Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вращательно-поступательные переходы

    Во-первых, скорость вращательной релаксации при столкновениях велика для вращательно-поступательного перехода требуется от 1 до 10 столкновений. При давлениях около 1 мм рт. ст. за 1 мкс проходит по крайней мере одно столкновение с участием НС1 или Ог. Напротив, скорость вращательной дезактивации вследствие излучения даже для разрешенных переходов мала (10 с). Таким образом, отсутствие вращательного возбуждения [c.151]


    ВРАЩАТЕЛЬНО-ПОСТУПАТЕЛЬНЫЕ ПЕРЕХОДЫ [c.269]

    Величина вращательного кванта значительно меньше колебательного, поэтому вращательная энергия гораздо легче переходит в энергию поступательного движения. Для большинства молекул число соударений, требуемых для вращательно-поступательного перехода, менее 10, что соответствует временам релаксации меньше 10 с при атмосферном давлении. Вследствие этого вращательную релаксацию довольно трудно исследовать акустическими методами, так как требуются высокие значения Цр, при которых уже сказывается классическая дисперсия и, поглощение звука [87]. Большую трудность представляет и теоретическая интерпретация результатов. Дело в том, что вращательная энергия распределена по большому числу рассматриваемых уровней, а наблюдаемые времена релаксации обычно оказываются усредненными по совокупности переходов, относящихся к состояниям с различными /. [c.269]

    В этой схеме учтена возможность поступательной диффузии из реакционноспособного состояния (Н , Н ). Величина а в схеме (VI) — вероятность образования пары радикалов, ориентированных благоприятным для протекания реакции образом. Вращательные частоты перехода радикалов из одного состояния в другое [см. схему (VI)] в сумме должны быть близки к его частоте вращения V, + Уз =  [c.211]

    Определение константы скорости вращательного перехода при вращательно-поступательном КТ-обмене энергии ХУ(]) + М + М. [c.89]

    Количественно опишите изменение температуры и плотности при прохождении ударной волны через такой газ, как СН4, в котором переход вращательной и колебательной энергий в анергию поступательного движения незначителен. Какое влияние на прохождение ударной волны окажет диссоциация на Н и СН3  [c.587]

    Так как масса электрона очень мала, он не может при соударении с молекулой передать ей свою кинетическую энергию и повысить ее вращательную или колебательную энергию. Для перехода кинетической энергии поступательного движения электрона в колебательную энергию молекулы наиболее выгоден удар вдоль оси молекулы. Но вследствие невыгодного соотношения масс даже при таком ударе молекуле может быть передана, как уже было показано выше, лишь небольшая доля кинетической энергии электрона. Несмотря на это, при некоторых обстоятельствах переход кинетической энергии поступательного движения электрона в колебательную энергию молекулы, с которой он сталкивается, оказывается возможным. Электрон своим электрическим полем может так изменить внутреннее поле молекулы, что произойдет изменение ее колебательного состояния. Опыт показал, что электроны, обладающие энергией 5 эв, возбуждают колебательные кванты молекул азота и окиси углерода. причем вращательное движение молекул не изменяется. [c.73]


    Первый шаг на пути к квантовомеханическому аналогу классического понятия молекулярной структуры состоит в отделении поступательного (трансляционного) и вращательного движений молекулы как целого от внутримолекулярных движений. Это осуществляется посредством перехода от неподвижной (лабораторной) системы координат к координатам центра тяжести молекулярной системы и к относительным координатам . Не останавливаясь на математической стороне дела, заметим, что отделение поступательного движения приводит к радиально-неоднородному распределению электронной и ядерной плотности в молекуле, а отделение вращения обусловливает угловую неоднородность этого распределения. [c.107]

