Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика процесса адсорбции

    Термодинамика процесса адсорбции [c.143]

    Как известно, теплота адсорбции какого-либо компонента на твердом адсорбенте всегда положительна [216]. Поэтому в соответствии с требованиями термодинамики при физической адсорбции количество адсорбированного вещества при постоянном давлении должно уменьшаться с увеличением температуры. Скорость процесса адсорбции в основном определяется скоростью диффузии молекул адсорбируемого вещества в поры адсорбента [217]. [c.288]


    Процесс адсорбции идет в сторону уменьшения свободной энергии поверхности о. Этот процесс, обусловленный молекулярными силами, создает градиент концентрации у поверхности и в предельном случае приводит к заполнению поверхностного слоя тем компонентом, который обладает наименьшим значением а. Наоборот, тепловое движение молекул стремится восстановить равенство концентраций в объеме и в поверхностном слое. Равновесие устанавливается тогда, когда процесс адсорбции, приводящий к увеличению концентрации, компенсируется процессом диффузии из поверхностного слоя вглубь раствора. Это состояние равновесия, отвечающее минимуму свободной энергии всей системы, описывается уравнением адсорбции Гиббса, являющимся следствием второго начала термодинамики. [c.88]

    С точки зрения термодинамики растворов величину 0 можно рассматривать как мольную долю заполненных центров адсорбции. В этом случае процесс адсорбции вещества А из газовой фазы можно описать уравнением [c.160]

    Известно, что в цеолите NaX молекулы н-гексана более подвижны, чем молекулы бензола. Поэтому неудивительно, что адсорбция бензола идет по сравнению с н-гексаном медленнее. Если исходить из кинетики адсорбции индивидуальных компонентов, то для н-гексана ожидалась бы кинетическая кривая (рис. 3, а). Вместо этого адсорбция н-гексана больше, чем в состоянии равновесия. Но так как концентрация н-гексана в адсорбированной фазе, т. е. в пограничных слоях кристаллов, не может быть большей, чем равновесная концентрация, определяющаяся составом газовой фазы, необходимо, чтобы в процессе адсорбции внутри кристаллов существовали представленные на рис. 4 профили концентрации. Таким образом, долн ен существовать диффузионный поток н-гексана в направлении концентраций к-гексана, больших равновесных. Объяснить это явление можно, применяя термодинамику необратимых процессов. Для плотности потока частиц /, т. е. молекул -гексана, получаем [c.339]

    Связь адсорбционных коэффициентов и 6 с параметрами процесса адсорбции вытекает из термодинамики 16]. Константа равновесия для процесса [c.17]

    Адсорбция ионов и молекул на поверхности электрода 2. Некоторые общие сведения по термодинамике процессов окисле [c.197]

    В настоящее время наблюдается значительное увеличение числа исследований, посвященных термодинамике адсорбции растворов. Однако ряд вопросов почти не исследован. Это, во-первых, объемные эффекты, сопровождающие процесс адсорбции из растворов, во-вторых, зависимость адсорбции от гидростатического давления. Кроме того, окончательно не решен вопрос о выборе оптимальных параметров моделей адсорбционного слоя. В настоящей работе сделана попытка осветить эти проблемы. [c.125]


    Удаление масляных загрязнений и вытеснение одной жидкости другой. Рассмотренные выше представления о термодинамике смачивания и процессах адсорбции, особенно при контакте двух не-смешивающихся жидкостей (см. рис. VI, 5), дают возможность вновь рассмотреть условия вытеснения одной жидкости другой (см. 23—24), но несколько с других позиций. [c.190]

    Важность развития термодинамики равновесной адсорбции газовых смесей очевидна. Действительно, огромное разнообразие свойств реальных твердых сорбентов и многокомпонентных адсорбтивов, наличие целой иерархии взаимосвязанных факторов, влияющих на процесс адсорбции, в значительной степени определяют преимущество термодинамического подхода, позволяющего получить важные сведения о поведении рассматриваемых систем без точного знания действующих в них сил. В то же время этому важному разделу термодинамики в литературе уделяется непропорционально меньшее внимание и многие вопросы термодинамики адсорбции смесей не нашли еще должного освещения. [c.62]

