Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АДСОРБЦИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ И ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

    Процессу адсорбции благоприятствуют низкие температуры и дли газов высокое давлепие, а процессу десорбции — повышенные температуры и для газов пониженное давление. [c.258]

    Как мы уже видели, для реакции синтеза благоприятны низкая температура и высокое давление. Однако реакция практически не протекает без катализатора вследствие очень большой стабильности молекулы азота, что обусловлено высокой энергией разрыва связи N—N. Функции катализатора заключаются в образовании на каталитической поверхности нитридного соединения, которое затем гидрируется в аммиак. Связь азота с металлом достаточно слаба, тем не менее она дает возможность адсорбироваться молекулам синтезируемого аммиака. Связь азота с металлом слишком сильна для таких элементов, как литий, кальций и алюминий, которые образуют с азотом нитриды непосредственно в массе вещества. В первой серии переходных металлов оптимум между образованием поверхностного нитрида и десорбцией аммиака с поверхности получён для железа, которое, не образует нитрида непосредственно из азота, исключая случай очень высоких давлений (на порядок выше давлений синтеза), но легко образует его в реакции с аммиаком. Тем не менее железо быстро хемосорбирует азот и это и есть та адсорбция, которую обычно считают стадией, лимитирующей скорость всего процесса синтеза. Рутений и осмий, находящиеся в более высоких сериях переходных элементов, не образуют нитридов в массе и являются эффективными катализаторами синтеза. [c.158]


    Итак, уголь при низких температурах адсорбирует кислород физически, и процесс этот сходен с ожижением газа, тогда как при высоких температурах имеет место химическое взаимодействие. Хорошо известно, что ожижение газа происходит практически мгновенно (если оно имеет место в условиях не очень низких давлений и если теплота конденсации mohi t достаточно быстро рассеиваться). Эта высокая скорость характерна для данного явления почти вне зависимости от температуры. Не удивительно, что таким же свойством отличается и физическая адсорбция. В отличие от физической адсорбции, скорость химических реакций в высокой степени зависит от температуры, падая при очень низких температурах до величин, не поддающихся измерению. Если графически выразить зависимость от температуры количества водорода, адсорбированного окисью цинка, то получится кривая, изображенная на рис. 5. В сравнительно узком температурном интервале имеет место значительное повышение адсорбции. Что ниже этой температуры адсорбция имеет физический характер, видно из того, что адсорбированный газ может быть удален эвакуированием. Заключение это подкрепляется и низкой величиной теплоты адсорбции, приблизительно в 1900 кал на моль при 0°С. С другой стороны, водород, адсорбированный при высокой температуре, может быть удален только в виде воды, и его теплота адсорбции равна 20 ООО кал (между 300 и 444° С). Наконец, скорость адсорбции при высоких температурах изменяется с температурой очень сильно, проявляя в этом отношении свойства химической реакции. В области температур между 250—450° К, где общая величина адсорбции растет (см. кривую рис. 5), скорость адсорбции изменяется мало. Напротив, при низких температурах скорость [c.89]

    АДСОРБЦИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ И ПРИ НИЗКИХ ТЕМПЕРАТУРАХ [c.168]

    Из сказанного ранее о зависимости адсорбции от температуры совершенно очевидно, что с повышением температуры величина равновесной адсорбции будет уменьшаться и вследствие этого изотермы для высоких температур лежат ниже изотерм для низких температур (см. рис. IV, 1). Однако при повышении температуры не должен изменяться предел адсорбции, т. е. количество адсорбтива, приходящегося на единицу поверхности при предельно плотной упаковке его молекул в мономолекулярном слое. Предел адсорбции практически не зависит от температуры и должен определяться только размерами молекул адсорбтива. Следовательно, изотермы, отвечающие разным температурам, с повышением равновесного давления или концентрации в пределе должны были бы слиться в одну. Однако этого обычно не наблюдается, так как при высоких температурах предел адсорбции соответствовал бы очень высокому равновесному давлению или концентрации. [c.84]


