменения со размеров ( разбухания или усадки), вида поверхности и др. наихудшие свойства оценивают 6a.,i-лом 1, наилучшие — баллом 10. [c.322]

    В данном издании рассматриваются проблемы эффективного использования топлива, в основном, на примере металлургических технологий и энергетических установок. Однако, многие принципиальные положения, затронутые в материалах и главах, имеют общетехнологическое звучание и могут с успехом быть использованы в любых технологиях. Речь, в частности, идет о таких разделах, как характеристики и подготовка топлив и ценовая политика методика определения полной энергоемкости продукции теория тепломассообменного анализа и эффективностей энерготехнологических процессов современные методики моделирования и расчеты процессов тепломассообмена технологические характеристики факела и общие требования к горелочным устройствам стратегия развития энергообеспечения и потенциал энергообеспечения стандартизация и сертификация при использовании топлив принципы регенерации теплоты и использования вторичных энергоресурсов энергоаудит и методы оценки эффективности работ по энергосбережению учет энергоресурсов системы и приборы использование топлива и экологические щ>облемы. [c.18]

    Как уже отмечено в Предисловии, основной целью данного издания является рассмотрение важнейших аспектов повышения эффективности использования топлива в энерготехнологиях. При этом также важно отметить, что топливо, энергетика и транспорт, а также энергосберегающие технологии являются, в соответствии с Основами политики Российской Федерации в области развития науки и технологий на период до 2010 г. и дальнейшую перспективу , приоритетными направлениями развития науки, технологий и техники Российской Федерации. В число перечня критических технологий Российской Федерации входят также технологии, тесно связанные с рациональным использованием топлива добыча и переработка угля, производство электроэнергии и тепла на органическом топливе, энергосбережение, технологические совмещаемые модули для металлургических мини-производств, природоохранные технологии, технологии переработки и утилизации техногенных образований и отходов, поиск, добыча, переработка и трубопроводный транспорт нефти и газа, прогнозирование биологических и минеральных ресурсов, нетрадиционные возобновляемые экологически чистые источники энергии и новые методы ее преобразования и аю мупирования и др. В связи с тем, что, как правило, использование топлива связано с применением высоких температур для обработки материалов, то при этом рассматриваются высокотемпературные технологические процессы. Основной упор в данном издании сделан на анализ эффективного использования топлива в металлургических процессах и энергетических установках, но, как уже отмечалось, многие материалы и принципиальные положения могут с успехом использоваться и в любых других технологических процессах. Это наше утверждение основывается на двух положениях. Во-первых, ряд глав достаточно общего характера напрямую может использоваться при решении проблем топливного энергосбережения при решении проблем в любой отрасли или технологии. Как уже отмечалось, к этому списку относятся главы достаточно универсального характера топливно-энергетические ресурсы, топливо и его характеристики, методики теплотехнических расчетов при использовании топлив, стратегия развития энергообеспечения и потенциал энергосбережения, интегрированный энергетический анализ, полная энергоемшсть, методы матемагичес1юго моделирования процессов тепломассообмена (общие подходы), основы теории факельных процессов, общие требования к горелочным устройствам и примеры расчетов, принципы регенерации теплоты и использования ВЭР, стандартизация и сертификация при использовании топлив, энергоаудит и методы оценки работ по энергосбережению, учет энергоресурсов, системы и приборы, использование топлива и экологические проблемы. [c.21]

    Тарификация работ по сложности их вьтолнения производится по квалификационным характеристикам, введенным в справочниках. Характеристики сложности работ, отнесенных к соответствующим разрядам, определены путем применения аналитического метода оценки работ, основанного на технологическом принципе и балльной системе оценки рабочих функций и факторов, составляющих процесс труда. Сущность этого метода заключается в том, что при определении разряда сложности работ исходят из нормальных условий и учитывают только такие факторы, которые являются содержанием процесса труда и взаимно связаны между собой, совокупность которых и дает определенную сложность работы. [c.160]

    В данной работе следует ознакомиться с методикой исследова ния многофакторных процессов обучиться методам расчета суще ствующей системы технологических оценок процесса, а также кине тических констант, данных по массообмену и т. п. на основе мате риальных балансов и аналитического контроля сырья и продуктов обобщить и интерпретировать полученные результаты. [c.197]

    Одним из перспективных методов оценки динамической ситуации на входе большинства ВХТС является спектрально-статистический анализ, с помощью которого можно установить зависимость эффективности функционирования производственной водной системы от технологических и конструкционных параметров ее элементов, от законов и параметров регулирования, применяемых при автоматизации процессов. Обычно среди таких параметров выделяют группу наиболее существенных и варьируемых (чаще всего - объемы технологических аппаратов и параметры автоматического регулирования). Это в свою очередь открывает возможности для решения широкого класса задач моделирования и оптимизации ВХТС. [c.63]

