Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны ковалентности, потенциалы ионизации, энергия связи

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]


    На протяжении всей этой книги постоянно подчеркиваются взаимосвязи между свойствами элементов и их соединений, которые являются неотъемлемой чертой систематики элементов в периодической таблице. Родственные взаимосвязи между элементами, находящимися в одной колонке, служили основой для рассмотрения благородных газов, галогенов, халькогенов, групп азота, углерода и кремния. Закономерности, наблюдающиеся в рядах, подчеркивались при рассмотрении электронной структуры, относительной электроотрицательности и образования химических связей для того чтобы показать, как изменяются те или иные свойства в зависимости от порядкового номера, использовались многочисленные графические изображения. Энергия ионизации (потенциал ионизации), ковалентные, ионные и вандерваальсовы радиусы, термодинамические характеристики (значения энтропии, теплот образования и тепловых эффектов) — вот некоторые свойства, рассмотренные как функция Z. [c.289]

    Фторорганические соединения по своему химическому поведению и физическим свойствам занимают особое место среди органических веществ. Особенности их поведения связаны с наличием в молекуле атомов фтора, для которого характерным являются высокая электроотрицательность, малый ковалентный и ионный радиус, высокое сродство к электрону, высокий потенциал ионизации и большая энергия связи в соединении с углеродом. [c.109]

    ЭЛЕКТРООСМОС, см. Электрокинетические явления. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, характеризует способность атома к поляризации ковалентных связей. Если при образовании двухатомной молекулы А—В электроны связи смещаются в сторону атома В, он считается более электроотрицательным, чем атом А. Для количеств, оценки Э. предложен ряд методов. Наиб, ясный физ. смысл имеет метод, предложенный Р. Маллике1юм, к-рый определил Э. атома как полусумму его сродства к электрону и потенциала ионизации. Употребление ЭГ по Малликену ограничено из-за трудностей получения достоверных значений сродства к электрону атомов. Чаще всего применяют термохим. систему, разработанную Л. Полингом, согласно к-рой Э. атомов А и В определяют, исходя из энергий связей А—В, А—А и В—В. Э. атомов используется в физ.-хим. исследованиях благодаря наличию простых эмпирич. ф-л, связывающих ее с длинами и др. характеристиками хим. связей. [c.702]

    Изменение физических свойств. С ростом атомного номера наблюдается как монотонное изменение ряда физических свойств, так и периодическое изменение. Ионный радиус Ьп + монотонно уменьшается от 1,06 А (Ьа +) до 0,85 А (Ьи +). Также монотонно уменьшается атомный радиус металлов (ковалентный радиус металла), но из этой зависимости выпадают значения для Ей и УЬ (табл. 5.9). Монотонное изменение наблюдается и для потенциалов стандартного электрода Ьп +/Ьп. В этом случае увеличение потенциала ионизации атома и увеличение энергии гидратации иона с ростом атомного номера компенсируют друг друга, и изменение электродного потенциала происходит в узкой области. С другой стороны, цвет и магнитная восприимчивость меняются периодически и непосредственно связаны с электронными конфигурациями н Ьп . [c.294]


    Аномально низкая энергия диссоциации связи Р—Р обычно объясняется отталкиванием неподеленных электронов валентных оболочек двух атомов. Экстраполяция зависимости энергии диссоциации молекулы галогена Х2 от 1// (где Н — длина связи X—X) дает значение для фтора на - 22б кДж/моль более высокое, чем приведенное в табл. 9.1. Было высказано мнение [2], что аналогичные количественные аномалии возникают и при участии только одного атома фтора. Например, зависимость сродства к электрону от потенциала ионизации для иода, брома и хлора является линейной, а при экстраполяции на фтор дает величину на 1,14 эВ (108,8 кДж/моль) большую, чем наблюдаемая. Сходные отклонения наблюдаются для энергии диссоциации ковалентных молекул типа НХ или СН3Х или молекул галогенидов щелочных металлов (в газообразном состоянии), связь в которых является ионной. Эти факты под- [c.58]

