Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическое определени потенциометрия

    Метод потенциометрии основан на определении электродных потенциалов измерением э. д. с. различных электрохимических цепей. Потенциометрия, подобно кондуктометрии, относится к электрохимическим методам исследования. [c.288]

    Контроль производства осуществляется заводскими и цеховыми лабораториями на всех стадиях переработки сырья и готовой продукции. В контроле производства применяют различные методы качественного и количественного химического анализа (весовой, объемный), электрохимические методы (потенциометрию, кондуктометрию, полярографию, кулонометрию) оптические методы (колориметрию, фотометрию, нефелометрию, рефрактометрию) методы определения физических свойств (плотности, вязкости, температуры плавления, кипения, поверхностного натяжения, механической прочности и др.). [c.141]


    Физико-химические методы анализа нашли применение позднее, после установления и изучения связи между протеканием химических реакций и изменением физических свойств анализируемой системы. В результате были разработаны методы, основанные на измерении способности вещества поглощать или пропускать свет определенной длины волны (фотометрические и люминесцентные методы анализа) на измерении электрических параметров силы тока, разности потенциалов и т. д. (электрохимические методы — потенциометрия, ионометрия, полярография, амперометрия, кулонометрия, кондуктометрия). [c.119]

    Потенциометрия —важный метод исследования и анализа, в основе которого лежат термодинамические соотношения между э. д. с. электрохимических систем или электродными потенциалами, с одной стороны, и физико-химическими параметрами растворов и химических реакций—с другой. Для измерения э. д. с. гальванических элементов в равновесном состоянии наиболее удобен компенсационный метод. Для определения потенциалов отдельных электродов электрохимическая цепь составляется из исследуемого электрода и электрода сравнения с известным значением потенциала (см. 176). Рассмотрим отдельные области применения потенциометрических определений.  [c.494]

    Особое место в измерении pH растворов занимает стеклянный электрод, широко используемый в настоящее время благодаря ряду его преимуществ (большая селективность, неподверженность отравлению, отсутствие влияния сильных окислителей и восстановителей и пр.). Механизм возникновения потенциала на поверхности стеклянного электрода не является электрохимическим, он в принципе относится к мембранным ионоселективным электродам, которые в последние годы все чаще применяют для определения активности (концентрации) самых различных ионов (катионов и анионов) и привели к возникновению нового раздела прямой потенциометрии — ионометрии. [c.104]

    Из уравнения (5.6) следует, что экспериментально разность электрических потенциалов между двумя точками А п В можно измерить лишь при выполнении условия [1< > = т. е. если эти точки лежат в одинаковых по составу фазах. Таким образом, экспериментально измерить гальвани-потенциал невозможно. В то же время вольта-потенциал, как разность потенциалов между точками, находящимися в одной и той же фазе (вакууме), поддается экспериментальному определению. В обычных электрохимических экспериментах при помощи вольтметра или потенциометра всегда определяется разность потенциалов на концах правильно разомкнутой цепи, т. е. цепи, которая заканчивается проводниками из одного и того же металла, например меди. [c.24]


    Потенциометрия. Потенциометр ней называется физико-химический состав исследования и электрохимический метод инструментального анализа, основанный на зависимости электродного потенциала или ЭДС элемента от состава раствора. Потенциометрия применяется для определения термодинамических характеристик реакций, стандартных электродных потенциалов, активности и коэффициентов активности электролитов, водородного показателя, концентраций растворов (потенциометрическое титрование) и т. д. [c.296]

    При проведении обычных электрогравиметрических определений ячейку для электролиза подключают к источнику напряжения (аккумулятору и потенциометру) и поддерживают определенное напряжение или силу тока. Падение напряжения в электролите и анодное перенапряжение, величина которого зависит от плотности тока, действуют таким образом, что напряжение электролиза не однозначно определяет потенциал рабочего электрода, от которого, собственно, зависит протекание желаемой электрохимической реакции. Поэтому при процессах разделения полезно контролировать потенциал рабочего электрода и устанавливать его, регулируя приложенное [c.148]