    Расчет равновесного давления азота при реакции его с железом. При изучении гетерогенных равновесий, в которых наряду с газообразными компонентами участвуют чистые кристаллические вещества, часто в константу равновесия процесса не записывают активности кристаллических веществ. Такое положение можно считать допустимым лишь для систем при низких давлениях, когда активность твердых веществ близка к единице (ат = = 1 в стандартном состоянии при р = 0,1013 МПа и данной температуре). Естественно, что при высоких давлениях необходимо учитывать рост активности твердых тел по уравнению (51), а также адсорбцию и растворение газов в твердых фазах, снижающие активность последних. [c.119]

    Интервал адсорбции. Подобным же критерием может служить температурный интервал, при котором происходит адсорбция. Так как физическая адсорбция и конденсация связаны между собой, то физическая адсорбция происходит только при температурах ниже или около температуры кипения адсорбата. Напротив, хемосорбция может происходить при низких и высоких температурах и давлениях, причем в равных условиях могут осуществляться различные формы адсорбции одного и того же вещества. [c.34]

    Хемосорбция должна протекать практически мгновенно. Однако хемосорбция на окисных и металлических катализаторах (к ним относится большая часть реальных катализаторов) является процессом, идущим во времени с измеримой скоростью. Иногда состояние насыщения поверхности при данных температуре и давлении достигается в течение многих часов и даже дней. Замедленность реальных процессов адсорбции объясняется представлением об активированной адсорбции, требующей, как и химические реакции, некоторой энергии активации. Поэтому хемосорбция с измеримой скоростью может осуществляться в определенном температурном интервале. Гипотеза об активированной адсорбции позволила дать удовлетворительное объяснение многим аномалиям, установленным при изучении процессов адсорбции. Так, например, теплоты адсорбции часто малы при низких температурах и большие при высоких. Это обусловлено тем, что при низких температурах преобладает физическая адсорбция. [c.35]

    Адсорбция под высоким давлением и при низких температурах [c.167]

    Ч- адсорбция ПОД высоким ДАВЛЕНИЕМ и ПРИ низких ТЕМПЕРАТУРАХ [c.170]

    Отдельные классы сложных молекул, в частности, углеводороды, состоят только из немногих фрагментов, которые удобно принять за силовые центры межмолекулярного взаимодействия. Молекулы одного класса различаются числом этих силовых центров, их химическим (валентным) состоянием и их пространственным расположением. Используя экспериментальные адсорбционные данные для сравнительно немногих молекул, в принципе, можно определять потенциалы Ф межмолекулярного взаимодействия для всех интересующих нас пар силовых центров. Полученные так потенциалы ф далее могут быть использованы для определения потенциальных функций Ф взаимодействия любых других молекул, состоящих из тех же силовых центров. Поэтому таким путем можно произвести расчет адсорбционных свойств для таких систем, для которых нет экспериментальных данных, или таких характеристик адсорбции, измерения которых представляют большие трудности (сюда относятся, например, теплоемкость адсорбированных молекул при нулевом и низких заполнениях поверхности, величины адсорбции и равновесного давления при слишком высоких или слишком низких температурах для непосредственного измерения, а также медленно выделяющиеся теплоты адсорбции). [c.244]

    В более поздних работах описаны случаи неактивированной хемосорбции. Например, иногда хемосорбция на чистых металлических проволоках и сконденсированных пленках протекает быстро даже при низких температурах. Такое первое исследование быстрой хемосорбции на металлических нитях накала, которые очищали путем накаливания при пропускании электрического тока, было проведено Робертсом [4]. Он нашел, что водород поглощается быстро вольфрамовой нитью накала как при комнатной температуре, так и при температуре жидкого воздуха с образованием насыщенного слоя уже при очень низких давлениях (10 мм рт. ст.). Изменение теплот адсорбции от 34 ккал-моль при малых заполнениях до 17 ккал-моль при высоких заполнениях может в данном случае служить надежным подтверждением протекания хемосорбции. Аналогичные результаты получены для кислорода, начальная теплота адсорбции которого составляла 110 ккал-моль" . Для обоих газов насыщение соответствовало отношению — один атом водорода (или кислорода) на один атом вольфрама поверхности. [c.287]