    Для таких реакций характерно превращение ковалентной связи исходной молекулы в ионную связь конечной молекулы. При этих условиях в качестве нулевого приближения можно рассматривать пересекающиеся поверхности, одна из которых отвечает взаимодействию атома М с ковалентной молекулой Ха ( ковалентная поверхность), а другая — взаимодействию иона с X" — X ( ионная поверхность). Линия пересечения этих поверхностей определяется условием компенсации разности потенциала ионизации атома М и сродства к электрону молекулы Х кулоновским притяжением между и парой X" — X. Для рассматриваемых реакций типичные величины координаты точки пересечения оказываются порядка 5—10 А. На столь больших расстояниях взаимодействие между ионным и ковалентным состояниями оказывается таким малым, что приближенно истинная поверхность потенциальной энергии может быть построена из участков ковалентной и ионной поверхностей, линия пересечения которых является линией излома адиабатической поверхности потенциальной энергии [262]. [c.117]

    Характеристика элемента. Ртуть в подгруппе ПВ стоит несколько обособленно. Она отличается от двух других членов аномально высоким потенциалом ионизации, большим положительным значением нормального окислительно-восстановительного потенциала и меньшей реакционной способностью. Большая энергия ионизации ртути объясняется проникновением электронов в б5 -состоянии глубже к ядру не только за экран яз но и под 4/ -подуровень электронов. Одновременно с возрастанием устойчивости внешней электронной пары из-за увеличения размера 5 -орбитали возрастает, по сравнению с цинком и кадмием, способность ртути к комплексообразованию. Особенностью ее является возможность образования кроме ионного состояния +2 еще и ионов +1, образующих радикальную группировку —Hg—Hg—. При электрической диссоциации группировка эта не разрушается и в раствор переходит сложный ион Hg +. Поэтому можно различить два ряда соединений в одних ртуть имеет степень окисления -Ь1 [Hg2 l2, Нд2(1ХОз)2], а в других +2[Hg l2, Hg(NOз)2]. Связь в соединениях ртути в значительной степени ковалентна. Это проявляется, в частности в способности ее образовывать большое количество ртутноорганических соединений. Соединения ртути значительно более устойчивы, чем соответствующие соединения цинка и кадмия. [c.312]

    Первый потенциал ионизации бора, 8,296 эв, довольно высок, а следующие два еще выше. Поэтому общая энергия, требуемая для получения ионов В +, гораздо больше, чем можно было бы скомпенсировать энергией решетки ионных соединений или гидратацией таких ионов в растворе. Следовательно, простая потеря электрона с образованием катиона не играет никакой роли в химии бора. Вместо этого решающее значение имеет образование ковалентной связи, ввиду чего соединения бора по своим свойствам и реакциям обычно похожи на соединения других неметаллов, особенно кремния. [c.78]

    Известно, что в полярной молекуле НС1 заряд сдвигается от Н к С1. Этот сдвиг можно было бы связать с большей электроотрицательностью (т. е. большей способностью притягивать электрон) хлора по сравнению с водородом, В самом деле, если любому атому А можно приписать число ха (назовем его электроотрицательностью), которое не зависит от окружения атома А, то естественной мерой ионного характера связи АВ будет абсолютная величина разности ха — Хв электроотрицательностей атомов А VI В. Наша задача, таким образом, состоит в применении экспериментальных данных, которые можно связать с электроотрицательностью. Наиболее естественную величину такого типа представляет собой энергия (А) ионно-ковалентного резонанса (раздел 5.7), поскольку, по определению, А = 0 для чисто ковалентной связи (когда Хл=Хв) и увеличивается при увеличении полярности связи. Полинг (283] на чисто эмпирической основе предложил считать мерой разности ха — Хв величину V AB- Однако, согласно Малликену [259], а также [243а], более подходящей мерой электроотрицательности Ха является величина М=( /2) (/а+ а), где /д —потенциал ионизации, а Еа — электронное сродство атома Л. Удачно, что величина У Аав почти пропорциональна разности величин М для атомов Л и и удовлетворяет соотношению [c.153]


