Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь. Образование и структура молекул

    Положение МО на таких энергетических диаграммах также определяется на основании квантово-химических расчетов электронной структуры молекул. Для сложных молекул число энергетических уровней МО на энергетических диаграммах велико, однако для конкретных химических задач часто важно знать энергии и состав (т. е. коэффициенты С( разложения МО ЛКАО) не всех молекулярных орбиталей, а только наиболее чувствительных к внешним воздействиям. Такими орбиталями являются МО, на которых размещены электроны самых высоких энергий. Эти электроны могут легко взаимодействовать с электронами других молекул, удаляться с данной МО, а молекула будет переходить в ионизированное состояние или видоизменяться вследствие разрушения одних или образования других связей. Такой МО является высшая занятая молекулярная орбиталь (ВЗМО). Зная число молекулярных орбиталей (равно суммарному числу всех АО) и число электронов, нетрудно определить порядковый номер ВЗМО [c.111]


    Итак, информация для аминокислотной последовательности белков закодирована в виде нуклеотидной последовательности соответствующих матричных РНК. Триплетный кодон матрицы должен однозначно детерминировать определенную аминокислоту. Между тем, явного стерического соответствия структур аминокислот и соответствующих им кодонов не наблюдается, т. е. кодоны вроде бы никак не могут служить прямыми матричными поверхностями для аминокислот. Отсюда в 1955 г. Ф. Крик предложил свою адапторную гипотезу , где он постулировал существование специальных малых адапторных РНК и специальных ферментов, ковалентно присоединяющих аминокислотные остатки к этим РНК. Согласно гипотезе, каждой аминокислоте соответствует свой вид адапторной РНК и свой фермент, присоединяющий только данную аминокислоту к данному адаптеру. С другой стороны, адапторная РНК имеет нуклеотидный триплет (впоследствии названный антикодоном), комплементарный соответствующему кодону матричной РНК Таким образом, узнавание кодона аминокислотой не является непосредственным, а осуществляется через систему адапторная РНК — фермент специфический фермент узнает одновременно аминокислоту и определенную адапторную молекулу, так что они оказываются соединенными в свою очередь, адаптер (с навешенной аминокислотой) узнает определенный кодон матричной РНК, так что присоединенная аминокислота становится приписанной именно данному кодону. В дополнение к решению проблемы узнавания, предложенный механизм предполагал также энергетическое обеспечение полимеризации аминокислот за счет химических связей, образованных между аминокислотными остатками и адапторными молекулами. [c.28]

    Однако в КНз не все эти электронные пары эквивалентны. Льюисова структура КНз показывает, что в этой молекуле имеются три простые связи N—Н и одна неподеленная электронная пара. Известно, что все три атома водорода в КНз эквивалентны. Простое объяснение химической связи в КНз сводится к тому, что в этой молекуле имеются три локализованные связывающие электронные пары, находящиеся на орбиталях, образованных из 2р-орбиталей азота и 1х-орбиталей водорода (рис. 13-10). Согласно такой модели, неподеленная пара электронов находится на 2х-ор-битали атома азота. [c.559]

    Строение в е щ е с т в а. В этот раздел входит учение о строении атомов и молекул и учение об агрегатных состояниях вешества. Учение о строении атома, относящееся в большей степени к физике, Е курсах физической химии необходимо для выяснения вопросов образования молекул из атомов, природы химической связи, внутренней структуры молекул. [c.22]


    Для полной характеристики химической связи атомов в молекулах определяют длину н энергию связи. Длиной связи называется расстояние между центрами (ядрами) атомов в молекуле, а энергия связи численно равна энергии, которая выделяется при образовании молекулы. Эти представления переносятся на кристаллы. В структуре кристаллов длина связи — расстояние между ближайшими атомами она колеблется в основном от 0,1 до 0,3 нм, а в редких малоустойчивых соединениях достигает 0,35 нм. В кристаллах химическая связь определяет энергию кристаллической решетки, которая значительно превосходит энергию связи молекул. [c.16]