    Простейший способ состоит в нанесении на диаграмму логарифма против логарифма р. Вышеприведенное уравнение требует, чтобы в этом случае получилась прямая линия. Однако такое соотношение всегда нарушается в довольно широкой области давлений, причем значения 1/и с понижением давления возрастают. Это показано на рис. 3, где использованы те же данные, что и на рис. 2. При некоторых предельных условиях уравнение оказывается неприменимым, ибо оно не устанавливает ни адсорбционного мат -симума при высоких давлениях, ни пропорциональности адсорбции давлению при низких. Его константы не имеют никакого теоретического значения и изменяются с температурой. Однако для интерполяции в более или менее узкой области давлений оно часто оказывается полезным. [c.83]


    При очень низких давлениях соотношение сводится к ц = аЬр. Таким образом в этой области, как и было экспериментально установлено Лэнгмюром, адсорбция прямо пропорциональна давлению. Поскольку она обратно пропорциональна т), она быстро увеличивается с понижением температуры. При очень высоких давлениях уравнение изотермы может быть выражено так д =6 = N N. Таким образом асимптота адсорбции оказывается независимой от температуры, если не считать небольшого изменения Мд с температурой. Такая независимость, однако, не была установлена экспериментально, и это дало повод для критики уравнения. Между тем Лэнгмюр получил экспериментальные данные, хорошо согласующиеся с его уравнением, что видно из табл. 4. Хотя предположение о наличии только одного вида молекулярных площадок, на основе которого выведено уравнение изотермы, может быть отнесено, вероятно, только к исключительным случаям, [c.95]

    Ш. М. Сабиров (Среднеазиатский научно-исследовательский институт природного газа, Ташкент). Ниже будет дано краткое изложение предлагаемого нами нового метода расчета параметров адсорбционного равновесия на основании минимального экспериментального материала. Этот метод основан на следующих предположениях 1) адсорбированное вещество в порах адсорбента находится в состоянии жидкости, по свойствам близкой к свойствам нормальной жидкости, 2) действие адсорбционного поля, создаваемого адсорбентом, сводится к тому, что адсорбция, т. е. конденсация адсорбата при заданном давлении, происходит при температуре более высокой, чем та температура, для которой заданное равновесное давление адсорбата соответствовало бы давлению насыщения в отсутствие адсорбционного поля. Другими словами, адсорбат, попадая в адсорбционное поле, ведет себя так, как он вел бы себя без адсорбента, но при более низких температурах. Благодаря этому адсорбат конденсируется , т. е. адсорбируется в порах адсорбата. [c.430]

    Эти обратимые реакции представляют интерес по двум независимым причинам. Синтез аммиака чрезвычайно важен с промышленной точки зрения, и большое число проведенных в этой области исследований дало вполне удовлетворительную картину его механизма и свойств катализаторов [53—55]. Кроме того, эти реакции исследовались во многих лабораториях в широком интервале давлений и температур, и стало ясным, что в различных условиях действуют разные механизмы. По-видимому, при очень высоких температурах разложение протекает по механизму Лэнгмюра — Хиншельвуда при более низких температурах и более высоких давлениях скорость-определяющей стадией, вероятно, является десорбция азота. В синтезе аммиака при высоких давлениях и умеренных температурах лимитирующую скорость стадию представляет адсорбция азота. [c.291]

    Гидрогенизация этилена температура 100—130° скорость реакции при низкой температуре не зависит от давления этилена при высокой температуре зависимость близка к линейной после адсорбции, протекающей быстро на активных центрах контактной поверхности, гидрогенизация является наиболее медленной фазой процесса [c.238]

    Интервал адсор.б ции. Химическая адсорбция происходит при низких и высоких температурах, при малых и больших давлениях, при- [c.39]

    Более дешевым способом отделения водорода от других газов является использование а минов и молекулярных сит. Очистка газа от СОг с помощью аминов может проводиться лпбо/ адсорбцией СОг при высоком давлении и десорбцией при низком давлении либо адсорбцией СОг при низкой температуре и десорбцией при высокой температуре. [c.108]