    На схеме пунктиры со стрелками соединяют вакантные 3d-op-битали с парами Зр-электронов. Пара р-электронов одного атома хлора образует связь с другим атомом хлора, располагаясь на его свободной -орбитали в свою очередь, этот атом соединяется с первым за счет своей пары р-электронов и чужой свободной ii-орбита-ли. Таким образом, каждый атом хлора молекулы СЬ является и донором и акцептором электронов одновременно. Атом хлора имеет большее число электронов, чем фтор, и больше по размеру. Его ковалентный радиус 0,99 А, т. е. в полтора раза больше, чем у фтора, а электроотрицательность 2,83, почти на полторы единицы меньше. У атома хлора имеется такая особенность. Его потенциал ионизации меньше, чем у фтора (это естественное следствие большего размера атОхМа), но сродство к электрону (370 кДж/г-атом) выше, чем у того же фтора (350,7 кДж/г-атом). Энергия диссоциации молекулы хлора примерно в полтора раза больше, чем у фтора. Существует на этот счет два мнения. Согласно первому из них в молекуле фтора ядра расположены ближе и сильнее их взаимное отталкивание, приводящее к более легко.му разрыву. В соответствии с другим повышение энергии диссоциации — следствие наличия дополнительного я-связывания по донорно-акцептормому хмеханизму. Такая особенность объясняет необ-ходимость затраты энергии на разрыв дативных связей в молекуле хлора. Свободная З -орбиталь и относительно небольшая энергия возбуждения (861 кДж/моль), требующая для перевода одного из р-электронов на -подуровень, позволяет одному атому хлора образовывать три связи. Он действует в таком случае как атОхМ с тре.мя неспаренными электронами, образуя ковалентные соединения типа IF3 (жидкость с /к1ш=12°С) и дал е с пятью неспаренными электронами ( 1F ). Образование положительных ионов хлора требует довольно больших затрат энергии. Так, для получения иона С + в газовой фазе требуется 1370 кДж/моль атомов. Поэтому в тех соединениях, где [c.271]

    На этом примере можно продемонстрировать еще одну деталь. Поскольку потенциал ионизации нейтрального атома гелия (24,6 эВ) больще, чем у атома водорода (13,6 эВ), ион ННе+ легче диссоциирует на Н+ + Не, чем на Н - - Не+. В общепринятой номенклатуре эти два процесса соответствуют гетеролитиче-скому и гомолитическому разрыву связи. Соединение протона с атомом гелия с образованием ННе+ представляет простейший возможный случай образования дативной связи. Однако наличие такой альтернативы при разрыве связи не влияет на структуру молекулы ННе+. Иными словами, распределение электронной плотности и другие свойства ННе+ будут соответствовать тому, чего мы ожидали бы от ковалентной связи между Н и Не+ независимо от того обстоятельства, что между Н и Не+ может пройти экзотермическая реакция с образованием Н+ и Не. При рассмотрении дативных связей необходимо помнить, что их электронные свойства могут быть такими же, как при прочной ковалентной связи между нейтральными атомами, даже в том случае, если энергия, необходимая для их гетеролитического разрыва, очень мала. [c.161]

    Возможность образования катиона определяется потенциалом ионизации атома или величиной энергии, необходимой для удаления электрона с самого высокого занятого уровня в бесконечность. Способность атома принимать электроны и становиться анионом характеризуется его сродством к электрону, т. е. энергией, выделяющейся при перенесении электрона из бесконечности на самый низший незанятый электронный уровень атома. Способность же атомов поляризовать ковалентную связь, как мы уже говорили, обусловлена их относительной электроотрицательностью, которая равна полусумме потенциала ионизации и электронного сродства атома, выраженных в килокалориях. Электроотрицательность элементов периодической системы убывает справа налево и сверху вниз следовательно, фтор будет наиболее, а цезий наименее электроотрицательным (или наиболее электроположительным) элементом. Чем больше разница между значениями электроотрицательности атомов, тем сильнее выражен ионный характер существующей между ними связи. Атомы элементов, находящихся в левой части таблицы Д. И. Менделеева, и прежде всего [c.31]