    Строение вещества. Этот раздел включает учение о строении атомов и молекул и об агрегатных состояниях вещества здесь рассматриваются образование молекул из атомов, природа химической связи, внутренняя структура молекул, а также строение и важнейшие свойства веществ в газообразном, жидком и кристаллическом состояниях. [c.19]

    Появление в физической химии новой и чрезвычайно перспективной области — строения вещества — связано с крупнейшими открытиями в физике, вызвавшими новейшую революцию в естествознании на рубеже нашего века. В XX в. эта новая область физической химии получила весьма быстрое развитие. Причиной этого были большие достижения физики в познании строения атома, обусловленные в свою очередь потребностями практики. Углубление в строение атома имело большое значение и для химии в целом, для решения таких ее важных проблем, как выяснение природы химической связи, внутренней структуры молекул, образования их из атомов. [c.88]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    Основополагающие результаты получены Л. Полингом в цикле исследований структуры молекул. Ученый впервые рассчитал величины ионных радиусов, составил их таблицы, сформулировал некоторые общие правила образования ионных кристаллических структур, дал квантовомеханическое описание гомеополярной связи и решение проблемы направленности валентностей. Выдающимся вкладом в мировую науку являются работы Л. Полинга по теории химической связи н структуре сложных молекул. В последнее время интересы Л. Полинга сконцентрированы на проблемах молекулярной биологии. [c.5]

    Виды химической связи ковалентная (полярная и неполярная), ионная, металлическая, водородная. Механизмы образования ковалентной связи обменный и донорно-акцепторный. Энергия связи. Электроотрицательность. Полярность связи, индуктивный эффект. Кратные связи. Модель гибридизации орбиталей. Связь электронной структуры молекул с их геометрическим строением (на примере соединений элементов 2-го периода). Делокализация электронов в сопряженных системах, мезомерный эффект. [c.500]

    Реакции в жидком броме. Пусть однокомпонентная жидкость состоит из двухатомных молекул — таков, скажем, жидкий бром Вга. Молекулы Вга образуются за счет химической связи Вг — Вг. Энергия диссоциации этой связи Dq = 221 кДж/моль (46,1 ккал/моль). Молекулы брома ассоциированы за счет слабых химических связей [3]. Молекулы ассоциатов могут содержать 2, 3,. .., р,. .., молекул Вг . Каждая из молекул Вгз, по-видимому, может участвовать в шести относительно слабых химических связях с ближайшими молекулами Вг2, энергия образования которых имеет величину порядка 10 кДж/моль. Не исключено существование еще более слабых связей между молекулами Вгз. Поэтому молекулы ассоциатов могут образовывать сложные пространственные структуры — цепочки, двумерные и трехмерные сетки. /7-Мерные ассоциаты могут иметь ряд форм, отличающихся взаимным расположением мономерных молекул Brg. [c.236]

    Представляется полезным рассмотреть еще один пример использования описанного выше подхода. Этот пример имеет, кроме того, известный самостоятельный интерес. Рассмотрим причинную структуру феномена образования химической связи в двухатомных молекулах (А + В->-АВ). В качестве определяющих факторов можно выбрать заряды ядер 7д, Zв , числа электронов, принимающих участие в образовании химической связи лд, Пв первые потенциалы ионизации /д, /в атомные радиусы Га, Гв. Определяемыми факторами являются межъядерное расстояние в молекуле гдв и энергия химической связи Еаз- Качественный анализ, а также оценка значимости коэффициентов Гг и приводят к следующему структурному графу  [c.62]


    Введение. Вопросы химической связи образования молекул из атомов и строения самих молекул относятся к важнейшим вопросам химии и давно привлекают к себе внимание. Однако пока не была раскрыта сложная структура атома и атомы считались неделимыми, нельзя было достичь правильного понимания этих вопросов. В течение прошлого века был накоплен весьма ценный экспериментальный материал, сделаны некоторые очень важные обобщения, физический смысл которых стал ясен только в наше время. Из них следует назвать в первую очередь установление понятия химического эквивалента и введение понятия о валентности как формальной численной характеристике способности атомов данного элемента соединяться с тем или другим определенным числом атомов другого элемента. [c.57]

