Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярно-оптические свойства вещества

    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]


    Помимо постоянного / -эффекта в молекуле в ходе реакции может возникнуть дополнительное смещение электронов в результате изменения окружающей среды — динамический индукционный Или индуктомерный эффект / . Этот эффект отражает поляризуемость молекулы. Для понимания процесса химического превращения необходимо знать, с какой легкостью изменяется распределение электронов в молекуле. Поляризуемость электронов в молекуле проявляется в оптических свойствах и обусловливает молекулярную рефракцию вещества. Суммарное значение поляризуемости для молекулы не отражает того факта, что в действительности она пространственно анизотропна это имеет важное значение при объяснении протекания реакций, поскольку в химических процессах наиболее существенны сдвиги электронов, совершающиеся вдоль линий связи. Значение оптической поляризуемости по осям координат для молекулы хлорбензола показано на схеме [c.66]

    Часто природные растворы ведут себя как коллоидно-дисперсные системы, с характерными для коллоидов молекулярно-кинетическими и оптическими свойствами (глава X). Устойчивость коллоидных частиц в таких растворах существенно возрастает при попадании в них различной природы высокомолекулярных органических веществ, в частности гумусовых веществ, возникающих при неполном разложении растительных остатков. Природные коллоидные растворы участвуют в образовании коры выветривания почвенного покрова, зоны окисления, а также в образовании осадочных пород и руд. [c.160]

    Молекулярно-кинетические, реологические и оптические свойства коллоидных систем. Физической и коллоидной химией изучаются такие явления, как седиментация коллоидных частиц, их движение, вязкость коллоидных растворов, рассеяние ими света и др., и разрабатываются совершенная технология и методы анализа мягких лекарственных форм, растворов высокомолекулярных веществ и т. д. [c.11]

    Коэффициенты молекулярной диффузии для неэлектролитов и электролитов. Экспериментальное определение коэффициента основано на анализе концентраций растворенного вещества в различных слоях жидкой системы, вероятно, оптическими методами [13, 115, 122]. Для ряда веществ в литературе имеются числовые данные [49]. Кроме того, эти коэффициенты можно вычислить, основываясь на физико-химических свойствах веществ. Для неэлектролитов в разбавленных растворах и растворителей Арнольд [3] дал формулу, подобную формуле для газов  [c.44]


    МОЛЕКУЛЯРНО-ОПТИЧЕСКИЕ СВОЙСТВА ВЕЩЕСТВА [c.163]

    Для выяснения молекулярной структуры веществ большое значение имеет установленный Максвеллом закон зависимости между электрическими и оптическими свойствами веществ, который выражается уравнением  [c.203]

    Основным условием оптической активности вещества (на молекулярном или кристаллическом уровнях) является то, чтобы структура данной молекулы или кристалла не была совместимой со своим зеркальным изображением. Это свойство непосредственно связано с конкретным типом симметрии молекул или кристалла. Только отсутствие центра, плоскости и переменных осей симметрии у молекулы или кристалла приводит к оптической активности последних. Молекулярные структуры обладающие оптической активностью, называются асимметрическими. Отсутствие у асимметричных молекул перечисленных элементов симметрии допускает существование энантиоморфных молекул, соотносящихся между собой как правая и левая рука. Второе условие оптической активности связано с количественным соотношением в смеси двух энантиоморфных молекул правых [О] и левых (Ь). Если в смеси присутствует одинаковое количество Ь- и О-форм данной молекулы, то никакого оптического вращения наблюдаться не будет. [c.35]

    Это также находится в соответствии с тем, что в непредельных углеводородах кроме о-связей имеются л-связи, а характер и энергия связи должны отразиться на оптических свойствах вещества. Степень насыщения также отражается на оптических свойствах. Так, вычисленная молекулярная рефракция углеводорода СНг=СН—СНг—СНг—СН=СНг с двумя удаленными друг от друга двойными связями — (6 X 2,414) + ( 0 X 1,092) - -4-(2Х 1,686) = 28,78 — почти совпадает с найденной экспериментально молекулярная рефракция изомерного с ним углеводорода с [c.106]