    Исследования в области термодинамики адсорбции растворов связаны главным образом с измерением величин избыточной адсорбции, их температурной зависимости и теплот смачивания адсорбента растворами. В последние годы появилось большое число работ, в которых измерены объемные эффекты при адсорбции растворов. Совместное измерение изотерм избыточной адсорбции и объемных эффектов при адсорбции растворов позволяет более полно описать процесс адсорбции. Однако обработка результатов объемных измерений при адсорбции растворов не всегда однозначна. В настоящей работе сделана попытка получить термодинамические соотношения для объемных эффектов при адсорбции растворов для различных методов термодинамики поверхностных явлений. [c.72]

    Показано значение этого параметра для процессов адсорбции заряженных и незаряженных компонентов раствора на поверхности электрода, а также для разнообразных электрохимических процессов. В весьма сжатой форме дана теоретическая интерпретация П.Н.З., основанная на современном состоянии наших знаний о термодинамике электродов и структуре двойного электрического слоя. [c.7]

    Молекулярная адсорбционная хроматография. Молекулярная адсорбция основана на том, что поверхность различных адсорбентов обладает определенным количеством свободной потенциальной энергии, мерой которой является энергия единицы поверхности, называемая капиллярной постоянной. Поскольку согласно второму закону термодинамики процессы протекают в сторону уменьшения свободной энергии, поверхностная потенциальная энергия всегда стремится к минимальным значениям за счет накопления на поверхности адсорбента веществ с меньшей капиллярной постоянной, т. е. за счет адсорбции. [c.348]

    Кинетика и термодинамика адсорбции. Напомним, что адсорбция газовой молекулы (Г) на поверхности твердого тела происходит на адсорбционных центрах (обозначим их через а). Десорбция адсорбированной молекулы освобождает такой центр. Суммарный процесс, называемый сорбцией, можно представить следующим образом Г + а ..............." Г—ст, где ст относится к свободным центрам поверхности адсорбента, Г—ст — это адсорбированная молекула (частица) или заполненный центр адсорбции. Будем далее рассматривать адсорбцию только в мономолекулярной слое, т. е. адсорбцию Лэнгмюра. Обозначим через к и к" константы скорости процессов адсорбции и десорбции, полагая, что адсорбция имеет первый порядок по отношению к газу Гик свободным центрам адсорбента ст так же как и десорбция протекает реакция первого порядка по отношению к адсорбированной молекуле (Г—ст). [c.292]

    Рассмотрены процессы в микропористых кристаллических адсорбентах при постоянной массе адсорбированного вещества (изостерические условия при постоянстве объема микропор и равномерном распределении адсорбата в них такие условия эквивалентны изохорическим условиям, хорошо известным в термодинамике равновесных процессов). Основное внимание уделено неравенству давлений внутри поры и вне адсорбента. Показано, что учет этого неравенства вносит определенные поправки в термодинамические характеристики адсорбата, например, теплоту адсорбции, и позволяет раскрыть механизм деформации адсорбента в процессе адсорбции. [c.149]

    Результаты многочисленных работ по статической усталости и по кинетике роста трещин часто обсуждаются в терминах коррозии под напряжением . Если под коррозией понимать растворение с переходом атомов твердой фазы в объем раствора, то такой процесс действительно иногда вносит существенный вклад в общую картину [297]. Однако чаще всего судьба атомов, образовавших связь, после ее гидролитического расщепления несущественна. В ряде случаев можно утверждать, что они остаются на месте, так как активная среда не образует жидкой фазы, а присутствует в виде адсорбционного слоя [268]. Однако даже если они переходят в раствор (может быть, с переотложением в другом месте, если раствор насыщенный), то мерой действия среды все равно может служить работа адсорбции, хемосорбции или топохимической реакции, т. е. термодинамика поверхностных взаимодействий. [c.97]