    В обыденной жизни, в инженерной практике и в научно-исследовательской работе часто приходится иметь дело с поверхност-. ными явлениями. Наши знания относительно свойств идеальных поверхностей, довольно ограниченные в настоящее время, быстро расширяются. Основные свойства поверхностей, представляющие интерес для химика-каталитика, специалиста по электронике и инженера металлурга широко используют в практике работ по катализу, коррозии, электронной эмиссии, адгезии, сварке, механическому износу и смазке. Исследования поверхностных свойств, способствующих образованию благоприятных структур и ускоряющих специфические химические реакции, имеют большое значение и проводятся в широких масштабах. Так, например, многие металлы в высоком вакууме или в атмосфере газа строго определенного состава при высоких или низких температурах обнаруживают особые поверхностные свойства, которые часто можно с успехом использовать для суждения о поведении металла в условиях более умеренных температур и давлений. Из методов изучения твердых поверхностей, применяемых в последние годы, наиболее эффективными являются следующие электронная микроскопия, электронография, интерферометрия с многократным прохождением светового пучка, поляризационная спектрометрия, оптическая металлография, вакуумная микрогравиметрия, адсорбция газов и химический анализ поверхностных пленок. Эта статья посвящена новейшим достижениям в применении вакуумной микрогравиметрии к изучению поверхностей твердых тел. [c.45]

    В качестве промышленного способа извлечения гелия применяется способ фракционированной конденсации сопутствующих гелию газов при постепенном охлаждении газа до весьма низких температур. Наиболее низкую критическую температуру после гелия имеет водород 1 ( крит = —239,9° С). Получение таких низких температур в промышленных установках связано с большими материальными затратами, поэтому очистку гелия от водорода проводят не методом конденсации водорода, а химическими методами или адсорбцией на активированном угле. Следующей наиболее трудно сжижаемой примесью гелия является азот. При давлении 150 кПсм и охлаждении жидким азотом, кипящим под вакуумом, до температур —200, —203° С можно получить технически чистый гелий, содержащий 1—1,5% азота. Тонкая очистка гелия от примесей (азота и водорода) в конечной стадии процесса осуществляется методом адсорбции на активированном угле при высоком давлении и температурах жидкого азота. [c.179]

    Вследствие высокого парциального давления водорода в системе образующийся алкен не сохраняется, а подвергается дальнейшему гидрированию. Такое насьпцение предотвращает повторную адсорбцию алкенов и, следовательно, подавляет образование отложений, благодаря чему активность крекирующей функции катализатора сохраняется на близком к максимальному уровне при более низких температурах и на протяжении более длительного периода, чем при обычном каталитическом крекинге. Низкомолекулярные алканы изостроения образуются в избытке по сравнению с равновесной концентрацией, что легко объяснимо на основании рассмотренного выше механизма. [c.191]

    Хорошей поглотительной способностью аммиака отличаются амхмонийные формы цеолитов [76]. На рис. 19,24 приведены изотермы адсорбции аммиака на декатионированном цеолите NH4Y. Равновесие на цеолите при высоких температурах устанавливается в течение нескольких минут, при низких температурах и давлениях время установления равновесия достигает 30 мин. [c.426]

    Изотермы адсорбции СО3 на цеолитах отличаются от изотерм адсорбции на угле более крутым начальным участком кривой, т. е. цролиты характеризуются высокой адсорбционной емкостью в области малых парциальных давлений (рис. 111-24). Однако в процессе очистки конвертированного газа при парциальном давлении двуокиси углерода 0,13-10 —0,26-10 Па синтетические цеолиты не имеют преимуществ перед активированным углем СКТ. Кроме того, десорбция СО 2 при низкой температуре идет на цеолите значительно [c.419]