    Выше были перечислены основные факторы, благоприятствующие увеличению степени ковалентности связи. К числу таких факторов относятся, в первую очередь, потенциал ионизации атома, электронное сродство группы и радиусы ионов. Увеличение потенциала ионизации, уменьшение электронного сродства и увеличение ионных радиусов приводят к росту энергии поляризации и, следовательно, степени ковалентности связи. С этой точки зрения соединения платины (II), палладия (II), ртути (II) должны ближе всего подходить к ковалентному типу (высокий потенциал ионизации и значительные размеры). [c.104]

    X, т. е. при замене одной двусторонней л-ковалентной связи на донорно-акценторную. Чисто ковалентная связь N=M остается полярной с отрицательно эффективным зарядом на атоме N. Донорная связь О М смещает электронную плотность на атом металла, что повышает потенциал ионизации кислорода и понижает потенциал ионизации металла. Поэтому в первом случае осх — ссм должно быть меньше, чем во втором. С другой стороны, чисто двусторонняя ковалентная связь при прочих равных условиях прочнее донорно-акцепторной, так как в первом случае неспаренные электроны, как правило, занимают в исходных атомах уровни с энергией, близкой по величине, тогда как разница в энергии заполненных и вакантных уровней, на основе которых образуется донорно-акцептор-ная связь, могут быть достаточно большими. А это означает, что интеграл [c.177]

    Конечно, нет сомнений в том, что в общем нормальные формулы галогенидов и окисей щелочных и щелочноземельных металлов и металлов группы алюминия представляют собой наиболее устойчивые из возможных соединений, и предшествующие рассуждения должны только доказать это положение. Они не включают рассмотрение многих возможных формул, в которых галоид или кислород имеет аномальную валентность, потому что определение энергии иона галоида или оксидного иона с аномальным зарядом представляет большие трудности. Причины, по которым ионы металлов обычно несут нормальный заряд в своих соединениях, можно обобщить следующим образом. Энергии решеток увеличиваются очень быстро с возрастанием заряда. Это приводит к большей устойчивости соединений, в которых металл имеет большую валентность. С другой стороны, работа, необходимая для преодоления потенциала ионизации, затрудняет получение иона с большим зарядом, и каждый следующий потенциал ионизации оказывается большим. Однако увеличение энергии решетки более чем уравновешивает дополнительный потенциал ионизации, потребный для увеличения заряда иона до тех пор, пока все валентные электроны не будут удалены. Но как только последний валентный электрон удален, работа, которую нужно затратить для удаления следующего электрона, становится настолько большой, что она значительно превосходит дополнительную энергию решетки. Это, конечно, только грубая схема, так как и другие факторы, как, например, энергии сублимации металла, играют роль, но в общем она верна. Для того чтобы проверить эти положения, читатель должен проделать некоторые расчеты, приведенные подробно в предшествующих параграфах (см., например, упражнения 3—8 в конце этой главы). В случае меди потенциал ионизации второго электрона достаточно мал, а отклонение от ионного типа связи достаточно велико для того, чтобы окисные соединения меди были устойчивыми (см. особенно упражнение 8 в конце этой главы). Следует отметить, что отклонения от ионного типа связи могут только сделать соединение более устойчивым, чем это следует из расчетов при допущении, что связь чисто ионная, точно так же, как отклонение от чисто ковалентного типа по тем же п ичинам делает преимущественно ковалентное соединение более прочным (см. 12.5). Если поэтому найдено, что соединение в действительности существует. в том случае, когда расчет показывает, что оно должно быть неустойчивым, то это объясняется, возможно, тем, что расчет не учитывает вероятности существования связи смешан- [c.248]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Характеристика элемента. Бериллий, так же как и литий, относится к числу -элементов. Четвертый электрон, появляющийся в атоме Ве, помещается на 25-орбитали. Энергия ионизации бериллия выще, чем у лития, из-за большего заряда ядра. Эффективный заряд ядра, влияющий на четвертый -электрон, равен гэфф=1,66. В результате взаимодействия ядра с электронным окружением атом становится меньше (/ ве=1,ИА). Удалить электроны с 2 -орбиталп не просто первый потенциал ионизации почти в два раза больше, чем у лития, а второй потенциал так высок (18,2 эВ), что существование иона Ве + (с полной потерей двух электронов) практически невозможно. Даже в соединениях с фтором связи Ве—Р в значительной степени ковалентны, не говоря уже о связях с другими элементами. Следовательно, степень окисления -Ь2, приписываемая ему, величина условная. Для образования ковалентных связей бериллию необходимо разъединение (распаривание) 25-электронов. Чтобы это произошло, один из них должен перейти на более высокую 2р-орбиталь. Таким образом, когда атом бериллия переходит в такое состояние, его два электрона занимают две эквивалентные 5р-гибридизованные орбитали. Несмотря на то что связи бериллия в основном ковалентны даже в простых солях, все же был оценен его примерный ионный радиус 0,31 А. Это меньше, чем у атома водорода и иона Н+, и, следовательно, создает значительное поле положительного заряда и делает его способным прочно связывать анион кислорода, даже отнимая его у гидроксил-иона  [c.205]