    В книге изложены основы расчета процессов перемещения жидкостей и газов, теплообмена, массообмена (ректификация, экстракция, абсорбция, адсорбция, сушка) и других процессов, применяемых на нефтеперерабатывающих заводах. Приводятся краткие сведения по термодинамике, гидравлике, теплопередаче и т. д., необходимые для расчетов. [c.2]

    Фундаментальное свойство экстракционной модели, обусловленное самой природой гидрофобных взаимодействий, заключается в том, что инкремент свободной энергии переноса углеводородного фрагмента в молекуле лиганда из воды в органический растворитель практически не зависит от природы последнего [43—47]. Это связано с тем, что главный вклад в эту величину вносит свободная энергия сольватации углеводородного фрагмента в воде. Так, например, независимо от природы органического растворителя инкремент свободной энергии переноса СНа-группы из воды в органическую фазу составляет примерно 700 кал/моль (3000 Дж/моль) [45]. Приблизительно та же величина свободной энергии характеризует адсорбцию алифатических соединений на поверхности раздела фаз вода — масло или вода — воздух, адсорбцию их из водного раствора на поверхность ртутной капли или же процесс солюбилизации органических молекул мицеллами детергентов [45]. Значение этого факта трудно переоценить, поскольку именно поэтому (пользуясь сопоставлением термодинамики гидрофобного взаимодействия белок — органический лиганд с аналогичными данными для модельных процессов) можно выявить, в принципе, специфические свойства структуры или микросреды гидрофобных полостей в белках.  [c.27]

    Химическая термодинамика изучает превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции, а также возможности и предел самопроизвольного протекания химического процесса в конкретных условиях. [c.76]

    Химическая термодинамика. На основе законов термодинамики осуществляются энергетические расчеты химических реакций и химического равновесия, а также определяется возможность и направление самопроизвольного течения того или иного химического процесса. Химическая термодинамика изучает фазовые переходы (растворение, испарение, кристаллизацию и др.), адсорбцию и т. п. Важным разделом химической термодинамики является термохимия, которая изучает тепловые эффекты химических реакций. Этот раздел физической химии имеет большое значение в народном хозяйстве, особенно в области промышленного синтеза. [c.6]

    Термодинамика включает следующие разделы общую или физическую термодинамику, изучающую наиболее общие законы превращения энергии техническую термодинамику, рассматривающую взаимопревращения теплоты и механической работы в тепловых машинах химическую термодинамику, предметом которой являются превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции. [c.47]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]

    На основе положений формальной кинетики, метода переходного состояния и законов термодинамики были получены уравнения, описывающие закономерности кинетики простейших реакций. В кинетические уравнения входят константы гетерогенно-каталитических реакций, характеризующие процессы, которые протекают на поверхности, константа равновесия хемосорбционного процесса /Сад и предельное значение адсорбции (Г ), константа скорости химического акта (/гуд), а также константы, характеризующие процессы массопереноса (О, р и р). Теория каталитического процесса, протекающего на поверхности катализатора, должна раскрывать зависимость и куц от строения и свойств катализатора и реагирующих молекул. Проблема эта очень сложная и далеко еще не решенная. [c.654]

    ТЕРМОДИНАМИКА (химическая) -наука, изучающая переход энергии из одной формы в другую и от одной системы к другой в различных химических процессах, фазовых превращениях, адсорбции и др. [c.247]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Для каждой пары адсорбент — адсорбтив характеристическая кривая устанавливается по определяемой экспериментально изотерме адсорбции. Адсорбционный потенциал вычисляется как работа, совершаемая адсорбционными силами при перемещении одного моля газа из пространства вне адсорбционного объема в данную точку адсорбционного объема. Как известно из курса термодинамики, при условии изотермичности процесса такая работа равна [c.65]

