Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование ангидридов кислот

    ИССЛЕДОВАНИЕ АНГИДРИДОВ КИСЛОТ Г. Рот  [c.508]

    Эти испытания и ведут к необходимости исследования на отдельные кислоты. Сущность исследования на кислоты заключается не в обнаружении аниона кислот (например, S0 4 1-, NO3). так как эти ионы являются нормальной составной частью организмов, а в на.хождении их связи с ионами водорода, т. е. в обнаружении свободных кислот, что может быть осуществлено лишь перегонкой их. Ввиду того что некоторые из кислот перегоняются при очень высокой температуре, часто применяют их восстановление, в более летучие соединения. Так, серную кислоту переводят в сернистую, летучую в виде ангидрида SO2, азотную кислоту — в окислы азота. [c.355]


    Необычно протекает реакция амидов кислот с органическими кислотами в присутствии BFg. По аналогии со спиртами надо было полагать, что амиды кислот с органическими кислотами и BFg будут отщеплять аммиак в виде BFg "NHg и образовывать ангидриды кислот. Однако, как показали опытные исследования, реакция в этом случае идет но иному пути. Вместо ожидаемых ангидридов кислот почти с теоретическим выходом получаются нитрилы кислот [94]. Так, например, при кипячении [c.251]

    Для этого исследования вольфрамовую кислоту сплавляют с возможно меньшим количеством карбоната натрия, плав выщелачивают водой, нерастворимый остаток отфильтровывают и промывают сначала горячим 1 %-ным раствором карбоната натрия, а затем горячей водой. Фильтрат сохраняют. Фильтр с остатком прокаливают и повторяют операцию. Фильтраты объединяют и отставляют. Тщательно промытый остаток прокаливают, охлаждают, взвешивают и его массу вычитают из ранее найденной массы вольфрамового ангидрида. В редких случаях, когда присутствует серебро, первый нерастворимый карбонатный остаток обрабатывают аммиаком при нагревании, остающийся прй этом остаток отфильтровывают, промывают, а затем прокаливают и снова сплавляют с карбонатом натрия. Аммиачный фильтрат обрабатывают сульфидом аммония, и если при этом образуется осадок, его прокаливают совместно с осадком, который выделяют из объединенных водных вытяжек карбонатных плавов. [c.773]

    Исследование продуктов взаимодействия магнийхлорбензила с различными реагентами показало, что аномальные продукты—о-то-лильные производные—получаются при употреблении карбонильных соединений, содержащих активную С=0-группу, имеющую большой 8+ углеродного атома магнийхлорбензил реагирует аномально,с этилформиатом, хлорангидридами и ангидридами кислот, нормально—с кетонами, сложными эфирами органических кислот (не муравьиной) и с СОа [80]. [c.662]

    Каков бы ни был механизм взаимодействия, исследованиями в растворах показано, что происходит изменение полярности карбонильной связи. В случае циклических кетонов этим эффектом поля объясняются более высокие значения частоты С0 а-галогензамещенных соединений нри экваториальном расположении заместителей по сравнению с соответствующими аксиальными кон-формерами. Для кетонов с открытой цепью с атомами галогенов в а-положении наличие двух отдельных карбонильных полос согласуется с тем фактом (известным из измерений дипольных моментов), что в растворе сосуществуют поворотные изомеры. Как будет подробно показано ниже, свойства карбонильных групп различных типов по-разному зависят от степени замещения галогенами. Кетоны и сложные эфиры ведут себя одинаково, но хлор-ангидриды кислот проявляют аномалию, так как характерная для них наиболее высокая карбонильная частота понижается при увеличении степени замещения галогенами. В случае амидов введение первого атома галогена не дает никакого эффекта. У вторичных амидов в разбавленных растворах при наличии двух атомов галогенов наблюдается некоторое увеличение частоты, но проявляется только одна полоса. У третичных амидов, аналогично замещенных, проявляются две полосы. Эти различия могут быть удовлетворительно объяснены на основе простых эффектов поля, но остаются трудности в отношении альдегидов и кислот, которые характеризуются только одной карбонильной полосой, а также в отношении тиоэфиров, у которых введение атомов галогенов в а-положение приводит к появлению второй полосы при более низких, а не при более высоких частотах. Все эти различные классы соединений более подробно рассмотрены ниже. [c.153]