    Для систем произвольной конфигурации от дифференциальных уравнений переноса переходят к интегральным [5]. Вывод интегральных уравнений излучения, описывающих перенос излучения в поглощающих средах, сводится к совместному рассмотрению всех видов излучения и решению уравнения переноса для интенсивности Д. (М, 5) из уравнения (5.10). Объемный характер теплообмена излучением в поглощающих средах зависит от молекулярных свойств среды. Для чистых газов излучение и поглощение носит четко выраженный селективный характер, их спектр является полосатым. Поэтому при выборе необходимого воздействия требуется знание спектральных характеристик оптических констант веществ. Задачи, связанные с переносом энергии в аэродисперсных системах, требуют анализа дисперсного состава твердой или жидкой фазы и учета индикатрис их рассеяния в зависимости от длины волны. [c.95]

    Рассматриваются свойства элементов, физико-химические константы чистых веществ и минералов, молекулярные свойства веществ (поверхностное натяжение, вяэ КОСТЬ, теплоемкость и т. д.), оптические и электрические данные. [c.127]

    Характер химических превращений и свойства веществ зависят от строения реагирующих молекул и особенно от размеров и расположения входящих в них атомов, межъядерного расстояния и энергии химических связей, зарядов атомов и атомных группировок, моментов инерции молекул. Не всегда подобные характеристики могут быть рассчитаны теоретически. Очень часто привлекаются опытные данные, получаемые путем исследования электрических, магнитных, оптических и других свойств веществ. Знание экспериментально получаемых молекулярных характеристик важно для проверки гипотез о механизме химических процессов. Кратко остановимся лишь на принципах наиболее важных методов экспериментального исследования строения молекул.  [c.49]

    Изучение свойств растворов высокомолекулярных соединений сыграло огромную роль в развитии коллоидной химии. Первые исследования диффузии, осмоса, оптических свойств коллоидов были проведены с растворами желатины, агара, целлюлозы, т. е. с растворами ВМС. При этом выяснилось, что растворы ВМС более устойчивы по сравнению с золями. В течение длительного времени это объяснялось высоким сродством растворенных веществ к растворителю (дисперсионной среде) и связанной с этим высокой сольватацией. Это нашло отражение в исторически сложившемся названии таких растворов — лиофильные золи или обратимые коллоиды в отличие от лиофобных золей — обычных (необратимых) коллоидных систем. Позднее была найдена истинная причина термодинамической устойчивости лиофильных золей — отсутствие поверхности раздела фаз и поверхностной энергии — их гомогенность. Было показано также, что, хотя свойства растворов высокомолекулярных соединений в значительной степени определяются их сродством к растворителю, доля растворителя, вошедшего в сольватные оболочки, не очень велика. Поэтому правильным следует считать термин растворы ВМС или молекулярные коллоиды , а не лиофильные золи . [c.435]


    На основании измерений В можно определить радиус г взвешенных частиц и молекулярный вес растворенных веществ различной степени дисперсности. Для частиц несферической формы вместо члена (6т]г) входят более сложные выражения, причем для несферических частиц величина В меньше, чем для сферических частиц равной массы. Для измерения величины В определяют различными способами скорость изменения концентрации в том слое раствора, в котором происходит диффузия. А концентрацию рассчитывают по оптическим свойствам раствора — по изменению показателя преломления, поглощения света и др. [c.309]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Молекулярный вес — важная характеристика всякого высокомолекулярного соединения, обусловливающая все основные его свойства. Поскольку в процессе получения ВМС образуются смеси полимеров с различными длинами цепей, а следовательно, и с различным молекулярным весом (смеси полимер-гомологов), приходится говорить о некотором среднем молекулярном весе. Для определения молекулярного веса ВМС применимы почти все физико-химические методы, используемые для определения молекулярного веса низкомолекулярных веществ крио-скопический и эбулиоскопический, осмотический, диффузионный, оптический, вискозиметрический и др. В указанных методах применяются растворы ВМС в подходящих растворителях. [c.385]