    При длительной (год и более) непрерывной работе низкотемпературных разделительных агрегатов требуется глубокая очистка исходных газовых смесей от высоко-киняпщх примесей (СвН , НаО, СОг, С2Н2 и др.), которые при низких температурах кристаллизуются и забивают теплообменные поверхности. Коксовый газ очищают от СвНд промывкой соляровым маслом под давлением процесса, либо путем адсорбции активированным углем. В обоих случаях это облегчает работу последующих стадий очистки, так как соляровое масло и активированный уголь поглощают и часть органических соединений серы. [c.194]

    Часто бывает нужно измерить изотермы адсорбции при нескольких температурах в широком интервале температур. Удобный для таких измерений интервал температур для данной системы адсорбат — адсорбент составляет обычно около 50 °С. На рис. 111,1 приведен соответствующий пример для адсорбции этана на графитированной термической саже [23]. За пределами этого интервала при более низких температурах с ростом давления адсорбция растет очень быстро уже при малых давлениях, следовательно, точность измерения этих давлений ртутным U-образным манометром в этой области температур невелика. За пределалш удобного для измерений интервала при более высоких температурах величина адсорбции растет с ростом давления очень медленно, т, е. приходится из- [c.96]

    Нет сомнения, что адсорбция играет важную роль в контактном катализе, например в окислении двуокиси серы или аммиака над платиной или в гидрогенизации органических соединений никелем. Фарадею и другим ранним исследователям механизм гетерогенного катализа казался загадочным. Представление о мономо.лекулярной адсорбции в значительной мере пролило свет на этот процесс. Иллюстрацией может служить данно<-Лэнгмюром [41 ] объяснение каталитического окисления окиси углерода над платиной. При низких температурах (от 200 до 400°С) скорость реакции нропорциональпа парциальному давлению кислорода и обратно пропорциональна давлению окиси углерода п])и этом скорость реакции быстро возрастает с температурой. При более высоких температурах (500—800°С) скорость реакции пе зависит от температуры она пропорциональна давлению окиси углерода, если имеется избыток кислорода, и давлертию кислорода, если в [c.98]

    Изотермы для всех газов приведены в координатах уравнения Дубинина—Радушкевича. Таким образом оказалось возможным выяснить зависимость механизма адсорбции при низких температурах и давлениях от температуры, пористой структуры адсорбента и природы адсорбируемого газа. Во всех случаях, когда низки силы взаимодействия адсорбированных молекул с адсорбентом (инертные газы, широкопористый адсорбент) и сравнительно высока энергия тепловых колебаний молекул адсорбента, имеет место адсорбция с образованием монослоя. Изотермы адсорбции соответствуют закону Генри (адсорбция неона при 60 К на угле БАУ, адсорбция неона при 20,4° К и кислорода при 80° К на силикагеле). Во всех остальных случаях адсорбция происходит по механизму объемного заполнения пор и хорошо описывается уравнением Дубинина — Радушкевича. Однако линейная зависимость lg IV от [lg (р,,/р)1 как правило, не имеет места при больших значениях [1 (р /р)] , т. е. при больших значениях работы адсорбции А. При давлениях 10 — 10 мм рт. ст. значения адсорбции начинают систематически отклоняться вниз от экстраполированной прямой. Чем меньше силы взаимодействия адсорбат — адсорбент, тем позже начинается отклонение от уравнения Дубинина — Радушкевича и тем меньше величина отклонений от него. Например, изотерма адсорбции неона на угле БАУ при 20,4° К описывается этим уравнением вплоть до самых больших значений [1 (ра/р)] . [c.415]