    Потенциометрия объединяет методы определения различных физико-химических величин и концентраций веществ, основанные на измерении электродвижущих сил (э. д. с.) обратимых электрохимических цепей, когда рабочий электрод имеет потенциал, близкий к равновесному значению. [c.5]

    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]

    Существует множество важных требований при определении равновесного потенциала на отдельной поверхности раздела, например на поверхности раздела u/ u HaO) Невозможно измерить потенциал одной поверхности. Она должна быть соединена с другой (создавая, таким образом, электрохимический элемент), ЭДС равновесия которой должна быть определена при условии, чтобы скорость реакции была фактически равна нулю. Поскольку вольтметр низкого сопротивления не будет удовлетворять этому требованию, следует использовать потенциометр или электрометр с высоким входным сопротивлением. [c.17]

    ПОТЕНЦИОМЕТРИЯ, электрохимический метод исследования и анализа, основанный на определении зависимости между равновесным электродным потенциалом Е и термодинамич. активностью а компонентов А, В... и М, Р..., участвующих в электрохим. р-ции йА -Ь ЬВ -Ь. .. + пе тМ -Ь -г рР +. .. (а, о,. .., т, р,. .. — стехиометрич. коэф., п — число участвующих в р-ции электронов, е — заряд электрона). Эта зависимость описывается ур-нием Нерн- [c.475]

    В косвенной кулонометрии определяемое вещество, как правило, не принимает участия в электрохимической реакции. Электролиз при постоянной силе тока используют для электрохимической генерации титранта или из вспомогательного реагента, или из материала рабочего электрода . Титрант быстро и количественно реагирует с определяемым веществом. Необходимо убедиться в достижении конечной точки титрования. Наиболее часто используемыми и чувствительными методами для определения конечной точки кулонометрического титрования являются потенциометрия и амперометрия. Кулонометрическое титрование можно автоматизировать. [c.437]

    Наиболее распространенными методами электрохимического детектирования, используемыми в проточно-инжекционном анализе, являются кондук-тометрия и потенциометрия (датчики pH, ион-селективные и металлические электроды). Продемонстрировано сочетание проточно-инжекционного метода и титрования до конечной точки при определении карбоната натрия и каустической соды в технологических средах [16.4-55]. Определение тиосульфата натрия методом проточно-инжекционного окислительно/восстановительного. [c.663]

    Удельный вес электрохимических методов в аналитической химии натрия сравнительно невелик. Важнейшим методом определения натрия является прямая потенциометрия (ионометрия). Известно довольно много работ, посвященных полярографическому определению натрия, но с развитием ионометрии они заметно утратили практическую значимость. Реже для определения натрия применяют кондуктометрическое титрование и кулонометрию. [c.82]


    Автоматический потенциометр-концентратомер АПК-01М (см. рис. 72) непрерывно измеряет содержание остаточного хлора в питьевой воде. Принцип действия его основан на деполяризации положительного электрода электрохимической ячейки платина-медь иодом, выделяющимся из раствора иодистого калия при определенном значении pH в присутствии свободного хлора. Степень деполяризации зависит от количества [c.195]

    Потенциометрия, подобно кондуктометрии, является электрохимическим методом анализа, широко используемым при проведении научных исследований и при производственном контроле различных технологических процессов. Она основана на зависимости электродного потенциала от состава раствора. В отличие от рассмотренного ранее кондуктометрического метода контроля в потенциометрическом методе измеряют специфическое свойство раствора — активность определенного сорта ионов. Однако необходимо иметь в виду, что активность данных ионов определяется не только их концентрацией, но зависит также от ионной силы раствора, т. е. от его общего состава. В этом Смысле активность, как и электропроводность, является его интегральным свойством. [c.205]