    Жидкие кристаллы — это органические молекулы, геометрические и (или) полярные характеристики которых благоприятствуют их упорядоченной ориентации в одном или двух направлениях. Вещество при этом остается текучим и выглядит как жидкость. Однако его оптические свойства подтверждают наличие некоторой упорядоченности на молекулярном уровне. Длинные, узкие и весьма жесткие молекулы выстраиваются подобно сплавляемым по реке бревнам (так называемые нематические жидкие кристаллы). Более сложные формы типа больших плоских молекул могут образовывать слоистые структуры, подобные структуре клееной фанеры (так называемые смектические жидкие кристаллы). Фактическое поведение фазы определяется равновесием между эффектами, обусловленными формой молекулы и ее ближайшим окружением. Это равновесие подвержено влиянию даже небольших электрических полей, так что оптические свойства жидких кристаллов могут быстро меняться (например, прозрачное вещество может стать светонепроницаемым). [c.83]

    Вторая особенность состоит в том, что молекулярная структура вещества углей очень уплотнена, чем объясняются большое содержание в нем углерода, химическая инертность и характерные оптические свойства (черный цвет, непрозрачность). [c.9]

    Молекулярные и оптические свойства Прн комнатной температуре и атмосферном давлении UFe представляет собой бесцветное твердое вещество. Монокристаллы UFe относятся к ромбической (ортогональной) системе. Их решетка принадлежит пространственной группе симметрии с постоянными решетки а= [c.118]

    Обнаружено, что вращательная способность отдельных асимметрических атомов в моносахаридах изменяется при переходе от диапазона длин волн 500—250 ммк к диапазону 250—180 ммк. Второй диапазон близок к максимуму поглощения для группировки, состоящей из аномерного атома углерода и связанных с ним двух кислородных атомов. В диапазоне 250—180 ммк на оптических свойствах моносахаридов и их производных начинает сказываться эффект Коттона, в результате чего молекулярное вращение возрастает приблизительно в 20 раз. Это позволяет, прежде всего, уменьшить количество вещества, необходимое для исследования, по сравнению с обычными поляриметрическими измерениями. [c.56]

    Позднее было выполнено много работ для выяснения особой структуры и специфических свойств мезофаз. Исследования касались главным образом обнаружения новых мезофазных веществ и изучения их оптических свойств. Надмолекулярная структура изучалась обычно с помощью поляризационного микроскопа [3]. Молекулярная структура этих фаз определялась по их надмолекулярной структуре и по поведению при смешении различных компонентов [5]. Очень мало работ опубликовано по структурным исследованиям с помощью методов рассеяния, например рассеяния рентгеновских лучей, электронов или света. Тем не менее основные структурные свойства жидкокристаллических модификаций низкомолекулярных систем в настоящее время уже известны. [c.16]

    Многие твердые вещества при облучении ионизирующим излучением изменяют свои механические, электрические и оптические свойства. Измерения этих изменений и служат мерой поглощенной энергии. Часто применяют дозиметры,изготовленные из неорганического стекла, различных кристаллов, пленки поливинилхлорида или плексигласа. Кроме того, для дозиметрических целей может служить уменьшение среднего молекулярного веса плексигласа и уменьшение флуоресценции пластмассовых сцинтилляторов. [c.395]

    Физика и химия практически изучают одни и те же объекты, но только с различных сторон. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы и ассоциации последних в молекулы новых веществ, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, не связанные с изменением состава молекул и их внутренних химических связей, и т. д. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах, образование веществ в разных фазах, изменения их электрических и оптических свойств убедительно свидетельствуют о тесной связи химических и физических явлений. [c.86]

    Дисперсионный анализ. Оптические и молекулярно-кинетические свойства дисперсных систем. Дисперсионный анализ состоит в определении размеров частиц и удельной поверхности дисперсной фазы, а в случае полидисперсных систем также в установлении распределения диспергированного вещества по фракциям различного размера. [c.306]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Справочник содержит данные по механическим, термодинамическим и молекулярно-кинетическим свойствам веществ, электрическим свойствам металлов, диэлектриков и полупроводников, магнитным свойствам диа-, пара- и ферромагнетиков, оптическим свойствам веществ, в том числе и лазерных, оптическим, рентгеновским и мёссбауэровским спектрам, нейтронной физике, термоядерным реакциям, а также геофизике и астрономии. [c.2]