    Как установил Лаубенгайер с сотрудниками [94, 98], при образовании фтористым бором молекулярных соединений с простыми эфирами, хотя реагирующие молекулы и не меняют своего состава, но они сильно деформируются молекула фтористого бора изменяет свою плоскую структуру на тетраэдрическое строение с атомом бора в центре тетраэдра, связанным с тремя атомами фтора и с одним атомом кислорода, а это, в свою очередь, приводит к увеличению межатомного расстояния В—F. Как показывают электронографические исследования, при образовании метил-эфирата фтористого бора молекула диметилового эфира остается неизменной, расстояние В—F увеличивается с 1,30 в BFj до 1,43 А в BF3 0(СНз)о, расстояние В—О составляет 1,50 A, т. е. оно соответствует валентной химической связи, действующей па расстоянии до 2,5—3 А. Таким образом, ясно, что молекулярное соединение BF3 0(СНз)2 имеет химическую связь, образованную в результате новых валентных состояний атома бора и может быть представлено следующей структурой  [c.68]

    В истинных растворах нефтяного происхождения взаимодействия между молекулами ослаблены. При этом соединения нефти характеризуются наличием только химических связей в самой молекуле. При определенных условиях, как уже было указано, стабильная молекула способна к физическим взаимодействиям с другими молекулами с образованием комбинаций молекулярных фрагментов — надмолекулярных структур. Формирование надмолекулярных структур является результатом сложных и разнообразных взаимодействий ван-дер-ваальсовых сил притяжения, радикальномолекулярных и химических взаимодействий. Наличие в молекулах жидкости постоянных диполей увеличивает межмолекулярные взаимодействия, может ограничить вращение молекул за счет направленного взаимодействия диполей с соседними моле- [c.50]

    Однако, имея одинаковую растворимость, пеки могут отличаться по составу и химической структуре. Например, вещества, растворимые и нерастворимые в бензоле, полученные из пеков различного происхождения, имеют значительные отличия по своей молекулярной массе и химическому составу, несмотря на их одинаковую растворимость. Это свидетельствует о том, что молекулярные ассоциации в пеке определяют растворимость его фракций. При близких значениях планарности и слабых отличиях в топологии с увеличением молекулярной массы и ароматичности фракций для их растворения требуются более сильные растворители (табл. 2-11). Следовательно, с увеличением относительной молекулярной массы фракций силы молекулярной ассоциации возрастают и растворимость снижается. Кроме того, растворимость сильно связана со структурой молекул, входящих в соответствующие фракции. Чем планарнее молекула, тем меньше ее растворимость. Фракции пека, имеющие относительно высокую растворимость, относятся к соединениям оли-гоариленового типа. При нагревании, когда часть из них переходит в ароматические соединения с планарной структурой, их растворимость резко снижается за счет образования аг-фракции, растворимой в хинолине и нерастворимой в толуоле. [c.113]

    При образовании химической связи электронная структура получившихся частиц принимает такую конфигурацию, которая отвечает наибольшей энергии связи. Это может произойти, при условии преодоления сил отталкивания (или так называемого энергетического барьера ) между реагирующими частицами. Силы отталкивания могут быть преодолены частицами, обладающими повышенным запасом энергии. Такие реакционноспособные частицы, обладающие определенным избытком энергии (по сравнению со средней величиной энергии всех частиц, характерной для данной температуры), называются активными. Такими молекулами могут быть наиболее быстрые , т. е. обладающие в момент столкнове-Ш1я большой кинетической энергией, возбужденные — у которых некоторые электроны находятся на более высоком энергетическом уровне (а не на нормальном) молекулы, внутреннее строение которых (например, расстояние между атомными ядрами) Отличается от наиболее устойчивого состояния Эти частицы обладают большой кинетической энергией, увеличенным расстоянием меж у атомными ядрами и др. [c.11]