    Ремонт поршневых компрессоров. Главные детали компрессора совершают вращательное или относительное поступательное движение, поэтому они подвержены интенсивному износу. Основные виды износа в деталях поршневого компрессора связаны с характером движения и действующими нагрузками и могут быть следующими 1) коленчатый вал —изменение формы и размеров шатунных и коренных шеек вала, трещины в местах перехода шеек к щекам, прогиб 2) коренные подшипники — износ баббитовой заливки, коробление вкладышей 3) шатун — изгиб шатуна, износ вкладышей, вытягивание шатунных болтов 4) крейцкопф —износ направляющих и пальца 5) шток —износ штока в месте прохода через сальник, изгиб, срыв резьбы 6) поршень —износ отверстий для установки поршневых колец, износ колец 7) цилиндр — изменение формы цилиндра (овальность, конусность, бочкообразность) 8) клапаны — износ пружин и рабочих поверхностей седла и тарелки клапана. [c.222]

    В табл. V, 1 приведены в качестве примера значения функции Н°т — Яо)/ Т однозарядных положительных ионов некоторых элементов при температурах до 50 000 К. При обычных температурах теплоемкость и внутренняя энергия одноатомных частиц не имеют колебательных и вращательных составляющих, а определяются всецело поступательным движением частиц. При высоких же температурах еще прибавляется и энергия возбуждения более высоких энергетических уровней электронов. До начала этих возбуждений теплоемкость (Ср) и функция (Яг — Яо)/Г сохраняют для частиц такого вида постоянное значение 4,9682 кал/(К-моль). Переход от атомов Не к N6, Аг, Кг, Хе и Кп сопровождается понижением первого уровня электронных возбуждений. У нейтральных атомов этот уровень понижается с 21,0 эв для атомов гелия до 6,2 эв для атомов радона Для ионов Ы+ не обнаруживается возбужденных состояний еще при 45 ООО К, для ионов N3+—при 20 000 К, для К и КЬ+ —при 10 000 К и для Сз+ при 9000 К. Аналогичные соотношения должны наблюдаться и для ионов Р , С1 , Вг, 1 и для ионов Ве , Mg +, Са +, Ва +. Для изоэлектронных частиц чем выше заряд ядра, тем выше первый уровень электронных возбуждений и, следовательно, выше температура, при которой эти возбуждения начинают влиять на термодинамические функции. Хотя эффективный заряд таких ионов в [c.173]

    Более точная формулировка модели, учитывающая превращение вращательной и поступательной энергии в колебательную, должна базироваться на особенностях реального межмолекулярного потенциала. Оказывается, если учесть анизотропию межмолекулярного потенциала, то существуют определенные предпочтительные конфигурации комплекса сталкивающихся молекул, для которых вероятность колебательного перехода максимальна [98]. При этом колебательная энергия превращается как в поступательную, так и вращательную, причем соответствующие доли определяются конфигурацией комплекса. [c.88]

    Тем не менее известны случаи, когда переходами между электронными состояниями в известном приближении моншо пренебречь и рассматривать превращения колебательной и вращательной энергии в поступательную в рамках представлений, справедливых для основного электронного состояния. [c.101]

    Элементарный химический акт — непрерывный процесс взаимо-перехода энергии поступательного движения молекул во внутреннюю энергию движения ядер и электронов, а также во вращательную энергию системы. Ядра атомов в процессе превращения реагентов в продукты реакции движутся непрерывно, непрерывно меняется их расположение, при этом относительно быстро меняется и распределение электронной плотности в реагирующей системе. Образуются новые частицы молекулы, радикалы, ионы. Состояние реагирующей системы (молекулы А и В в момент столкновения), при котором изменение в расположении ядер в реагирующей системе приводит к разрыву отдельных связей и возникновению новых, называют переходным состоянием. Всякий элементарный химический акт протекает через переходное состояние. [c.559]