    Проведенные нами исследования показали, что наличие даже незначительных количеств примесей влияет на структуру и физико-химические свойства эфиров, изменяя кинетику их взаимодействия с ангидридами кислот при отверждении. Поэтому получаемые кристаллические эфиры необходимо подвергать дальнейшей очистке путем многократной перекристаллизации в различных растворителях. [c.97]

    Известные но литературе, пока очень немногочисленные, исследования но примепению фтористого бора и его соединений для ацилирования галоидангидридами кислот показывают, что при этом получаются соответствующие кетоны с более низким выходом, чем при ацилировании ангидридами кислот. При нагревании тиофепа с хлористым бензоп.пом в присутствии BFg-СНдСООН в течение 6 час. до 90—95 получается 2-беизоил-тиофен с выходом 22% [149]. При 1—2-часовом кипячении тиофена с хлорангидридами уксусной, иропионовой, н.масля1 ой и бензойной кислот в присутствии каталитических количеств BFg-0(С2Нг,)2 образуются [c.274]

    Необычно протекает реакция амидов кислот с органическими кислотами в присутствии BF3. По аналогии со спиртами надо было полагать, что амиды кислот с органическими кислотами и BF3 будут отщеплять аммиак в виде ВЕз-NHg и образовывать ангидриды кислот. Однако, как показали опытные исследования, реакция в этом случае идет по иному пути. Вместо ожидаемых ангидридов кислот почти с теоретическим выходом получаются нитрилы кислот [94]. Так, например, при кипячении в течение 30 мин. 1 моля ацетамида, 0,5 моля уксусной кислоты и 0,5 моля BF3 образуется ацетонитрил с выходом 97%. При употреблении 0,25 моля уксусной кислоты выход ацетонитрила составляет 98%. Другие кислоты (пропионовая, масляная и бензойная) с ацетамидом дают нитрил с выходом до 75—89% (с бензойной кислотой выход нитрила составляет 20%). При нагревании ацетамида и BFg без кислот так же, как и во всех предыдущих реакциях, выделяется BFg-NHg, и образуется ацетонитрил, но выход последнего не превышает 15%о- Из этого следует, что употребляемые кислоты в этой реакции не являются реагентами, а служат лишь хорошими активаторами катализатора. [c.303]

    Прокаленный алюмосиликатный катализатор содержит небольшое количество структурно связанной воды (около 1%), которая представлена в основном каталитически неактивными гидроксильными группами (например, пограничными SiOH-группами). Небольшая часть всей связанной воды имеет существенное значение для активности катализатора, так как, вероятно, она служит источником протонов для кислотных центров поверхности алюмосиликата. Эти кислотные центры не активируются при воздействии на них неорганических и органических оснований. Дегидратированные кислотные центры часто называются льюисовскими кислотами. Их можно считать также ангидридами кислот. Дегидратированный катион алюминия, ирисое диненный к кислотному центру, также можно отнести к льюисовским кислотам. При дальнейшем глубоком удалении воды протоны так же, как и вода, удаляются при одновременном отделении гидроксильных групп от силикагеля или от анионной части кислотного центра-Это может привести к постепенному разрушению поверхности и к падению активности. Весьма желательным является дальнейшее выяснение химической природы дегидратации и прокаливания катализатора. К сожалению, эти вещества аморфны и поэтому недоступны изучению их диффракционпыми методами. После обычного прокаливания на поверхности катализатора появляется два вида центров, причем одни из них заняты протонами, а другие, дегидратированные, не имеют протонов. Это показывают результаты исследования поверхности прокаленного и обработанного аммиаком при 175° С катализатора при помощи инфракрасных спектров поглощения. Оказалось, что на поверхности одновременно присутствуют ионы NH и адсорбированный аммиак. Однако предполагается, что каталитический крекинг должен вызываться главным образом кислотными центрами, насыщенными протонами. Участие в общей реакции ангидридных центров еще не ясно. [c.99]