    Кезом и Дебай для истолкования молекулярных сил использовали молекулярную модель, уже описанную в гл. 12. Как показано ниже, Кезом при первоначальном истолковании из всех свойств модели рассматривал только симметрию в распределении зарядов, в то время как для Дебая основной предпосылкой существования сил сцепления являлась поляризуемость. В этой связи оба основных свойства молекулярной модели, которые теперь применяются в более обобщенной теории когезионных сил Дебая, следует рассмотреть несколько более критически, чем это сделано в гл. 12. С этой целью необходимо эти оба свойства связать с теми сведениями об электрической тонкой структуре молекул, которые получены на основании оптических свойств вещества. [c.174]

    Феноменологический подход применим к электронным спектрам мнокомпонентных, молекулярных и атомарных веществ. Принцип квазилинейной связи выполняется в ато.марных,. молекулярных, сложных высоко.мо-леку.цярных систе.мах. Квази.чинейная функция, наиболее точно описывающая зависи.мость свойств и оптических характеристик, имеет вид кубической зависимости, без исключения. Полученные законо.мерности реко.мендуются для прогнозирования свойств органических вегцеств, вычисляя их по соответствующим уравнениям. [c.101]

    Рацемат представляет собой наиболее часто встречающуюся систему, состоящую из й- и /-форм. Это название было предложено Пастером, который впервые наблюдал такое явление на виноградной кислоте ( рацемической кислоте ), состоящей из лево- и правовращающей винных кислот. Рацемические молекулярные соединения, насколько известно в настоящее время, устойчивы только в твердом состоянии. В рас-1воре и в парах они распадаются на отдельные компоненты, как показывают их криоскопические свойства, электропроводность, удельный вес и химическая реакционная способность, всегда тождественные свойствам оптически активных веществ. Поэтому различия между рацематами и оптически активными формами ограничиваются, помимо действия на поляризованный свет и взаимодействия с другими несимметричными системами, теми свойствами, которые наблюдаются лишь у твердых фаз. Так, они могут различаться по температурам плавления, плотности, растворимости их кристаллическая форма также может быть различна, причем кристаллы рацематов, часто обладают голоэдрическим, а активные формы — гемиэдрическим строением. Отклонения наблюдаются также и в содержании кристаллизационной воды рацемическая винная кислота кристаллизуется с одной молекулой НгО, активная — без воды кальциевая соль неактивной маиноновой кислоты безводна, а соль активной формы содержит две молекулы Н2О и т. д. [c.134]

    Наконец, несостоятельность дисперсоидологии особенно ясно выявилась после детального нсследоваия природы растворов полимеров. Согласно Во. Оствальду и другим представителям дисперсоидологии, все коллоидные свойства должны обязательно проявиться у систем, содержащих частицы коллоидных размеров. Однако, как было уже показано, растворы высокомолекулярных веществ, молекулы которых отвечают коллоидным размерам, проявляют только некоторые свойства, типичные для коллоидных систем (оптические, молекулярно-кинетические свойства), в отношении же других свойств они имеют очень мало общего с типичными коллоидными растворами. [c.23]

    Оптические изомеры обладают одинаковыми физико-химическими свойствами в тех случаях, когда речь идет о свойствах неасимметрической природы. Напр-имер, молекулярная электропроводность, кислотно-основные, магнитные свойства не зависят от конфигурации оптического изомера. Физико-химические свойства асимметрического характера у зеркальных изомеров могут оказаться существенно различными. Например, оптические изомеры обладают одинаковой по величине, но противоположной по знаку вращательной споообностью плоскости поляризации светового луча, различными скоростями взаимодействия оптических изомеров с молекулами оптически активного заместителя. Примеры оптически активных веществ приводятся в табл. 7. [c.51]

    Комплекс механических характеристик пластмасс в настоящее время наиболее полно представлен в разделах, посвященных физическим и эксплуатационным свойствам Классификатора свойств полимерных материалов [4], разработанного Центром данных по свойствам полимериых материалов ОНПО Пластполимер в г. Ленинграде и Всесоюзным научно-иоследователь-ским центром Государственной службы стандартных и справочных данных о свойствах материалов и веществ (ГСССД). Этот классификатор предназначен для использования в автоматизированной информационно-ио-исковой системе. Кроме механических свойств классификатор содержит также данные по молекулярной и надмолекулярной структуре полимерных материалов, их теплофизическим, электрическим, магнитным и оптическим свойствам, характеристики физико-химических свойств, относящиеся к растворению и набуханию, проницаемости, сорбционной способности, адгезионным свойствам и специфическим электрохимическим свойствам ионообменных материалов. [c.303]