    Н. к. Бебрис (Московский государственный университет им. М. В. Ломоносова, химический факультет). Адсорбция на ненабухающих полимерах характери-ауется низким адсорбционным потенциалом неспецифических взаимодействий, так как концентрация силовых центров на поверхности в этом случае невелика. Поэтому часто бывает трудно измерить адсорбцию даже при относительно высоких давлениях. Так, весовым методом Мак-Вэна не удалось измерить изотерму адсорбции воды при комнатной температуре на некоторых полимерах с высокоразвитой поверхностью (з 150—300 м г) аэрогелях полистирола и полифенилдисилоксана (ПФС) и на сополимере стирола с дивинилбензолом. Метод же газовой хроматограф ии позволяет рассчитать из хроматограмм изотермы адсорбции воды и спиртом на таких полимерах. На рис. 1 в качестве примера приведены хроматограммы метанола на аэро-геле ПФС, а на рис. 2—соответствующие им изотермы адсорбции, рассчитанные методом Глюкауфа. Низкие величины адсорбции и обращение изотерм выпуклостью к оси давлений указывают на сильное взаимодействие между молекулами адсорбата и слабую связь этих молекул с поверхностью полимера. Изостерические теплоты адсорбции метанола и воды на ПФС, полученные из этих изостер, ниже теплот конденсации. Это характерно для адсорбции на поверхностях, модифицированных химически [1], а также путем отложения адсорбционных слоев [2]. В газо-хроматографическом режиме нами был исследован также пористый полиакрило-нитрил (ПАН), поверхность которого несет сильно полярные функциональные группы N. В соответствии с этим ПАН сильно адсорбирует молекулы группы В [c.457]

    Вообще, по-видимому, оптимальные условия для разных систем следует подбирать опытным путем. Если вклад собственной адсорбции на носителе не слишком велик, измерение величины поверхности дисперсной платины по хемосорбции водорода предпочитают проводить при 273—300 К (и давлении до 200 Па, 1—2 мм рт. ст.), а не при 520 К и более высоком давлении, так как с высокой степенью надежности можно считать Хт = 2 и так как при низких температурах процесс перетекания водорода, несо.мненно, имеет меньшее значение [c.323]

    О и 100° за стадией 1 будет следовать стадия 2. Это подтвердилось исследованием адсорбции кислорода на закиси меди (находящейся на подложке из металлической меди), которое показало, что при давлении ниже 1 мм при комнатной температуре адсорбируется количество, превышающее монослой. Кинетика этой хемосорбции изучалась при помощи микровесов [40]. Энергия активации для области заполнения монослоя оказалась равной 6,8 ккал/моль, но при этом, согласно уравнению Рогин ского—Зельдовича, энергия активации при поглощении должна линейно возрастать на 1,1 ккал, считая на каждый новый монослой. Скорость поглощения быстро спадает, ибо вследствие того, что возникающие вакансии не в состоянии диффундировать внутрь, создается пространственный заряд. Если газообразный кислород, находящийся над окислом, удаляют и повышают температуру, то вакансии диффундируют к границе раздела металл — окись и активность поверхности в отношении адсорбции кислорода регенерируется. Пленки закиси кобальта на кобальте ведут себя аналогично пленкам закиси меди. В этом случае теплоты адсорбции измерялись вплоть до состояния насыщения [18]. Поглощение кислорода сверх мопослойпого заполнения (стадия внедрения) сопровождается падением теплоты адсорбции и тенденцией к обратимой хемосорбции. С другой стороны, закись никеля обнаружила более низкую активность для хемосорбции кислорода, что, по-видимому, обусловлено большей трудностью регенерации поверхности [16]. Энгель и Хауффе [41] показали, что при более высоких давлениях (от 30 до 200 мм) вторую стадию поглощения можно обнаружить кинетически при 25° и это связано со внедрением кислорода в решетку, подчиняющимся уравнению (7). [c.332]

    Любарский с сотрудниками [304] считает, что имеющиеся в литературе противоречия относительно активности медноникелевых сплавов различного состава связаны, по-видимому, с условиями проведения опытов при работе в протоке, очевидно, не всегда соблюдалась изотермичность, отсутствовали диффузионные торможения величины поверхностей, энергии активации часто определялись неточно. С целью проверки справедливости взглядов Даудена авторами [304] была проведена работа по определению зависимости каталитической активности медноникелевых сплавов в реакции гидрирования бензола от их состава. Процесс проводился в условиях, исключающих все перечисленные выше недостатки использовался проточноциркуляционный метод определения активности, обеспечивающий изотермичность процесса реакция протекала в кинетическом режиме удельная поверхность определялась по низкотемпературной адсорбции криптона при низких давлениях, что обеспечивало высокую точность получаемых величин энергии активации рассчитывались при степенях превращения бензола, не превышающих 50—60%, при которых реакция протекает по нулевому порядку относительно бензола. Сплавы готовились совместным осаждением карбонатов никеля и меди с последующим восстановлением до металлов при оптимальной температуре 250° С. Таким путем были получены твердые растворы различного состава с достаточно развитой поверхностью. Опыты проводились при температурах 110—170° С. [c.100]