    Научные работы посвящены исследованию алифатических и алициклических углеводородов. Выделил из румынской нефти ряд нафтеновых кислот. Разработал промышленный способ получения сульфатиазола. Получил (1959) циклобутадиен и изучил его свойства. Нашел (1925) способ получения индолов восстановлением 2-Р-динитростиролов с одновременной циклизацией при обработке железными стружками в уксусной кислоте. Открыл (1929) реакцию циклоконденсации 1,4-бензо-хинонов с эфирами N-замещенных Р-амннокротоновых кислот. Открыл (1934) восстановительное ацилирование циклоалкенов хлор-ангидридами кислот. Все эти реакции носят его имя. Открыл полимеризацию этилена под дейст- [c.356]

    Некоторые масс-спектры приведены на рис. 82. Материал, летучий при температуре жидкого азота, был в основном представлен окисью углерода и содержал малое количество метана и следы сероводорода и хлористого водорода. Материал, летучий при температуре твердой углекислоты, в дополнение к указанным выше соединениям содержал бромистый водород, сероуглерод, двуокись серы, сероокись углерода и двуокись углерода. При комнатной температуре в газообразных продуктах был найден дихлорбензол, В дополнение были обнаружены следы бензола и ряд углеводородных осколков, характерных для распада конденсированных ароматических систем. Пик с массой 50 был необычайно велик. Некоторая часть твердого продукта, оставшегося в системе, была помещена в емкость, непосредственно соединенную с масс-спектрометром без промежуточного натекателя при этом для различных температур был получен ряд спектров, которые не позволили провести полной идентификации всех продуктов. Было идентифицировано лишь два соединения бензофенон и следы нафталина. Один из полученных спектров приведен на рис. 82. Из полученных результатов следует, что соединение содержало углерод, водород, кислород, серу, хлор и бром. Весь хлор представлен дихлорбензолом, наличие которого подтверждает существование бензольного кольца, замещенного двумя атомами хлора в исходном соединении. Бром был идентифицирован в виде бромистого метила, что указывает на наличие группы — СНгВг. Кислород и сера в подавляющем большинстве представлены СО, OS, СО2, SO2 и S2. Группы, ответственные за появление такой сложной смеси, могут быть определены следующим образом. Образование СО связано с соединениями типа простых эфиров и кетонов, содержащих лишь один атом кислорода в молекуле. Двуокись углерода образуется с большой вероятностью из соединений, содержащих два и более атомов кислорода в молекуле очень близко один от другого (ангидриды кислот и карбоновые кислоты). По аналогии можно считать, что SO2 характеризует группу сульфокислот. Группы, ответственные за появление OS и S2, не могут быть установлены точно. Они свидетельствуют, конечно, о соседстве атомов кислорода и серы и наличии более чем одного атома серы. Содержание нафталина мало (так же как и содержание бензола), и это может свидетельствовать о наличии конденсированной системы, а не присоединенной нафталиновой группы. Присутствие бензофенона позволяет сделать очень важные выводы о структурной группе исследуемой молекулы этот факт свидетельствует также, что бензофеноновая группа не очень прочно связана с остальной частью скелета. Эта часть молекулы, как показали дальнейшие исследования, представлена структурой [c.180]


    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Весьма усиленно развиваются исследования по химическим превращениям (реакциям) перекисей, включая нх термическое разложение. Успехи по этому обширному разделу отражены в обзорной статье и примерно в 40 отдельных сообщениях. Важнейшими вопросами. этого цикла исследований являются природа перекисной связи, ее состояние в зависимости от обрамления различными заместителями и ее проявление в различных химических превращениях. Обстоятельные исследования по выяснению механизма распада перекисных соединений проведены группами горьковских химиков под руководством Г. А. Разуваева и В. А. Шушунова. Много работ посвящено реакциям перекисей с различными органическими веществами аминами, металлоорганическими соединениями, олефинами, галоидпроизводными, ангидридами кислот, альдегидами, кетонами и др. Интересны работы по термическому распаду полимерных перекисей и по характеристике инициирующих свойств перекисей в процессах радикальной полимеризации. В сборнике представлены также работы по изучению фи-зико-химических свойств перекисей с применением ИК- и УФ-спек-троскопии, полярографии и других методов. [c.8]