    С точки зрения математики - это аддитивная система. Следовательно, для оценки свойств нефтяного газа (при нормальных или стандартных условиях) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси)  [c.69]

    Одним из главных направлений практической реализации указанных в пункте 1 методов численного моделирования в рамках современных технологий проектирования, сооружения, эксплуатации, реконструкции сетей промышленных трубопроводов и каналов с открытым руслом является разработка и эксплуатация высокоточных компьютерных симуляторов технологических процессов изготовления труб и высокоточных компьютерных симуляторов функционирования трубопроводных (канальных) систем. Данные симуляторы по своей сути являются специализированными компьютерными аналитическими системами, обеспечивающими высокоточные оценки фактических распределений в пространстве и/или во времени параметров состояния и полного спектра режимов функционрфова-ния сети трубопроводов (системы каналов с открытым руслом). Указанные оценки можно представить в виде функциональных зависимостей от заданных воздействий на сеть и соответствующих краевых условий. При этом накладываются обязательные условия проведения адекватного моделирования геометрии трубопроводных конструкций (участков каналов с открытым руслом), течений продуктов в трубопроводах (каналах с открытым руслом), режимов функционирования оборудования сети, динамики отборов продуктов потребителями, динамики притоков продуктов от поставщиков, технологий ремонта дефектных участков трубопроводов и т.д. Вьшолнение перечисленных условий должно обеспечиваться с учетом изменений [c.55]

    Исследование диффузионной кинетики встречает ряд осложнений в связи с трудностями зкспериментального определения диффузионных параметров системы сырье-катализатор. Однако в последние годы зтот подход находит все большее оснешение в литературе. Применение методов диффузионной кинетики для обработки результатов испытания различных катализаторов позволяет более обоснованно выбирать катализаторы, носители для них, размеры зерна и ряд других важных технологических показателей, связанных с оценкой эффективности процесса. При решении проблем моделирования реактора и оптимизации процесса наиболее правильным считается использование диффузионных моделей. [c.71]

    Это связано также с необходимостью проводить итерационные процедуры на основе предварительной оценки значений переменных вектора обратного технологического потока, чтобы свести расчет замкнутой многоконтурной системы к расчету эквивалентной разомкнутой системы, для которой справедливо соотношение (11,71). С математической точки зрения метод разрыва обратных технологических связей сводится к огаределению вектора 1/1 на основе решения системы нелинейных уравнений вида  [c.93]

    Алгоритмически задача выбора технологической схемы состоит в разработке или выборе методов ее анализа, оценки, оптимизации и синтеза. На этапе анализа составляются уравнения математического описания, задаются переменные процесса и схемы, и в результате решения получается информация о потоках, температурах, давлении, составах, размерах и т. д. Оценка состоит в совмест-ном использовании информации с предыдущего этапа и экономических данных для определения целевой функции. Оптимизация состоит в поиске наилучшего набора переменных процессов. Традиционно разработка технологических схем проводится на основании итерационного выполнения указанных этапов, и лишь в последнее время стало уделяться внимание этапу синтеза, который призван объединить в себе все предыдущие этапы на основе некоторого метода. Известно большое число методов синтеза [4, 52], основанных на различных подходах, и многим из них присуща необходимость использования некоторого метода решения систем нелинейных уравнений или метода оптимизации. Последние используются для сведения материального и теплового баланса схем. Задачи решения систем уравнений и минимизации некоторого функционала взаимосвязаны и могут быть сведены одна к другой. Например, условием минимума функции Р х) является равенство нулю частных производных дР1дх1 = О, 1 = 1, 2,. . ., п, а система уравнений f х) = О, I = 1, 2,. . ., п, может быть решена путем минимизации соответствующим образом подобранного функциона- [c.142]

    В развитие теории твердения вяжущих веществ значительный вклад внесли выдающиеся ученые Г. Ле-Шателье, В. Ми-хаэлис, А. А. Байков, Д. И. Менделеев, Дж. Бернал, П. А. Ребиндер, Н. В. Белов и др. Однако в своих исследованиях они рассматривали все протекающие процессы в основном с качественной точки зрения, ЧТО не позволило однозначно трактовать полученные закономерности формирования дисперсных структур. Кроме того, для оценки особенностей возникновения коагуляционных, коагуляционно-кристаллизационных и кристаллизационных пространственных сеток в таких системах использовали недостаточно обоснованные экспериментальные методы исследования особенностей твердения вяжущих веществ. Это, естественно, сдерживало дальнейшее развитие научных основ получения новых материалов с заданными свойствами и с комплексом необходимых структурно-механических и технологических свойств применительно к требованиям их эксплуатации в реальных условиях практики. [c.5]