    В предлагаемом пособии описано ПО лабораторных работ по физико-химическим методам определения, разделения и концентрирования разнообразных веществ. Почти половина общего числа работ посвящена оптическим методам анализа (анализ по светопоглощению в видимом и ультрафиолетовом участках спектра, эмиссионный спектральный анализ, фотометрия пламени и нефелометрия). Около 20 работ посвящено описанию примеров определений с использованием электрохимических методов анализа (потенциометрии, полярографии, амперометрического титрования) приведены работы по радиохимическим и кинетическим методам анализа. [c.11]

    В основе спектрофотометрического (фотометрического) метода индикации к. т. т. в кулонометрическом титровании с контролируемым током лежит определенная зависимость оптической плотности раствора от концентрации либо определяемого вещества, либо титранта, либо продуктов реакции. Для определения к. т. т. строят график зависимости оптической плотности от продолжительности генерации титранта (либо от Q, прошедшего через электрохимическую ячейку). По сравнению с различными вариантами потенциометрии спектрофотометрический метод индикации к. т, т. (как и амперометрический и некоторые другие) обладает тем преимуществом, что в этом методе аналитический [c.48]

    T. 1, 1950 — спектральный рентгеноспектральный анализ, колориметрия, спектрофотометрия т. 2, 1951 — полярография, кондуктометрия, потенциометрия, измерение активности, применение в анализе активных изотопов, хроматографическое разделение т. 3, 1956 — газовая хроматография, электрофорез, пламенная фотометрия, электрохимический анализ, определение следов, приготовление эталонов т. 4, 1961 — методы разделения диализ, экстракция, ионный обмен. [c.12]

    За исключением потенциометрии, где измеряется потенциал, при котором сила тока равна нулю [3—5], все остальные электрохимические методы требуют приложения к электроду определенного потенциала с последующим измерением результирующего тока. По мере увеличения приложенного потенциала в положительную сторону по сравнению с потенциалом нулевого тока величина тока возрастает до предельного анодного значе- [c.16]

    Потенциометрия как электрохимический метод исследования и анализа заключается в измерении электродного потенциала и нахождении зависимости между его величиной и концентрацией (точнее, активностью) потенциалопределяюшего компонента в растворе. Используя эту зависимость, можно установить не только активность ионов, но и ряд характеристик изучаемых равновесных химических, биологических и других систем. С другой стороны, проследив во время химической реакции за изменением электродного потенциала, можно судить об изменении концентрации реагирующих веществ в растворе. Таким приемом, например, пользуются в производстве при непрерывном технологическом контроле химических процессов и при количественном определении веществ. В последнем случае имеется в виду широко используемый в аналитической химии метод потенциометрической индикации конечной точки титрования (к.т.т.). [c.19]

    Единичные потенциометрические определения были предложены еще в прошлом столетии. Наиболее интенсивное разйитие метода наблюдалось в 20-е годы нашего века в связи с запросами развивающейся промышленности и других областей народного хозяйства. Однако в то время разработка потенциометрических методик определения различных веществ носила эмпирический характер. Лишь в связи с установлением основных закономерностей Теоретической электрохимии в 40-е годы потенциометрия приобретает характер стройной прикладной науки, развитие которой базируется на достижениях теории и практики электрохимических исследований и отражает потребности научной и практической деятельности человека. Ярким примером в этом отношении является стремительное развитие в последние годы такой области потенциометрии, как ионометрия. [c.19]

    Кондуктометрия — это метод электрохимической индикации, в котором для нахождения точки эквивалентности используют шзменение электропроводности в ходе титрования. Поэтому говорят также о титровании по электропроводности. i В отличие от электрохимических величин, используемых в лругих методах индикации, таких, как потенциометрия, амие-рометрия, вольтамперометрия, суммарная электропроводность электролита аддитивно складывается из электропроводности всех находящихся в растворе ионов независимо от того, принимают они участие в реакции или нет. Поэтому кондуктомет-рические измерения отражают не конкретные процессы, происходящие при титровании, а изменения, происходящие в растворе в ходе титрования и связанные с вкладом ионов, участвующих в реакции, в суммарную электропроводность всех ионов, находящихся в растворе. При титровании по электропроводности точность определения тем меньще, чем больше в растворе концентрация посторонних ионов, не участвующих в реакции. Ияаче говоря, наиболее удовлетворительные результаты получаются при титровании растворов с минимальным содержани-<ем посторонних электролитов. [c.318]