    I. Законы фотохимии. В фотохимии рассматриваются закономерности влияния электромагнитных колебаний видимого и ультрафиолетового участков спектра на реакционную способность химических систем. Общая реакционная способность химической системы характеризуется значениями стандартного сродства реакций АО (Т) и стандартного сродства в процессе образования переходного состояния Значения А0 (7 ) и АС (7) изменяются с изменением температуры. При повышении температуры в системе изменяется кинетическая энергия поступательного и вращательного движения молекул и энергия колебательного движения ядер атомов. В области средних температур энергия движения электронов при изменении температуры практически остается постоянной. Чтобы перевести электроны на более высокие электронные энергетические уровни, надо нагреть систему до высоких температур, при которых многие реагенты разлагаются. При воздействии на химическую систему электромагнитными колебаниями с частотой видимого и ультрафиолетового участков спектра изменяется энергия движения электронов. Поглощая квант энергии, электроны переходят с ВЗМО на НО Ю. Образуется возбужденная молекула, обладающая избыточной энергией. Распределение электронной плотности в возбужденных молекулах существенно отличается от распределения электронной плотности в исходных молекулах. Повышается энергия колебательного движения ядер. Физические и химические свойства возбужденных молекул отличаются от свойств молекул в невозбужденном состоянии. Появляется возможность получения новых веществ, синтез которых невозможен при термическом воздействии на систему. [c.610]


    Следует также отметить работы [199, 200, 214, 215, 247, 333, 353, 359-362], посвященные процессам перераспределения колебательной, вращательной и поступательной энергий возбужденных двухатомных молекул (Н2, N2, КВг) в собственной атмосфере или в атмосфере инертного газа (Аг, Не). Для этих процессов рассчитаны дифференциальные сечения переходов как функции колебательных и вращательных квантовых чисел и полные сечения переходов из заданных квантовых состояний. Оценены зависимости этих сечений от вариации ППЭ. Оказалось, что полное сечение менее чувствительно к подобным вариациям, чем дифференциальное. Изучалась зависимость вероятности колебательно-вращательного перехода и характер- [c.104]

    Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия — это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое. [c.85]

    Согласно теореме статистической физики о равномерном распределении кинетической энергии по степеням свободы, справедливой для всех веществ в области применения классических законов физики, теплоемкость полимера (количество теплоты, необходимой для того, чтобы нагреть 1 кг вещества на 1 К) зависит от числа степеней свободы. В стеклообразном или кристаллическом состоянии наблюдаются только колебательные степени свободы, а в высокоэластическом и вязкотекучем, кроме того, и вращательные и поступательные степени свободы. Этим объясняется хорошо известный факт, что при переходе полимера через температуру стеклования его теплоемкость возрастает. [c.267]

    Согласно представлениям квантовой механики молекулы не могут изменять свою энергию непрерывно, а приобретают или теряют ее только квантами, равными той энергии, которая нужна для перехода молекулы из одного стационарного состояния в другое, с одного энергетического уровня на другой. В соответствии с этим энергия распределяется по степеням свободы неравномерно на одну степень свободы поступательного движения приходится в среднем энергия, равная Чг кТ), на одну степень свободы вращательного движения /-вида энергия [c.66]

    От того, на каком уровне организации происходит перестройка структуры, зависит тип релаксирующих структонов. Если в движение вовлекаются только отдельные атомы или небольшие группы атомов (боковые привески или мелкомасштабные участки полимерной цепи), то форма движения является колебательно-поступательной или колебательно-вращательной с переходом время от времени через потенциальный барьер (рис. VПI. 5). При низких температурах энергия теплового движения слишком мала, чтобы релаксатор смог переместиться [c.180]

    А с/АТ I ПЭНД превышает А с/А Т ПЭВД. Это позволяет утверждать, что температурный переход при 79 °С связан с подвижностью в кристаллитах и характеризует процесс а -релаксации. Этот релаксационный процесс по всей видимости вызван как движением петель складок, так и вращательно-поступательным движением цепей, образующих складки в кристалле. Особенности этого релаксационного процесса подробно обсуждались Гоффманом, Вильямсом и Пассаглиа . [c.165]