    После проведения микро- и макрокинетических исследований химико-технологического процесса и его математической формализации осуществляют собственно математическое моделирование процесса на ЭВМ. Коэффициенты уравнений математической модели процесса находят и корректируют непосредственно на укрупненной опытной установке путем проведения специальных экспериментов. Для установления адекватности математической модели исследуемому химико-технологическому процессу используют экспериментальный метод нанесения возмущения или введения вещества (индикатора) и исследуемый аппарат для получения кривой отклика, или переходной характе-ристикй системы, описывающей ее свойства, а также применяют статические оценки. [c.485]

    Инженеры уже многие годы используют математический анализ и экспериментальные измерения для проектирования новых и совершенствования существующих процессов. Математические методы обладают сами по себе достаточной силой, так как позволяют сосредоточить внимание на ключевых параметрах. Они дают возможность проводить исследования как важнейших отдельных случаев, так и семейств таких случаев одновременно. Математические предсказания течения процессов характеризуются четкостью и могут быть действительными в широких пределах рабочих условий, а также при самых различных проектных схемах процесса. Однако на практике случаи применения математических методов как для оценки теории реальных процессов, так и для получения численных значений ключевых параметров немногочисленны. Многие технологические системы слишком сложны для возможности их описанр1Я проверенными фундаментальными уравнениями, не говоря уже о решении таких уравнений. [c.5]

    В качестве автоматических управляющих воздействий в разработанную нами динамическую модель на данной стадии разработки внесены два самых важных автоматических пропорциональных регулятора для температур верха колонн К-1 и К-2, регулирующих заданные температуры расходами орошений. Что же касается остальной типовой системы управления блоком, то задания регуляторам оставлены постоянными, что в методе расчёта отра кается как работа "идеального" регулятора. На рис. 1 представлена технологическая схема с системой управления, для которой исследоваЛась динамическая модель атмосферного блока установки ЭЛОУ-АВТ ОАО Орскнефтеоргсинтез Для оценки качества получаемых продуктов нами был использован алгоритм расчёта температур кипения по А8ТМ как наиболее разработанный на настоящее время. Методики же разгонки светлых нефтепродуктов по АЗТМ и Энглеру мало чем отличаются. [c.45]

    С расширением исходных данных о перерабатываемости полимеров в последние годы достигнут определенный успех в однотипности партий резиновых смесей. Наряду с применением имеющихся систем автоматического дозирования компонентов и контроля параметров процесса необходимо вводить средства испытаний непосредственно в потоке. Как, например, системы контроля качества диспергирования в смесях и конечньпс материалах путем измерения на потоке электропроводности невулканизованных композиций. Для более полной оценки различий отдельный партий смесей перспективным является метод измерения тангенса угла механических потерь на торсионном вулкаметре вместо более распространенных пока вулкамет-рических кривых, определяемых по измерениям вязкости [33]. Какие из этих методов исследования применить на практике, зависит от различных факторов. Затраты на испытания, наличие приборов, возможности и воспроизводимость метода - это только некоторые критерии применимости метода. Для текущего контроля продукции наиболее интересны методы испьггания технологических свойств, включая вяз- [c.479]

    В результате использования тонких слоев чувствительного резиста с целью получения более точного переноса изображения система МСР оказывается более уязвимой по критерию пористости. Для определения числа пор проводят следующие операции. В производстве МДП-транзисторов наносят на проводник плеику 8102 толщиной 35 нм и создают МСР в соответствии с полной технологической схемой, за исключением экспонирования. Диоксид кремния затем травят в местах дефектов мокрым или сухим (плазма Ср4) способом. После этого резист удаляют, а на поверхность 5102 наносят кружки алюминия диаметром 0,8 мм, подавая на них последовательно напряжение 1,5—3,0 В на 1 см. В качестве меры пористости используют отношение общего числа замыканий к общей площади алюминиевых кружков. Этот метод может быть использован для оценки вклада каждой технологической операции в создание пористости. Оказалось, что пористость обусловлена дефектами в слое чувствительного резиста А2, но не дефектами в планаризационном слое ПММА [2]. При использовании оргаиоси-локсанов в качестве промежуточного слоя пористость составила [c.276]