    Мы поставили своей задачей изучить возможности получения других перекисей окислением различных альдегидов в среде ангидридов кислот. Было проведено окисление ряда замещенных бензальдегидов в среде уксусного, иропиоиового, н-масляного, -валерианового и бензойного ангидридов, а также ряда алифатических альдегидов в присутствии тех же ангидридов. В результате прове-денн010 исследования было показано, что соответствующие несимметричные диацилперекиси синтезируются с высокими выходами в случае большинства изученных альдегидов. Реакция может быть выражена следующей схемой  [c.84]

    Галогенангидриды и ангидриды кислот дают с кислотами Льюиса комплексы, которым на основании исследований различными физическими методами [190], и особенно спектроскопии Н-ЯМР [191], приписана структура солей оксокарбениевых ионов схема [c.43]

    Исследования галогенов, датируемые 1808 г., были начаты в сотрудничестве с Тенаром с изучения хлора и хлористоводородной кислоты. В те времена хлор, открытый, как было уже сказано, Шееле, рассматривался не как элемент, а как кислородное соединение муриевого радикала (Бертолле), как, скажем теперь, окисленная хлористоводородная кислота в соответствии с предложенной Лавуазье теорией кислородных кислот считалось, что хлористоводородная кислота содержит химически присоединенную воду. Но на основании синтеза безводной хлористоводородной кислоты соединением 1 объема хлора с 1 объемом водорода Гей-Люс-сак заключил, что хлор не содержит кислорода, открыв таким образом поле для немного более поздних исследований Дэви, который доказал, что хлор — элемент, а хлористоводородная кислота не содержит кислорода. Гей-Люссак изучал также хлорную кислоту и ее соли, а выполненные им исследования иода были поистине классическими. Один скромный химик-селитровар Бернар Куртуа (1777—1836), действуя хлором на маточный рассол золы морских водорослей, открыл этот элемент но не охарактеризовал его сколь-нибудь удовлетворительно Гей-Люссак не только установил его элементарную природу, аналогичную-природе хлора, но и приготовил производные иода — иодистоводор0днун> кислоту, йодную кислоту, йодный ангидрид, монохлорид иода и многие другие Исследования фосфорных кислот способствовали выяснению отношения между орто-, пиро- и метафосфорной кислотами. [c.179]

    Жерар также получает отпуск в Монпелье и в апреле 1851 г. выходит в отставку, чтобы присоединиться к своему другу в Париже. Не сумев-устроиться, Жерар основал частную лабораторию, привлекшую химиков и из-за границы здесь сформировался Кьоца, бывший сотрудником Жерара в их совместных классических исследованиях ангидридов органических кислот (1852) и амидов (1853). Лаборатория Жерара обстоятельна описана его сыном и Гримо эта интересная работа дает представление о привязанности молодого эльзасца к научным исследованиям. [c.238]

    А. Н. Праведниковым с сотр. была исследована реакция диангидридов тетракарбоновых кислот с диаминами с целью синтеза полиамидокислот (форполимеров при получении полиимидов) и установлено влияние на константу равновесия строения диамина и природы растворителя [61]. Исследование кинетики и механизма реакций, лежащих в основе синтеза ароматических полиимидов, позволило этим авторам установить взаимосвязь между сродством к электрону ангидридов кислот и их комплексообразующей и реакционной способностью по отношению к ароматическим аминам [62], относительную роль реакции внутримолекулярного распада амидокислотных звеньев при циклизации ароматических полиамидокислот [63, 64], механизм и кинетику гидролиза амидокислотных звеньев [65] и ангидридных групп [66], влияние химической структуры полиамидокислот на кинетику их циклизации [67]. [c.118]