    В настоящеее. время процессы вращательно-колебательного обмена изучены явно недостаточно. По данным Милликена [106, 107], вероятность колебательной дезактивации СО при столкновениях с п-Нг более чем вдвое выше вероятности дезактивации при столкновениях с о-Нг такое различие, возможно, обусловлено влиянием вращательных переходов. Единственно существенное для данной задачи отличие между о- и п-Нг — разница в энергиях вращательных состояний при 288 К (температура опытов) вращательная теплоемкость о-Нг равна 2,22, а п-Нг равна 1,80 кал/(моль К). Коттрелл [108—110] измерил времена колебательной релаксации ряда гидридов и соответствующих дейтеридов. По теории SSH колебательно-поступательный обмен в дейтеридах должен происходить быстрее, чем в гидридах. Несмотря на меньшую массу гидридов, решающим фактором оказывается более низкая частота дейтеридов. Эксперимент показывает обратное соотношение времен релаксации (табл. 4.8). Коттрелл и сотрудники предположили, что разница вызвана вращательно-колебательным переходом и развили теорию обмена энергией между классическим ротатором и квантовомеханическим осциллятором. Вероятность обмена определяется взаимодействием между осциллятором и быстро вращающимся легким атомом ротатора. Поскольку скорость вращения в гидридах выше, чем в соответствующих дейтеридах, и вероятность обмена будет больше, что согласуется с экспериментальными данными. В табл. 4.8 представлены приближенные теоретические количественные оценки отношения эффективностей колебательно-вра-щательных и колебательно-поступательных переходов. Во всех случаях, кроме AsDs/AsHs, наблюдается хорошее согласие с экспериментом. Однако эта теория предсказывает более высокую (по сравнению с п-Нг) эффективность дезактивации СО при столкновениях с о-Нг, что противоречит экспериментальным данным [107]. Милликен предложил возможное объяснение более высокой эффективности п-Нг, связав ее с почти резонансным [c.274]

    Рассматриваемая модель вращательно-колебательного обмена отличается от описанной выше (разд. 4.4.2) модели одновременно происходящих колебательно-поступательных и вращательно-поступательных обменов при релаксации полярных молекул. Вращательно-колебательные переходы происходят в действительности-, но теоретическое описание таких переходов очень сложно, и в настоящее время удовлетворительной теории не существует [112]. Ультразвуковые абсорбционные измерения, проведенные Бауэром и Лиска [113] в смеси СОг с Не, показали, что эффективность колебательной дезактивации при столкновениях СОг+Не в 22 раза выше, чем при столкновениях СОг-ЬСОг-Кроме того, установлено, что релаксирующая часть полной теплоемкости смеси с избытком гелия состоит из колебательной составляющей и добавки вращательной составляющей СОг. По мнению авторов, вращательные переходы происходят одновременно с колебательными, причем их направления взаимно противоположны. В результате этого уменьшается величина энергии, переходящей в поступательное движение при столкновении, а вероятность обмена увеличивается. Одновременные вращательные и колебательные переходы, происходящие в одном направлении, приводят к противоположному эффекту, но встречаются реже. Аналогичное явление обнаружил Винтер [73] при столкновениях СОг/Нг и СОг/Ог. Оказалось, что в этих смесях колебательная релаксация СОг протекает почти в 200 раз быстрее, чем в чистом СОг, причем релаксирующая теплоемкость на 5—8% выше колебательной теплоемкости СОг. По-видимому, существенное дополнительное влияние оказывает большая величина вращательных квантов Нг и Ог (Ог менее эффективен, чем Нг, как этого и следовало ожидать). Обратная температурная зависимость скорости релаксации в этих смесях вызывает удивление >. [c.276]

    В настоящее время имеется четыре способа газовой закалки (рис. 136) стационарный, вращательный, поступательный и комбинированный. Они отличаются друг от друга различными методами передачи тепла к поверхности детали. При стационарном и вращательном способах всю поверхность детали нагревают, а затем охлаждают. При поступательном и комбинированном способах процесс протекает непрерывно, вся поверхность постепенно переходит из зоны нагрева в зону охлаждения. Твердость поверхности после закалки составляет 52—66 единиц по Роквеллу, шкала С. Поверхность детали остается чистой, не окисляется, деформация детали ничтожна или отсутствует. [c.197]