    Как и катализаторы химических реакций, электрокатализаторы не изменяют термодинамику процесса, т.е. не влияют на равновесный потенциал электродных реакций. Электрокатализаторы увеличивают константу скоростей прямых и обратных реакций, т.е. плотности тока химических реакций и тока обм ена Jq (1.60), (1.64). Увеличение константы скорости реакции может быть обусловлено как снижением энергии активации, так и изменением значения предэкспоненциального коэффициента уравнения (1.61). Электрокатализатор изменяет не только скорость, но и механизм реакции и может влиять на состав продуктов реакции. Составной частью электрокатали-тической реакции является стадия адсорбции. Могут адсорбироваться исходные вещества, промежуточные частицы и продукты реакции. Кроме того, на реакцию оказывает влияние адсорбция молекул растворителя, ионов электролита, а также адсорбция примесей. [c.29]

    Таким образом, видно, что разность свободных энергий адсорбции веществ X и V, равная только нескольким килокалориям на моль, приводит к очень высокой степени заполнения поверхности более сильно адсорбированным углеводородом. Для всех описанных до сих пор систем наблюдалось, что алкины и диолефины адсорбируются гораздо сильнее, чем моноолефины, которые получаются при их гидрогенизации. Повторная адсорбция олефина в присутствии ацетилена и диолефина обычно незначительна, а в некоторых случаях совсем отсутствует. Хотя таким путем можно различать факторы, относящиеся к механизму и термодинамике процесса, эти факторы неразделимы полностью. Возвратимся к вышеприведенной схеме (I), из которой видно, что адсорбция реагента может способствовать десорбции олефина. Здесь можно провести аналогию с реакциями металлоорганических соединений, где органический лиганд, слабо связанный с атомом металла, заменяется лигандом, образующим более прочную связь с металлом. Итак, относительные скорости десорбции и гидрогенизации олефина в отсутствие или при наличии С Н(2п 2) могут сильно различаться между собой в последнем случае преимущественно образуется олефин. Имеется много доказательств этого факта. [c.410]

    Пользуясь теорией, разработанной для поверхностей с однородными активными участками, часто не удается объяснить некоторые свойства реальных катализаторов, например наблюдаемое во многих случаях значительное отклонение не только кинетики каталитических реакций, но и изотерм адсорбции от теоретически ожидаемых. Эти отклонения, как теперь удалось установить, вызваны в большинстве случаев неоднородностью активных участков поверхности. Наиболее существенные успехи в разработке и математической формулировке теории процессов, протекающих на неоднородных поверхностях, достигнуты в последние годы советскими исследователями. Я. Б. Зельдович разработал рациональную статистическую теорию изотермы реального процесса адсорбции, которая дает возможность получить изотерму Фрейндлиха при больцмановском типе распределения отдельных участков поверхности по их активностям. С. Ю. Елович и Ф. Ф. Харахорин экспериментально доказали, что экспененциальное уравнение скорости активированной адсорбции, предложенное Я. Б. Зельдовичем и С. 3. Рогинским, соответствует определенной функции распределения участков поверхности по теплотам активации. С. 3. Рогинским разработана статическая теория каталитической активности и отравления катализаторов, кроме того, в общем виде рассмотрена проблема функций распределения участков поверхности по активности в связи с разработкой теории каталитического процесса 1. Большое принципиальное значение имеет разработанная М. П. Темкиным теория адсорбции и катализа на поверхностях, отличающихся равномерным распределением участков, на которые можно разделить поверхность реальных контактов, по их величинам теплот адсорбции и теплот активированной адсорбции. Разрабатывая термодинамику адсорбционного равновесия, М. И. Темкин дал рациональное толкование постоянной Ь уравнения Ленгмюра, связав ее простым соотношением с теплотой адсорбции. Серьезным достижением следует считать логарифмическую изотерму адсорбции, предложенную А. Н. Фрумкиным и А. И. Шлыгиным, которая позволяет теоретически обосновать возможность дробных порядков в кинетике каталитических реакций. [c.9]

    Радиоизотопы часто использовались для изучения термодинамики и кинетики процессов адсорбции на поверхностях раздела газ - твер дое тело и жидкость — твердое тело [276]. Для этого измерялось уменьшение активности раствора, а в случае достаточно необрати мой адсорбции - непосредственно активность поверхности. Метод был развит и использован при изучении скорости адсорбции в электродных процессах, особенно в случае ионной адсорбции, преимущественно со ветской электрохимической школой. Значительный вклад в эту область внесен Балашовой и сотрудниками. [c.499]