    Качественно жидкокристаллические растворы палочкообразных ароматических полиамидов могут быть визуально обнаружены по помутнению в неподвижном состоянии и по опалесценции под действием слабого сдвига, например при перемешивании раствора стеклянной палочкой. Жидкокристаллические растворы деполяризуют плоскополяризованный свет, причем в поляризационном микроскопе обнаруживают двоякопреломляющие домены. Как было показано в работе Панара и Бесте [32], в толстых образцах чистого нематического раствора ППБА низкого молекулярного веса происходит релаксация к прозрачному состоянию, в котором имеются неупорядоченные нематические (нитевидные) линии, проходящие через образец. Когда такой образец помещается в магнитное поле в несколько тысяч гаусс, линии вытягиваются в направлении поля и медленно исчезают. Таким образом, первоначальный деполяризующий раствор начинает обнаруживать свойства одноосного двоякопреломляющего кристалла. Панар и Бесте [32] провели очень интересное наблюдение за тем, как анизотропный раствор низкомолекулярного ППБА (20% полимера в ДМАА с добавкой Li l) может быть переведен в холестерическую фазу путем добавления в раствор оптически активного вещества, например (-Ь) 1-метилциклогексанона, которое присоединяется к группам основной цепи в достаточной степени, придавая преимущественную хиральность всей молекуле. При этом образуются параллельные линии, типичные для растворов поли-у-бензилглута-мата. [c.167]

    Каждый тип жидких кристаллов обладает своими собственными геометрическими и оптическими свойствами. На молекулярном уровне это означает, что каждый такой порядок обладает определенной группой симметрии [6]. Большая часть двоякопреломля-ющих биологических систем обнаруживает структуру, симметрия которой совпадает с различными хорошо известными мезоморфными фазами [7]. Таким образом, различные типы мезоморфных порядков широко распространены в живой природе. Мы не должны забывать также, что существуют и истинные трехмерные кристаллы [8]. Важность мезоморфных структур (в том числе и коллоидов) определяется их присутствием в мембранах клеток и клеточных органелл, в клеточных ядрах и хромосомах многих микроорганизмов, в миелиновых оболочках аксонов нервных клеток (особенно распространенных в белом веществе мозга позвоночных), а также в мышечных и скелетных тканях [3, 7, 9—1 ]. [c.277]

    Для некоторых веществ, рассматриваемых в Справочнике, в литературе отсутствовали полностью или частично данные, необходимые для расчетов таблиц термодинамических свойств. В связи с этим в ряде лабораторий Советского Союза был проведен широкий комплекс исследований величин, необходимых для расчета таблиц термодинамических свойств веществ, рассматриваемых в настоящем Справочнике. В проведении этих исследований участвовали лаборатория молекулярной спектроскопии химического факультета МГУ (руководитель проф. В. М. Татевский), лаборатория молекулярной спектроскопии Государственного оптического института (руководитель проф. Б. С. Непорент), лаборатория электронографических исследований химического факультета МГУ (руководитель П. А. Акишин), лаборатория термодинамики и химии высокотемпературных процессов Института горючих ископаемых АН СССР (руководитель канд. техн. наук К. А. Никитин), лаборатория химической термодинамики химического факультета МГУ (руководитель чл.-корр. АН СССР Я. И. Герасимов), термохимическая лаборатория им. Лугинина химического факультета [c.13]