    Этот метод применим при измерении скорости перехода колебательной или вращательной энергии в энергию поступательного движения. См. разд. VII.11. Метод был впервые предложен Эйнштейном и применен к кинетической системе N204 N02 Ричардсоном. Более подробно см. [14  [c.64]

    В [136] на основе модифицированной волновой теории развит резонансный подход, состоящий в том, что рассматривается физическая модель процесса, в котором два атома Н, соединяясь, образуют нестойкое колебательнорезонансное переходное состояние. Этот нестойкий активированный комплекс в ходе последовательных столкновений стабилизируется с переходом в связанное основное состояние. Вклад вращательных и поступательных степеней свободы не учитывается. Недостатки подхода заключаются в том, что, во-первых, результаты практических расчетов слабо зависят от параметров потенциальной функции, во-вторых, сечение соударения рассчитывается без учета возможностей перехода в разные состояния (т, е, пренебрегается многоканальностью выхода), в-третьих, неучет влияния континуума, т, е, столкнови-тельной диссоциации резонансных состояний и прямой рекомбинации из нерезонансных состояний, не позволяет успешно распространить подход на область высоких температур, Да и в области низких температур теория предсказывает в температурной зависимости коэффициента скорости наличие локального максимума в районе (65— 70) К — прогноз, не получивший экспериментального подтверждения [105], [c.262]

    Для идеального газа силы взаимного притяжения между моле-1<улами равны нулю, да и для реальных газов в обычных условиях они очень малы. Поэтому можно считать, что вся теплота расходуется на увеличение энергии самих молекул, т, е. на увеличение энергии поступательного и вращательного движения молекулы в целом и колебательного движения содержащихся в ней атомов и атомных групп. (При очень высоких температурах к этому присоединяется и переход электронов на более высокие энергетические уровни и даже отрыв их от атома, но, ограничиваясь здесь областью обычных температур, мы можем этот расход теилоты не принимать во внимание.) [c.103]

    Трел Тры11 следует ожидать, что аффект неравновесности проявится прежде всего в нарушении больцмановского распределения по колебательным состояниям реагирующих молекул. В том нростейшем случае, когда распределение по вращательным и поступательным состояниям можно считать равновесным, в качестве микроскотшчсской коыианты скорости релаксации будет выступать копстанта скорости перехода между колебательными состояниями молекулы. [c.76]

    Рассмотрим реакцию распада молекулы М на радикалы М-> Я + Н. При переходе из начального состояния в конечное возрастает число поступательных и вращательных степеней свободы и уменьшается число внутренних движений (колебаний и внутренних вращений). В результате увеличения неупор доченных видов движения возрастает энтропия реакции. Можно представить предельный случай, когда происходит максимальное увеличение энтропии в процессе перехода из исходного состояния в активированное. Для этого предположим, что в активированном комплексе фрагменты К и Н, на которые распадается исходная частица М, значительно удалены друг от друга. Последнее соответствует сильному разрыхлению (ослаблению) связи между фрагментами и, следовательно, уменьшению силовых постоянных. В пределе силовые постоянные могут обратиться в нуль. Тогда фрагменты К и К в активированном комплексе можно считать не взаимодействующими и вoбJДHo вращающимися вокруг трех собственных осей, а колебательный спектр активированного комплекса — состоящим из ЗЛ/ — 7—6 частот нормальных колебаний радикалов К и Н.  [c.28]

    Рассмотрим теперь реакцию соединения двух частиц А и В (А + В — АВ). Переход из начального состояния А + В в конечное АВ связан с уменьшением числа неупор дочных движений, так как исчезают 3 поступательных и 3 вращательных движени , которые трансформируются в более упорядочные движения — колебания и внутренние вращения фрагментов продукта АВ. Следовательно, в процессе А -Ь В АВ значительно уменьшится энтропия реакции. Можно предположить предельный случай, когда происходит максимальное снижение энтропии в процессе перехода из исходного состояния в активированное. При таком изменении энтропии геометрические, механические и другие свойства активированного комплекса АВ+ следует считать практически совпадающими с соответствующими свойствами молекулы продукта АВ. Процесс активации будет, очевидно, иметь предельно низкую энтропию активации. Именно такая модель переходного состояния и была ранее названа жесткой моделью активированного комплекса. [c.29]