    Изучение кинетики электрохимических реакций проводят методом поляризационных измерений. Простейшая схема установки для поляризационных измерений приведена на рис. 193. Установка состоит из двух контуров поляризующего (электролизного) а и измерительного (потенциометрического) б. В поляризующем контуре источником тока служит аккумулятор 1. При помощи потенциомет-рически включенного реостата 2 на электроды подают определенное напряжение, измеряемое вольтметром <3 амперметром 4 измеряют силу тока. Электролизером 10 служит трехэлектродная электрохимическая ячейка с рубашкой для термостатирования. Измерительный контур представляет собой потенциометрическую схему 6, или потенциометр. Схема включает аккумулятор 8 и элемент Вестона 9. Исследования ведут в интервале температур 20—80°С. Точность регулировки температуры (),1°. [c.461]

    Электрохимические исследования в реальных системах характеризуются значительным изменением кинетики электродных процессов. При этом величина потенциала, зависимость его от тока могут быть выражены в полулогарифмических координатах. Автоматическую запись величины тока как функции времени ведут с помощью логарифматора. Принцип действия прибора основан на том, что при пропускании тока через полупроводниковый диод падение напряжения на нем пропорционально логарифму тока. Известное напряжение подают через усилитель на самописец, при этом используют логарифматор с автоматическим потенциометром. Вольтметр-логарифматор подключают к потенциостату (к клеммам, предназначенным для амперметра). При точном определении тока в определенных точках во время снятия суммарной поляризационной кривой к потенциостату, кроме логарифматора и автоматического потенциометра, подключают миллиамперметр. Показание логарифматора устанавливается примерно за 2 с. [c.63]

    Потенциометрический метод определения концентрации основан на измерении э.д.с. обратимых электрохимических цепей, построенных из индикаторного электрода и электрода сравнения. Он применяется в двух вариантах 1) прямой потенциометрии, или ионометрии, позволяющей непосредственно определять искомую концентрацию (активность) ионов по потенциалу ионоселективных электродов, и 2) потенциометрического титрования, в котором положение точки эквивалентности (ТЭ) находят по скачку потенциала индикаторного электрода при постепенном добавлении титранта. Выполнение потенциометрического титрования требует специального оборудования, но зато оно значительно превосходит визуальное титрование по точности и воспроизводимости получаемых результатов. Потенциометрическая аппаратура легко совмещается со схемами автоматизации и благодаря этому широко используется для дистанционного управления и производственного контроля. Из двух указанных вариантов потенциометрического метода прямая потенциометрпя проще в экспериментальном оформлении и требует меньше времени на анализ, но по точности она уступает потенциометрическому титрованию. [c.116]

    Потенциометрия и спектрофотометрия имеют наибольшее значение по сравнению с другими методами определения констант устойчивости. Именно поэтому им посвящены отдельные главы (гл. 7 и 8). В данной главе обсуждаются некоторые другие наиболее важные методы, применяемые для исследования процессов комплексообразования особое внимание уделяется лх достоинствам и возможным недостаткам. Общие положения, тсоторыми следует руководствоваться при выборе того или иного метода, приведены в разд. 6.1. Для удобства рассматриваемые методы сгруппированы следующим образом оптические методы, основанные на изучении распределения вещества между двумя несмешивающимися фазами электрохимические калориметрические и другие. [c.146]

    Очень важна для аналитической химии и потенциометрия — еще один электрохимический метод. Измеряют потенциал индикаторного электрода в растворе, содержащем какой-либо ион, относительно электрода сравнения. Такой прием называют прямой потенциометрией, самое известное его приложение — это определение концентрации ионов водорода при помощи стеклянного индикаторного электрода (рН-метрия). Крупный вклад в теорию и практику рН-метрпи внесли работы ленинградских химиков [c.54]