    Типичным жестким взаимодействием является гидратация. Первый потенциал ионизации и энергия сродства к первому электрону служат мерой силы сродства к электрону. Если считать, что иягкое взаимодействие происходит с образованием ковалентной связи, то оно характеризуется сродством к электрону, [c.305]

    При пересчете приведенных в табл. 12 значений энергии ионизации в электрон-вольты получается, что потенциал ионизации Н2О составляет 12,6, а NHg 10,8 ав. Сопоставление этпх цифр с величинами потенциалов ионизации щелочных металлов (от 3,87 авдля цезия до 5,36 эв для лития) показывает, что эти последние должны давать только ионно-дипольные связи. Из элементов главной подгруппы 2-й группы периодической системы лишь у бериллия и (в меньшей степени) магния может уже играть роль ковалентная связь. У трехвалентных элементов степень ковалентности связи уже сильно увеличивается, особенно за счет большой величины третьего потенциала ионизации. [c.306]

    Медь имеет один х-электрон сверх заполненной -оболочки, и поэтому ее иногда помещают в I группу периодической системы элементов. Это не 1 ыеет особого смысла, так как у меди мало общего со щелочными металлами, за исключением, конечно, формального состояния окисления —I. Заполненная -оболочка значительно менее эффективно экранирует 5-электрон от ядра по сравнению с оболочкой инертного газа, в результате чего первый потенциал ионизации Си существенно выше, чем у щелочных металлов. Так как в образовании металлической связи принимают участие и электроны -оболочки, то теплота испарения и температура плавления у меди значительно выше, чем у щелочных металлов. Все это обусловливает более благородный характер меди, в результате чего соединения меди имеют более ковалентный характер и повышенную энергию решетки, которые не компенсируются даже несколько меньшим радиусом однозарядного положительного иона Си+ по сравнению с ионами щелочных металлов в том же пер1зоде Си+0,93 На+0,95 н К+ 1,33 А. [c.311]

    В то время как трехвалентное состояние является основным для всех четырех элементов III группы, устойчивость одновалентного состояния при переходе от верхних членов группы к нижним возрастает и для Т1 соотношение Т1 —Т1" является важной особенностью его химии. Этот случай состояния окисления — на две единицы ниже валентности группы — иногда объясняют проявлением эффекта инертной пары, который впервые становится заметен именно здесь, хотя в общих чертах он проявляется в низкой реакционной способности ртути во II группе и значительно более ярко выражен у элементов IV и V групп. Это явление обусловлено сопротивлением пары х-электронов к отщеплению или участию в образовании ковалентной связи. Так, ртуть трудно окисляется, вероятно, потому, что содержит только инертную пару (б5 ) Т1 легче образует Т1 , чем Т1 , так как имеет инертную пару на валентном уровне (бзЩр) и т. д. Концепция инертной пары не в состоянии сообщить что-нибудь о действительных причинах устойчивости степеней окисления, но она полезна в качестве вполне современной и часто встречается в литературе. Действительно, уже было отмечено [1а], что истинная причина явления есть не внутренняя инертность и не необычайно высокий потенциал ионизации пары 8-электронов, а скорее уменьшение прочности связи при переходе к нижним членам группы. Так, суммарное значение второго и третьего потенциалов ионизации индия (46,7 эв) меньше, чем для Оа (51,0 эв), а для Т1 (50,0 эв) имеет промежуточное значение. Однако наблюдается последовательное уменьшение величин термохимических энергий связей, например для трихлоридов Оа 57,8 1п 49,2 Т1 36,5 ккал1моль. Относительная устойчивость состояний окисления, различающихся наличием или отсутствием инертной пары, будет обсуждаться на стр. 308. [c.282]