    Под действием электрического поля волны молекулы в частице дисперсной фазы приобретают преимущественную ориентацию в пространстве. В то же время тепловое движение молекул дисперсионной среды стремится их разориентировать. Поступательная комтонента броуновского движения не оказывает никакого влияния на поляризационные характеристики свечения. Вращательное броуновское движение вызывает деполяризацию свечения. Молекулы в частице поглощают падающее излучение практически мгновенно, переходя в возбужденное состояние. В возбужденном состоянии они находятся в течение некоторого времени, называемом средней продолжительностью жизни возбужденного состояния. Затем происходит высвечивание. Именно за период пока молекулы возбуждены происходит поворот час-Т1ЩЫ на некоторый угол. Вращательная деполяризация флуоресценции определяется параметра.ми, характеризующими саму частицу, т. е. объемом и средней длительностью возбужденного состояния и величинами, характеризующими дисперсионную среду, т. е. вязкостью и температурой. [c.97]

    Энергия, приобретаемая молекулой при переходе на более высокий колебательный уровень, быстро распределяется по всему веществу, превращаясь во вращательную и поступательную энергию в результате столкновений возбужденной молекулы с окружающими ее молекулами. Как правило, заселенность нижнего колебательного уровня во время облучения не изменяется и в ИК-спек-тэах не наблюдается явления насыщения. [c.201]

    Обмен между поступательной и вращательной энергиями (процессы Т—Н). При неупругом столкновении часть кинетической энергии столкнувшихся частиц переходит в потенциальную (вращательную (Я), колебательную, электронную) энергию. Вероятность перехода кинетической энергии во внутреннюю будет мала, если А(/ /г/2лт, где т — продолжительность соударения. Численный расчет числа столкновений, необходимого для установления равновесного распределения по вращательным состояниям молекул, дает для молекул и при ЮООК н = 10, а для Н. к =200 —300. [c.59]

    Одному макроскопическому состоянию соответствует огромное число различных микроскопических состояний, т. е. различных совокупностей состояний частиц, образующих эту систему. Задать микроскопическое состояние макроскопической системы — это значит задать состояние каждой ее частицы. Даже в твердом теле при любой температуре, отличной от абсолютного нуля, происходит непрерывное изменение состояния отдельных частиц (в этом случае колебательных состояний). Если кристалл, образованный N атомами, имеет энергию, соответствующую возбуждению всего-навсего одного атома, то поскольку в разные моменты времени эта энергия будет сосредоточена на разных атомах, то число различных микроскопических состояний будет равно N. А ведь речь идет о практически недостижимом макроскопическом состоянии, предельно близком к абсолютному нулю температуры. В любом же реальном случае число различных микроскопических состояний, соответствующих определенному макроскопическому состоянию, будет невообразимо велико. Поэтому можно сказать, что любому макроскопическому состоянию свойственна определенная неупорядоченность. Она резко возрастает при переходе к жидкому и тем более газовому состоянию, так как здесь частицы могут находиться в разных точках системы, иметь различную скорость поступательного движения, различные вращательные состояния. [c.136]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]


Смотреть страницы где упоминается термин Вращательно-поступательные переходы: [c.110]    [c.304]    [c.275]    [c.11]    [c.87]    [c.104]    [c.559]    [c.40]    [c.90]    [c.76]    [c.559]    [c.95]    [c.156]   
Смотреть главы в:

Возбужденные частицы в химической кинетике -> Вращательно-поступательные переходы




ПОИСК





Смотрите так же термины и статьи:

Переходы вращательные



© 2025 chem21.info Реклама на сайте