    Функциональный, молекулярный анализ, анализ сложных смесей органических соединений также успешно развиваются. Многое дает, например, использование неводных сред для титриметриче-ского определения состава смесей органических соединений. Такие исследования систематически ведутся в Московском химико-технологическом институте им. Д. И. Менделеева, Всесоюзном научно-исследовательском химико-фармацевтическом институте им. С. Орджоникидзе. Широко используются разнообразные электрохимические методы, в частности потенциометрия, полярография, кулонометрия. Так, имеются успехи в развитии полярографии органических соединений. Этот метод не только решает чисто аналитические задачи, но и помогает выяснять структуру соединений, механизм реакций. Применение кулонометрии для определе ния малых количеств тетраэтилсвинца в сточных водах позволило сократить продолжительность определения в 10—15 раз. [c.129]

    Условие обратимости электрохимической системы было определено в разделе II, А. Однако данное выше определение предназначено только для потенциометрии, и в нем отсутствует четко определенное различие между обратимыми и необратимыми окис-лительно-восстановительными системами. Например, установление равновесия является просто вопросом времени, и в качестве обратимых рассматриваются системы, у которых время, необходимое для достижения состояния равновесия, не превышает нескольких минут. В противоположность этому полярографические данные связаны с кинетикой исследуемых процессов. Поэтому полярографические условия обратимости являются значительно более строгими [99]. Система рассматривается как полярографически обратимая лишь в том случае, если в дополнение к термодинамической обратимости обладает достаточной подвижностью, и окисленная и восстановленная формы очень быстро приходят к равновесию с потенциалом электрода. Таким образом, концентрации электроактивных форм на поверхности электрода не должны меняться во времени при постоянном потенциале. Недостаточно подвижные процессы, даже термодинамически обратимые, в полярографии рассматриваются как необратимые [99]. Имеется относительно небольшое количество обратимых с точки зрения полярографии систем (к счастью, бопьшинство из них является гетероциклическими соединениями). Большинство электроактивных соединений претерпевает лишь необратимые изменения при окислительно-восстановительных процессах. Некоторые из этих систем (например, альдегид — спирт, кетон — спирт) реагируют с другими окислительно-восстановительными системами лишь очень медленно, но процесс может быть ускорен добавлением катализаторов и медиаторов. Однако имеются и такие системы, для которых равновесие не устанавливается вообще. Аналогичные свойства могут наблюдаться при установлении электродного потенциала в растворах таких необратимых систем. Эти трудности часто преодолевались посредством косвенных определений потенциалов и расчетов, подобных описанным в разделе IV. Для изучения необратимых процессов может быть использована полярография она является единственным общим методом, в котором скорость установления отношения Сок/Свос в зависимости от потенциала электрода изме- [c.252]

    Практически все известные электрохимические методы кулонометрия, кондуктометрия, полярография, потенциометрия — применимы для определения содержания воды. Однако масгптабы их использования далеко не одинаковы. Кулонометрию наиболее широка применяют не только в исследовательских лабораториях, но и для контроля химико-технологических процессов сказать же этого о полярографии или потенциометрии нельзя. Кондуктометрический метод занимает в этом отношении промежуточное положение. [c.86]

    Прибор — ламповый усилитель типа ЛУ-2, М., 1952. 27 с. с илл. 1 л. схем. (М-во пищевой пром-сти СССР. Главпищемаш. Моск. опыт, завод контрольно-измерит. приборов (МосКИП)). [Для определения pH со стеклянным и другими электродами, а также для определения окисл.-восст. потенциала и потенциометрического титрования]. 1715 Сырокомский В. С. Новые приборы в электрохимическом анализе, [Универсальный ламповый потенциометр. Кондуктометр. Ламповый рН-метр.] Рефераты докладов на Совещании по электрохимическим методам анализа 10—12 января 1950 г. М.— Л., Изд-во АН СССР, 1949, с. 95—99. 1710 Терещенко П. Н. Об установке зеркального гальванометра. Зав. лаб., 1947, 13,, ь 6, с. 766—767. 1717 Толмачева Е. Каломелевый электрод и ппатив для нескольких одновременных определений крови. Лабор. практика, 1941, Л" 3, с. 21—23. 1718 Торопов А. П. Описание комбинированного прибора для проведения кондуктометрических и потенциометрических титрований. Тр. Среднеазиат. ун-та, 1951, вып, 27, хим. пауки, кн. 3, с. 61—74, с табл. Библ.  [c.75]