    Разрыв колец 89 сопровождается образованием цепочечных ассоциатов 8 . По имеющимся в литературе оценкам [42], в области, где вязкость жидкой серы велика (160—215° С), цепочечные ассоциаты при разных температурах содержат в среднем от 5500 до 12 ООО атомов серы. Быстрое охлаждение вязкой жидкой серы приводит к образованию метастабильной пластичной серы, которая имеет волокнообразную структуру. В цепочечных ассоциатах возможность слабого химического контакта между атомами серы, принадлежащими соседним цепочкам, возрастает. Число слабых химических связей между соседними молекулами резко увеличивается, поэтому вязкость серы быстро растет и, как уже говорилось, достигает максимума около 187° С. Дальнейшее нагревание сопровождается разрушением цепочек, уменьшением средней степени ассоциации серы. [c.212]

    Это не единственный пример соединения с неспаренным электроном, участвующим в образовании химической связи. Так, на основании изучения магнитных свойств молекулярного кислорода было установлено, что молекулы О2 парамагнитны, т. е. заметно притягиваются магнитом. Это свойство присуще только веществам, в состав которых входят атомы с неспаренными электронами. Следовательно, возможность образования двойной связи в структуре молекулы О за счет спаривания двух пар одиночных электронов, согласно методу ВС, следует считать ошибочной. Аналогичное противоречие имеет место и при описании связей в молекулах СЮа, N0,, N0 и в большом семействе так называемых свободных радикалов— частиц содержащих неспаренные элeктpoF ы и обладающих высокой реакционной способностью СИ,, МНз, ОН, СН, СН и др. [c.285]

    Один из пионеров современной стереохимии Д. Бартон около 40 лет назад отметил, что для "точного описания" молекул органических соединений надо знать "три К" конституцию, конфигурацию и конформацию [56]. Понятие "конституция" совпадает с понятием химического строения молекулы, т.е. ее валентной схемы. Конфигурация молекулы означает пространственное расположение атомов, обусловленное валентными силами, поэтому ее изменение сопряжено с разрывом химических связей. Конформация - это также расположение атомов в пространстве, но определяемое, помимо валентных, также невалентными силами. Влияние последних проявляется в искажении валентных углов и длин связей по сравнению с идеальными углами в невозмущенной конфигурации молекулы, инверсии ("выворачивании") пирамидальных структур и, прежде всего, в появлении особого вида стереоизомерии, вызванной заторможенным вращением вокруг ординарных связей. Конформации - это неидентичные геометрические формы, которые может принимать молекула без нарушения ее целостности, т.е. без разрыва химических связей. Повышение энергии молекулы из-за образования неблагоприятных невалентных контактов, следствием которого является деформация валентных углов и длин связей, принято называть "байеровским напряжением", а ведущее к изменению конформационного состояния молекулы - "питце-ровским напряжением". [c.110]

    Соединение фосфора. Фосфор является одним из важнейших биогенных элементов и относится к ключевым элементам в биосфере, поскольку его электронные структуры обеспечивают быстрое образование и разрушение химических связей с биологическими молекулами (например, с протеинами, аденозинтрифосфатом). Такая химическая стабильность объясняет его активность как энергетического челнока , а также его ключевое положение в знаменитой биомолекуле ДНК (дезоксирибонуклеиновой кислоты). Фосфор входит в состав нуклео-протеидов, сахарофосфатов, фосфатидов, фитина и других соединений. Он активно участвует в процессах обмена веществ и синтеза белка, определяет энергетику клетки, активно влияет на рост растений, концентрируясь в семенах и точках роста. Соединения фосфора входят в состав тканей живых организмов — мозга, костей, панцирей. [c.60]