    Адсорбция и ионообмен. Здесь изложены теоретические основы этих быстро развивающихся областей науки с точки зрбния термодинамики. Большое внимание уделено кинетике процессов адсорбции и ионообмена применительно к конкретным расчетным условиям. - [c.6]

    ТЕРМОДИНАМИКА ХИМИЧЕСКАЯ — раздел термодинамики, являющийся в то н е время разделом физич. химии, посвящеиньи изучению зависимосте термодинамич. свойств различных веществ от их состава, строения и условий существования, а также термодинамич. рассмотрению явлений, относящихся к области химии. К этим явлениям относятся хпмнч. реакции н фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), адсорбция и т. д. Важнейшими направлениями развития Т. х. являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, в частности растворах электролитов, теория электродных процессов, термодинамика поверхностных явлений и др. [c.48]

    Для получения информации о состоянии адсорбированных молекул полученные экспериментальные значения AS, следует сравнивать со значениями AS, рассчитанными методами статистической термодинамики в предположении различных моделей и механизмов адсорбции [66, 67, 87, 88]. Рассмотрим некоторые, наиболее наглядные из таких моделей. Сделаем сначала вычисления для модели нелокализованиой адсорбции, когда адсорбат ведет себя как двумерный газ. В этом случае процесс адсорбции протекает с сохранением двух поступательных степеней свободы адсорбированными молекулами AS, в этом случае можно определить следующим образом  [c.37]

    В случае недиссоциированного красителя его химический Потенциал в идеальном растворе (jXp) соответственно пропорционален логарифму его канцентрации. Я я Т обозначают газовую константу и абсолютную температуру, А — константа, не зависящая от концентрации. Процессы крашения во многих случаях протекают —прежде всего если работать в условиях, близких к практическим, — при таких соотношениях концентраций, при которых растворы не ведут себя как идеальные поэтому вместо концентрации в уравнение (5) ужно ввести активности. То же самое относится, естественно, к другой фазе, т. е. к красителю на волокне. В то время как коэффициенгы активности, необходимые для вычисления активности в водной фазе, в некоторых случаях могут быть определены, их экспериментальное или расчетное определение для красителя на волокне наталкивается на почти непреодолимые трудности. Поэтому в большинстве случаев приходится работать с величинами концентрации. Следует настоятеЛьно указать на то, что термодинамика процессов крашения, таким образом, приобретает характер неопределенности. Полуколичественное изучение с помощью изотерм адсорбции может быть более точным, чем термодинамическое определение сродства красителя к волокну. [c.311]

    Процессы адсорбции — это, в первую очередь, процессы очистки, для которых вопросом первостепенной важности является вопрос о минимально возможном остаточном содержании адсорбата в жидкой фазе. Чтобы дать на него ответ, нанесем на рис. 9, кроме линий баланса 7 и Г, изотерму адсорбции (кривая 2). С течением времени концентрация вещества в растворе уменьшается (с, сг и т.п.) и возрастает величина адсорбции а, аг и т.п.). Изменение концентрации продолжается до тех пор, пока не будут достигнуты значения с и а, лежащие на пересечении линий 7 и 2 Дальнейшее течение самопроизвольного процесса очистки прекращается. Более существенное понижение концентрации в растворе, чем с, получить невозможно. Сойти с прямой 1 при заданном значении НЖ (и, что то же самое, при заданном значении НТ) не позволяет закон сохранения материи, а перейти на продолжение прямой 1 в зазер-калье кривой 2 — один из законов термодинамики. Он гласит, что систему, находящуюся в равновесии, вывести из этого состояния может только внешнее воздействие. Итак, точка А—предельно достижимое состояние системы, концентрация с — минимально возможная при данных условиях остаточная концентращ1Я адсорбата в растворе, а. а — максимально возможная величина адсорбции. Предельные концентрации можно изменить, взяв иную НЖ (прямая 1 ), понизив температуру или использовав адсорбент с более крутой изотермой адсорбции (и то, и другое соответствует линии 2 и точке В). Для выбора условий процесса и расходных коэффициентов и предназначены построения, примеры которых приведены на рис. 9. [c.25]