    Электрохимические титриметрические методы применяют для установления конечной точкп титрования, основанной на реакциях нейтрализации, осажденпя, комилексообразова]шя, окисления-восстановления. В амперометрич. методе конечную точку титрования находят ио резкому изменению тока при определенном потенциале микроэлектрода (см. Амперометрическое титрование). В кондуктометрич. методе устанавливают конечную точку при титровании ио изменению электропроводности р-ров (см. Кондуктометрия). В потенциометрич. методе титрования можно определять концентрации веществ в растворе, а также решать другие задачп (см. Потенциометрия). [c.490]

    Интересно отметить, что границы индифферентности для платины и золота долгое время обсуждались в рамках чисто электрохимических работ, но мало учитывались при использовании благородных металлов в потенциометрии и вольтамперо-метрии. Вероятно, определенную роль здесь сыграло то обстоя- [c.42]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    Аналитическая электрохимия объединяет широкий круг электрохимических методов, включая потенциометрию, полярографию, ампе-рометрию, кондуктометрию, кулонометрию, хронопотенциометрию и применение ион-селективных электродов. Эти методы позволяют получить высокую чувствительность и селективность, поэтому неудивительно, что именно им отдается предпочтение при разработке непрерывных и автоматических способов. Применение электрохимических методов особенно важно при опрелелении медов каких-либо соединений. Высокая чувствительность позволяет сократить или совсем исключить предварительную стадийную подготовку и тем самым упростить автоматическое оборудований Электрохимический анализ легко поддается автоматизации, и область его применения чрезвычайно широка Сюда относятся способы определения органических и неорганических веществ в водных и неводных растворах, в газах и в расплавах солей. Особые преимущества электрохимическим методам дает независимость результатов измерений от окраски анализируемого раствора Кроме того, во многих случаях сигнал рабочих электродов связан линейно с концентрацией определяемого вещества. Однако иногда на измерения могут оказывать сильное влияние такие факторы, как загрязнение поверхности электрода компонентами анализируемого потока. При высоких анодных потенциалах возникают трудности, обусловленные необратимыми реакциями на электродной поверхности. Такие явления следует принимать во внимание при разработке систем непрерывного или автоматического действия. [c.24]

    Анализ работ, проведенных различными исследователями, показывает, что предложенные конструкции анализаторов предназначались главным образом для определения концентрации растворенного кислорода в биологических системах, в крови и в природных водах. Исследований и разработок с целью применения подобной аппаратуры для сточных вод было проведено значительно меньше. В Советском Союзе наиболее полные исследования в этой области были проведены лабораторией автоматизации ВНИИ ВОДГЕО совместно с ОКБА МХП СССР [15], СКВ БП АН СССР, СКТБ Медфизприбор , СКБ АП и кафедрами ряда университетов и институтов. Один из подобных приборов состоит из трех блоков датчика, преобразователя и стандартного потенциометра типа ПС. Основным элементом датчика является электрохимическая ячейка, имеющая гальваническую пару золото (катод)—цинк (анод), погруженную в слабощелочной электролит. Ячейка размещается в герметизированном корпусе, в торцовой части которого (со стороны катода) установлена газопроницаемая мембрана из фторопласта толщиной порядка 25—30 мк. [c.206]


Смотреть страницы где упоминается термин Электрохимическое определени потенциометрия: [c.23]    [c.23]    [c.152]    [c.23]    [c.554]    [c.475]    [c.120]    [c.37]    [c.2]    [c.4]   
Определение ртути в природных водах (2000) -- [ c.118 , c.119 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциометр

Потенциометрия



© 2025 chem21.info Реклама на сайте