    Потеря электрона, а тем более двух или трех с образованием катиона для бора невозможна. Уже первый потенциал ионизации довольно велик (8,3 эВ), а последующие гораздо выше. Затрату такой энергии для образования катиона В + не возместить ни появлением ионных соединений, ни гидратацией иона В + в растворе. Решающая роль в химии бора принадлежит образованию ковалентных связей, и в этом отношении он очень похож на углерод, что объясняет его высокую физиологическую активность. В случае перехода в 5р2-состояние электроны бора спариваются с тремя электронами других атомов, а в хр -состоянии на пустующую р-орби-таль помещаются 2 электрона еще одного (четвертого) атома. Соответственно числу 0-связей координационное число бора (в степени окисления Ч-З) равно либо 3 для хр -состояния (ВС1з, ВОз ), либо 4 для хрЗ-состояния (Вр4 , ВН4+). Бор не образует простого катиона В +. Химические связи бора носят почти исключительно ковалентный характер. При образовании связей с другими атомами он является акцептором электронов. Энергия, выделяющаяся при образовании ковалентной связи, настолько велика, что ее хватает для возбуждения одного из нижележащих 25-электронов. В результате этого один нз них переходит на 2р-иодуровень. Электронная конфигурация становится такой 8 2з 2р . За счет гибридизации и возникают три 5р2-гибридные орбитали. Поэтому практически всегда бор образует три связи. Такое поведение элемента вызвано тем, что возникновение трех ковалентных связей по выигрышу энергии [c.207]

    При образовании ковалентной связи более важной характеристикой является энергия, необходимая для перемещения электрона на другую орбиталь, участвующую затем в образовании связи, а не ионизационный потенциал (соответствующий удалению электрона от атома или иона в бесконечность). Так, при образовании НдВгг один из 652-электронов ртути ([Хе] должен быть перемещен на одну из вакантных бр-орбиталей. Заполненные наполовину 5- и р-орбитали затем гибридизуются, и присоединение атомов Вг приводит к линейной ковалентно связанной структуре. Образование ковалентной связи можно ожидать в тех случаях, когда энергии связи существенно больше, чем энергии перехода. Очевидно, эти энергии перехода намного меньше, чем соответствующие энергии ионизации, хотя между ними и наблюдается приблизительная пропорциональность, за исключением начала соответствующего ряда (например, Ы-Сз), где энергии перехода значительно меньше ожидаемой. [c.36]

    В случае ковалентных кристаллов или соединений с незначительной долей ионности химических связей параметр а с хорошей точностью может быть отождествлен с энергией (е,) данной орбитали в изолированном атоме. Как правило, кулоновский интеграл не вычисляется точно, а принимается равным потенциалу ионизации (7 ) соответствующих валентных электронов, взятому с обратным знаком (а, = -I ). Однако для кристаллических соединений с заметной степенью ионности помимо потенциала иона, которому принадлежит орбиталь ф , необходимо также учитывать маделунговский потенциал V ), создаваемый другими ионами решетки (подробнее см. подразд. 1.5). [c.16]


Смотреть страницы где упоминается термин Электроны ковалентности, потенциалы ионизации, энергия связи: [c.10]    [c.10]    [c.103]    [c.282]    [c.242]    [c.408]    [c.192]   
Смотреть главы в:

Электронное строение и свойства координационных соединений Издание 2 -> Электроны ковалентности, потенциалы ионизации, энергия связи




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Потенциал ионизации

Потенциал ионизации связей

Потенциал электронный

Связи ковалентные Связи

Связь ковалентная

Связь связь с энергией

Связь энергия Энергия связи

Электрон связи

Электроны, энергия ионизации

Энергия ионизации

Энергия ионизации потенциал ионизации

Энергия потенциала

Энергия связи

Энергия электрона

Энергия электронная



© 2024 chem21.info Реклама на сайте