    Можно считать, что классификация растворов, да1шая Оствальдом и основанная на различии размеров частиц растворенного вещества, в настоящее время является недостаточной. Несомненно, что все системы, содержащие частицы большого размера, независимо от их природы, будут обладать рядом общих свойств, и мы объединим их термином коллоиды лишь в этом смысле. Однако большинство свойств коллоидов, как то адсорбционные процессы, явления пептизации и коагуляции, оптические свойства и т. п., связывается с микрогетерогенностью коллоидных растворов и с определением коллоидных частиц как агрегатов, состоящих из большего или меньшего количества молекул и обладающих поверхностью раздела. К собственно коллоидным системам большинство исследователей относит именно системы, в которых частицы представляют собой подобные агрегаты в отличие от истинных растворов, содержащих вещество в молекулярной стенени дисперсности. При этом размеры молекул истинно-растворенного вещества, обладающего большим молекулярным весом (например, истинно-растворенные красители), могут иметь большие размеры, чем частицы тонко диспергированных коллоидов, как, например, золото или окись железа (15—20 А). Наконец в случае высокомолекулярных веществ мы имеем молекулы с молекулярным весом в несколько десятков и даже сотен тысяч, которые, по терминологии Оствальда, должны быть отнесены к коллоидным частицам. В то же время эти высокомолекулярные вещества могут присутствовать в растворе в виде отдельных молекул. Возникает вопрос, должны ли мы рассматривать растворы соединений с большим молекулярным весом как растворы коллоидные или же мы можем точнее передать их свойства, описывая их как истинные растворы Этот вопрос является одним из основных, хотя некоторые исследователи, как, например, Кройт [11, рассматривая коллоидные процессы, сознательно воздерживаются от обсуждения этого вопроса. [c.242]

    Прежде чем перейти к обсуждению лучших методов приготовления твердых образцов, рассмотрим оптические свойства тонких кристаллических порошков. Когда пучок света надает на слой маленьких частиц, результат зависит в основном от размеров частиц и их показателей преломления по сравнению с окружающей средой [2а, 161а, 1616]. Если размеры частиц значительно меньше длины волны света, свет не будет ни отражаться, ни преломляться на поверхностях. Следовательно, частицы в таком слое (или суспензии) ведут себя по отношению к свету не как отдельные фазы с определенными границами они и окружающая среда ведут себя как одна фаза, точно так же, как молекулярный раствор. Однако когда частицы велики по сравнению с длиной волны, то свет преломляется и отражается на поверхностях частиц. Это возможно только в том случае, если показатели преломления частиц и окружающей среды различны. Тенденция к преломлению и отражению возрастает но мере увеличения этого различия. При приготовлении пленок порошков без матриц обычно не удается растереть частицы настолько тонко, чтобы их размеры были меньше, чем длины волн инфракрасного излучения, по крайней мере самые короткие. Поэтому образцы в виде порошков часто совершенно непрозрачны у высо очастотпого конца (2—5 л) и частично непрозрачны в других областях, так как показатель преломления твердых веществ обычно лежит между 1,3 и 1,7, а для воздуха он равен 1,0. [c.300]

    Обнаружение функциональных групп, которое рассматривалось в предыдущей главе, известно под названием анализа органических соединений по функциональным группировкам—название исключительно меткое . Наряду с этим методом давно известен элементарный органический анализ, т. е. качественное и количественное определение элементов, из которых состоит исследуемое вещество. Кроме того, существуют еще и методы идентификации индивидуальных органических соединений, в которых используются свойства всей молекулы. Эти методы основаны на определении физических свойств, связанных со структурой и размерами молекулы органических соединений. К таким свойствам относятся температуры плавления, температуры кипения, удельный вес, а также оптические свойства различных соединений. Определяют температуру плавления или кипения исследуемого вещества или готовят его смеси с заранее известными веществами и наблюдают за температурами, присущими, например, эвтектическим смесям. В последнее время этот метод стал применяться для исследования микроколичеств органических веществ и их смесей, что является определенным шагом вперед. Полезность такого метода со временем, несомненно, станет еще более очевидной. Для эбулиоскопи-ческого или криосконического методов определения молекулярного веса используют расплавы или растворы исследуемых веществ в различных растворителях. Для подобных определений можно использовать производные исследуемых веществ, которые в некоторых случаях обладают более характерными свойствами. Оптическими методами определяют коэффициенты преломления, оптическую активность, спектры поглощения в ультрафиолетовой и инфракрасной области спектра, спектры комбинационного рассеяния, форму и оптические свойства кристаллов и др. [c.426]


Смотреть страницы где упоминается термин Молекулярно-оптические свойства вещества: [c.29]    [c.320]    [c.40]    [c.18]    [c.18]    [c.265]    [c.206]    [c.620]    [c.5]   
Смотреть главы в:

Экспериментальные основы структурной химии -> Молекулярно-оптические свойства вещества




ПОИСК





Смотрите так же термины и статьи:

Вещества молекулярные

ДНК молекулярные свойства

Оптические свойства

Оптические свойства свойства

Свойства веществ



© 2025 chem21.info Реклама на сайте