    Необходимо подчеркнуть единство всех системных представлений и компонентов СППР описание только одного аспекта системы безотносительно к понятиям другого аспекта бессодержательно. Эффективность использования моделей зависит как от вычислительной эффективности применяемых алгоритмов, так и от выполнения целого ряда требований технологического характера к компьютерной реализации. Возможность применения того или иного вычислительного метода, скорость сходимости итерационных процедур, объем перерабатываемой и хранимой информации и вытекающие отсюда требования к комплексу технических средств существенно влияют на структуру и точность используемых моделей. Поэтому оценка эффективности тех или иных классов математических моделей периодически пересматривается в процессе совершенствования вычислительного оборудования, роста мощности компьютеров, в том числе объема их оперативной и долговременной памяти и иных характеристик. [c.42]

    Материал, вошедший в настоящую книгу, представляет собой большую часть докладов, представленных на Симпозиуме, специально посвященном многокомпонентным системам, который проводился в 1971 г. в рамках 159-го собрания Американского Химического общества. Ряд докладов, посвященных узко-прикладным вопросам, не вошли в перевод. Среди статей сборника выделяется ряд обзорных работ и исследований теоретического плана, в которых рассматриваются общие подходы к проблеме придания стойкости к ударным нагрузкам хрупким полимерам введением в них каучуков, применение принципа температурно временной суперпозиции релаксационных явлений в двухкомнонентных системах, механизмы армирования полимерами, оценка оптимальных размеров элементов структуры в некристаллизующихся блоксополимерах и т. д. Несомненный интерес представляют оригинальные исследования, посвященные изучению образования межфазных связей в композициях различных эластомеров, оценка размеров частиц субстрата в привитых сополимерах, изучение комплекса свойств сополимеров различных типов, сопоставление характеристик ряда привитых и блоксонолимеров. Весьма перспективны результаты технологического плана, содержащиеся в работах, посвященных созданию новых ударопрочных прозрачных композиций, разработке нового принципа стабилизации поливинилхлорида прививкой на него полибутадиена, развитию методов оптимального использования коротких волокон и неорганических соединений различного тина для модификации свойств полимерных композиций. [c.8]

    Расчеты надежности сложных технологических систем с использованием хорошей математической модели на стадии проектирования позволяют сопоставить количественные показатели надежности системы, полученные расчетным путем, с заданными и своевременно внести соответствующие коррективы, позволяющие увеличить надежность. При этом необходимо иметь в виду, что только системный подход при рассмотрении всех характеристик, в том числе и надежности, позволит найти целесообразные решения, так как многие из них зачастую являются противоречивыми. Например, имеется противоречие между обеспечением высокой надежности и снижением затрат на изготовление и функционирование системы. Системный подход и здесь позволяет найти правильную взаимосвязь различных характеристик как отдельных элементов, так и всего технологического комплекса. Одним из самых важных вопросов, ответ на который может быть получен только при системном рассмотрении технологического комплекса с применением математических методов уже на этапе проектирования, является определение требований по надежности как отдельных аппаратов, так и всей технологической установки. Тем более что оценка эффективности системы в целом обязательно вкпючает учет надежности как отдельных составных частей, так и всей системы. [c.83]

    Как показано (см. гл. II, 1), для решения первого уравнения системы дифференциальных уравнений скоростей реакций вида dy/dx = kixy необходимо л заменить через у с помошью материального баланса стехиометрических уравнений на молекулярном уровне. Расчет кинетических параметров ряда процессов показал, что точность определения константы скорости первой реакции намного выше точности, с которой находились относительные константы. Критерием точности определения этих величин служила оценка разброса значений этих параметров при неизменном технологическом режиме на всем временном отрезке. Чтобы объяснить такое положение, необходимо проанализировать и сравнить методы, с помощью которых определялись константы скорости первой реакции и относительные константы. Дифференциальные уравнения скоростей реакций, составленные для второй и последующих ступеней, кроме последней (2), рассматривают преобразование некоторого сообщества молекул. Ведь первый член первой части указанных уравнений учитывает скорость образования исследуемого вещества, а второй — скорость его расходования в какой-то общий для данного вещества момент времени. Но одна и та же молекула базисного компонента не может в один и тот же момент участвовать в образовании и расходовании одного и того же вещества. Под базисной молекулой мы будем понимать молекулу одного из начальных веществ, преобразование которой приводит к получению ряда новых веществ. Так, при хлорировании метана —это метан, [c.68]


Смотреть страницы где упоминается термин Системы технологические Методы оценки: [c.15]    [c.30]    [c.78]    [c.475]    [c.230]    [c.25]    [c.72]    [c.586]    [c.56]   
Справочник технолога-машиностроителя Том 1 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы оценки

Системы технологические



© 2025 chem21.info Реклама на сайте