    Согласно второму принципу термодинамики, в системах, обладающих избытком энергии, могут идти самопроизвольные процессы, обусловливающие притяжение к поверхности зародыша из дисперсионной среды соответствующих соединений. В результате этого в нефтяной системе происходит перераспределение соединений между дисперсной фазой и дисперсионной средой. Таким образом, на поверхности зародыша происходит концентрация определенных тггпов соединений, т. е. наблюдается адсорбция. [c.77]

    Как было указано вьине, в результате адсорбции происходит перераспределение компонентов между объемными фазами и поверхностным слоем, что влечет за собой изменение их химических потенциалов в системе, поэтому этот процесс можно рассматривать как превращение поверхностной энергии в химическую. Выведем соотношение между иоверхиостР ым натяжением и химическими потенциалами компонентов системы. Объединенное уравнение первого и второго начал термодинамики для внутренней энергии поверхности с учетом поверхностной и химической энергии имеет вид (объем поверхности равен нулю) [c.35]

    Существует целый ряд теорий, преследующих цель объяснить вышеуказанное явление. Но авторы настоящего труда считают излишним рассматривать их в этом месте. Общее мнение сводится, очевидно, к тому, что в действительности гистерезис представляет собой явление механического свойства. Наблюдаемое при адсорбции разбухание не связано целиком с десорбцией, вследствие чего водяному пару открыт доступ к более значительной площади поверхности. Баркас (см. ссылку 186) объясняет это обстоятельство с точки зрения термодинамики. В своих рассуждениях он прибегает к обосноваийям, на которых построены известный цикл Карно и другие циклические процессы. [c.216]

    Если говорить о дальнейшем развитии наших представлений в области строения двойного электрического слоя, то следует указать, что после теорий Гуи и Штерна, каких-либо общих теорий подобного масштаба не появлялось, хотя и были попытки построения отдельных аспектов теории двойного слоя с использованием методов термодинамики необрати-мых процессов и статистики. Предлагались некоторые уточнения картины строения двойного слоя, представленной Штерном. Так, например, Грэм предложил провести подразделе- ние внутренней части двойного слоя для слу- чая, когда имеет место специфическая адсорб- ция наряду с адсорбцией ионов за счет электростатических сил. Такое подразделение приводит к тому, что выделяется отдельно плоскость, проходящая через центры специфически адсорбированных ионов, со значением потенциала и плоскость, проходящая через центры неспецифически адсорбированных ионов, со значением потенциала г зв. Это позволяет уточнить величину поправки на объем ионов, входящих в двойной слой, что не учитывалось классическими теориями. Схема строения двойного электрического слоя, согласно Штерну и Грэму, а именно, его внутренней части (гельмгольцевский слой), приведена на рис. 23. [c.45]

    Изотермы адсорбции. В гетерогенной системе свойства поверхности раздела фаз и свойства самих фаз различны, особенно при очен1>. большой относительной поверхности раздела фаз. Адсорбцией называется процесс, приводящий к изменению концентрации одного из имеющихся в системе веществ на поверхности раздела фаз. Равновесие это независимо от вида поверхности раздела фаз, описывается при помощи уравнения Гиббса, вытекающего из. второго закона термодинамики  [c.330]


Смотреть страницы где упоминается термин Термодинамика процесса адсорбции: [c.16]    [c.161]    [c.30]    [c.39]    [c.63]   
Смотреть главы в:

Основы физики и химии полимеров -> Термодинамика процесса адсорбции

Основы физики и химии полимеров -> Термодинамика процесса адсорбции




ПОИСК





Смотрите так же термины и статьи:

Процессы адсорбцией



© 2025 chem21.info Реклама на сайте