    В зави Симости от природы каталитической поверхности превалирует одип из указанных типав реакций, но в принципе все катализаторы окисления полифункциональны, и изменением их химического состава можно усилить или подавить какую-либо реакцию. Центрами образования поверхностных соединений должны стать ионы или атомы, входящие в состав поверхности. В зависимости от строения окисляемого углеводорода под действием этих ионов олефины должны превратиться в л- и я-аллилшые комплексы, а парафины — в радикалы или дегидрироваться до олефинов, которые, в свою очередь, образуют поверхностные формы. Ароматические и алкилароматические углеводороды образуют комплексы с сохранением ароматического кольца или с его разрывом. Такой сложный спектр (поверхностных соединений требует и сложной матрицы поверхности. Во всяком случае, ионы-центры комп-леисоо бразования должны обладать такой электронной структурой, которая обеспечивала бы образование химических связей между окисляемой молекулой и соответствующим ионом. [c.307]

    Еще прежде чем была дана структурная характеристика клатратных соединений -гидрохинона, было исследовано большое число молекулярных соединений, из которых некоторые принадлежали к типу клатратных. Распознать клатратное соединбние довольно трудно. Хотя все они, в принципе, являются нестехиометрическими, мольное отношение компонентов часто оказывается простым. Так, установлено, что в соединениях гидрохинона оно равно 3 1 и определяется в основном геометрией структуры. Это позволяет отличать клатратные соединения от некоторых других молекулярных соединений, в которых простые отношения, возникающие в результате специфического взаимодействия молекул, значительно больше похожи на простые отношения, возникающие в результате образования новых химических связей. Взаимодействия между молекул ми ароматических полинитросоединений и других ароматических систем приводят к образованию большого числа кристаллических молеку- [c.401]

    В основе современных представлений о строении вулканизатов лежит теория К. Мейера, Е. Фармера и Б. А. Догадкина, согласно которой при реакции агента вулканизации с каучуком возникают химические связи — мостики , соединяющие молекулы каучука с образованием характерной для вулканизата редкосетчатой пространственной структуры. [c.13]

    Химические связи, образованные с участием 5-ЛО, всеща являются а-связями. Так как (7-связи строго ориентированы в пространстве, в зависимости от состава молекулы они могут находиться под определенным углом друг к другу. Углы между СР-связями получили название валентных углов. Например, в молекуле НгЗ две ст-связи 8—Н, образованные по обменному механизму перекрыванием 5-АО атомов водорода и р-АО атома серы, находятся под углом 92° (см. рис. 12, б). Совокупность направленных, строго ориентированных в пространстве о связей создает структуру молекулы. [c.70]

    Анализ приведенного выше структурного графа и оценочной формулы (1.193) показывает, что химическая связь в двухатомных молекулах, образуясь за счет внешних валентных электронов, формирует молекулярные структуры с межъядерными расстояниями порядка удвоенных радиусов внешних электронных оболочек и энергией связи порядка первых потенциалов ионизации, причем эффективные заряды атомных остовов оказываются меньше единицы. Интересно отметить, что в рамках рассмотренной упрощенной модели возможен принципиально иной тип связи в двухатомных структурах. Можно предположить, что при некоторых условиях возможно образование гиперхимиче-ских соединений, представляющих собой двухъядерные молекулярные структуры с межъядерными расстояниями порядка удвоенных радиусов внутренних электронных оболочек элементов и энергиями связи порядка потенциалов высоких степеней ионизации. При этом эффективные заряды атомных остовов могут быть больше единицы. [c.63]

    Взаимодействие растворителя с растворенными частицами принято называть сольватацией. Обычно различают внутреннюю, первичную сольватную оболочку, или сферу, и внешние оболочки. Внутренняя сфера имеет достаточно определенное координационное число (см. гл. I, 2 гл. П1, 1), и ее можно рассматривать как квазикристаллическую структуру даже тогда, когда взаимодействия частица — оболочка обусловлены ван-дер-ваальсовыми силами. Особенно упорядочена структура внутренней сферы, если в центре ее находится ион металла переменной валентности, обладающий большим координационным числом. По мере упрочнения связей между частицей и молекулами растворителя координационное число во внутренней сфере уменьщается и, в пределе, при образовании между ними химической связи (образование комплекса растворенная частица — молекула растворителя состава 1 1) падает до единицы. [c.13]