    При изучении физической адсорбции обычно измеряют две характеристики количество адсорбированного вещества и теплоту процесса. Изменение первой лежит в основе широко используемого метода БЭТ [2] и его модификаций при определении поверхности. Вторую характеристику используют для определения поверхности калориметрическими методами, например методом Харкинса и Юра [ 3]. Количество адсорбированного вещества на единицу веса адсорбента является функцией давления пара и температуры при постоянном объеме. Если объем системы изменяется с давлением, это необходимо принять во внимание. Зависимость количества адсорбированного вещества от давления при постоянных температуре и объеме называется изотермой адсорбции. При низких давлениях все адсорбированные молекулы находятся на поверхности (монослойная адсорбция), а при более высоких давлениях они могут адсорбироваться друг-на друге (многослойная адсорбция). В пористых адсорбентах при достаточно высоких давлениях может происходить конденсация паров в порах (капиллярная конденсация). [c.304]

    Величина адсорбции газа или пара зависит не только от его природы, но и от условий протекания процесса сорбции, в первую очередь от давления, температуры и структуры адсорбента. При прочих одинаковых условиях с повышением давления пара, как правило, увеличивается его адсорбция. Однако на разных участках адсорбционной изотермы это влияние сказывается неодинаково. Например, для непористых или микропористых адсорбентов оно сильно проявляется в области низких относительных давлений, в то время как для крупнопористых его действие ошутимо только при более высоких давлениях, близких к давлению насыщения. Характерно, что в области заполнения монослоя рост адсорбции замедляется с повышением давления, образуя на изотерме адсорбции пологий участок, величина которого зависит от внутренней структуры пористого тела. При дальнейшем повышении давления количество адсорбированного вещества увеличивается за счет полимолекулярной адсорбции, завершающейся в случае пористых тел капиллярной конденсацией. При этом характер адсорбционной изотермы, отражающей внутреннюю структуру твердых тел, дает возможность определить степень развития пор того или другого вида, установить структурный тип адсорбента, величину и природу его удельной поверхности. [c.144]

    При низких температурах наблюдается физическая адсорбция водорода на углеродных материалах [143]. Молекулярное движение в монослое водорода, адсорбированного на угле и базисных плоскостях микрокристаллического и частично ориентированного графитов, исследовано в работе [144] методом нейтронной спектроскопии в интервале 40—140 К. При высокой температуре молекулярный водород находится преимущественно в. газоподобном состоянии. При низкой температуре водород переходит в локализованное состояние, в котором молекулы могут диффундировать вдоль поверхности. Структурированный характер адсорбционного состояния водорода на графите при низких температуре и давлении был подтвержден методом дифракции медленных электронов [145]. [c.61]


Смотреть страницы где упоминается термин АДСОРБЦИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ И ПРИ НИЗКИХ ТЕМПЕРАТУРАХ: [c.35]    [c.238]    [c.297]    [c.44]    [c.172]    [c.45]    [c.459]    [c.129]   
Смотреть главы в:

Основы адсорбционной техники -> АДСОРБЦИЯ ПОД ВЫСОКИМ ДАВЛЕНИЕМ И ПРИ НИЗКИХ ТЕМПЕРАТУРАХ




ПОИСК





Смотрите так же термины и статьи:

Адсорбция под высоким давлением

Адсорбция при высоких температурах

Адсорбция при низких давлениях

Адсорбция при низких температурах

Давление при низких температурах

Температура ДТА при высоких давлениях

Температуры высокие



© 2025 chem21.info Реклама на сайте