    Пространственные полимеры. Пространственные полимеры охватывают большую группу разнообразных чрезвычайно важных в техническом отношении полимеров. Образование пространственных полимеров из линейных молекул наблюдается у различных систем, начиная от гелей вплоть до продуктов вулканизации каучука, дубления белков и др. Кау- чуки и коллаген практически используют преимущественно в виде трехмерных полимеров шерсть является природным пространственным полимером, в котором пептидные цепи соединены дисульфидными связями. Пространственные структуры линейных полимеров образуются также нри введении активных наполнителей (например, сажи в каучук), где узлы сетки образованы действием поверхностных и химических сил па частицах наполнителя. Истинные пространственные полимеры с химическими связями между линейными молекулами образуются путем их реакции с бифункциональными молекулами (например, дитиолами), с атомами серы или кислорода, при действии излучений и др. Пространственные нолимеры способны. тишь к ограниченному набуханию и полностью лишены текучести при увеличении числа связей между линейными молекулами длина свободных отрезков цепей и их изгибаемость у.меньшаются, возрастает жесткость полимера (например, эбонит) и наконец каучукоподобная эластичность полностью переходит в обычную упругость твердых тел. [c.276]

    Тесная связь между этими процессами сульфидирования и вулканизацией каучука совершенно ясна. Каучук до вулканизации имеет малую прочность на разрыв, ограниченную эластичность и хорошую растворимость. После вулканизации он превращается в прочный продукт весьма высокой эластичности и теряет способность растворяться, а лишь ограниченно набухает в подходящих растворителях. Все эти изменения свойств после вулканизации вызываются образованием химических связей между полимерными молекулами, образую1цими сетчатую структуру. Связи, эти образуются при помощи того или иного количества атомов серы, т. е. относятся к типу сульфидных или полисульфидпых связей их число неизвестно, но, очевидно, не очень велико. Это представление находится в согласии с тем фактом, что эффект вулканизации, как это показали Остро-мысленский и Бызов, может вызывать действие таких соединений, как перекиси и азосоединения, которые легко распадаются при нагревании с образованием свободных радикалов. В этом случае можно принять, что свободные радикалы атакуют метиленовую группу, и поперечные связи возникают в результате реакции двух остатков метиленовых групп или при реакции активного радикала с дво11ной связью по схеме [c.82]

    Иными словами, наличие в растворе ионов, создающих слабые поля, обнаруживается и при очень высоких концентрациях, и при очень высоких температурах, и при внесении этих ионов в любой другой растворитель, обладаюпхий достаточно прочной трехмерной структурой [7]. (Это справедливо, разумеется, лишь в случае отсутствия таких сильных эффектов, как нанример, образование прочных химических связей иона с молекулами растворителя). Поэтому йодистый калий — электролит, образованный одгюзарядными ионами большого радиуса, отрицательно сольватирован во многих растворителях. [c.75]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Метод молекулярных орбиталей. Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию 01]ределенного числа ковалентных связей, объясняет направленность 1 овалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС пе может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. [c.141]

    В рабочий язык химии прочно вощли льюисовы представления и элек-тронно-точечные структурные формулы. Если известна льюисова структура молекулы, можно кое-что сказать об устойчивости, порядке, энергиях и длинах связей этой молекулы. А если воспользоваться методом ОВЭП, часто удается предсказать и геометрическое строение молекулы. В данной главе будет показано, что можно продвинуться еще дальще в определении электронного строения молекул, исходя из рассмотрения пространственной направленности и энергии валентных атомных орбиталей, принимающих участие в образовании химической связи. Этот более глубокий метод анализа известен под названием теории молекулярных орбиталей. [c.509]


Смотреть страницы где упоминается термин Химическая связь. Образование и структура молекул: [c.23]    [c.26]    [c.121]    [c.12]    [c.12]    [c.469]   
Смотреть главы в:

Неорганическая химия -> Химическая связь. Образование и структура молекул




ПОИСК





Смотрите так же термины и статьи:

Молекула образования

Молекулы связь

Образование связи в молекулах

Химическая связь

Химическая связь образование

Химическая связь связь

Химический связь Связь химическая



© 2024 chem21.info Реклама на сайте