    Как и для высококипящего димера, при полном озонировании получаются продукты распада. Аналитически чистым получить озонид не удалось нагретый в платиновой пластинке озонид энергично сгорает без вспышки. При исчерпывающем озонировании получается в качестве продуктов распада очень много продуктов высокого уплотнения поэтому, как и для высококипящего димера, был приложен метод неполного озонирования. Озонирование велось при —40° в хлороформе до появления темной окраски. По удалении растворителя остается жидкий озонид резкого запаха разложение водой на водяной бане перегонка водяным паром с водой гонится легкое масло водный слой насыщен серноаммонийной солью и извлечен эфиром этим путем еще извлекается некоторое количество масла. В перегонной колбе остается значительное количество продуктов уплотнения, не поддающихся исследованию. Водный слой, оставшийся в перегонном приборе, насыщен содой, извлечен эфиром для удаления нейтральных веществ, подкислен серной кислотой. Извлеченная эфиром кислота быстро закристаллизовалась отжатая перекристаллизованная из смеси ацетона с бензолом плавилась при 138—139°. Для дальнейшей характеристики кислота переведена в ангидрид кислота была нагрета в неплотно закрытой пробирке в продолжение часа до 165—170°. [c.124]

    Хотя не вызывает сомнений, что реакция между хлор ангидридами кислот и иминами (или тиазолинами) ни в коем случае не является общей для всех хлорангидридов кислот и всех иминов, точная область ее применения пока еще неизвестна. Неясен также и механизм этой реакции. При определенных условиях были выделены кристаллические побочные продукты, которым на основании данных элементарного анализа и результатов исследования инфракрасных спектров было условно приписано строение ацильных производных енолизированных пиперидиндионов [23,29]. Обычно образование таких побочных продуктов можно уменьщить, если проводить работу при очень большом разбавлении и применять в качестве растворителя кипящий хлороформ, а не хлористый метилен [23,25,29]. [c.519]

    Одзаки и Симада также изучали взаимодействие изоцианатов с кислотами по скорости выделения двуокиси углерода. При избытке кислоты скорость выделения газа имела первый порядок по изоцианату, при избытке изоцианата — второй. Как правило, кислоты ароматического ряда менее реакционноспособны, чем алифатические, а среди ароматических кислот более сильные реагировали медленнее, чем слабые. Константа Гамметта р была равна —0,16. Исследование различных катализаторов показало, что триэтиламин и ацетат калия катализируют реакцию изоцианатов с кислотами, а диметиланилин не катализирует эфират трехфтористого бора в одних случаях оказывал очень слабый каталитический эффект, а в других вообще не оказывал каталитического действия. При взаимодействии ароматических изоцианатов с кислотами выход амидов, ангидридов кислот и углекислого газа увеличивается 1) при введении в молекулу изоцианата электроотрицательных заместителей 2) при наличии в молекуле изоцианата заместителя в орто-положении 3) при повышении температуры 4) при небольших концентрациях катализатора 5) при использовании слабой кислоты. [c.242]

    О получении ангидрида адипиновой кислоты имеется мало экспериментальных данных но Ферману [522], адипиновую кислоту кипятят 6—7 час. на водяной бане с обратным холодильником с десятикратным весовым количеством ацетилхлорида, отгоняют избыток ацетилхлорида и уксусной кислоты на водяной бане под вакуумом, остаток после перегонки растворяют в кипящем бензоле и осаждают петролейным эфиром. После перекристаллизации из бензола температура плавления равна 98° выход ангидрида адипиновой кислоты почти теоретический. Аналогичным методом удается получать ангидриды алифатических дикарбоновых кислот вплоть до себациновой кислоты. Еще более высокие представители этого ряда большей частью полимерны. Хилл и Карозерс [523] недавно провели исследование по изучению многочисленных циклических ангидридов кислот. [c.212]

    Примерно в то же время было установлено, что кислород не является элементом, который определяет кислотные свойства вещества. Это тоже подрывало позиции дуалистической теории. Берцелиус в соответствии с представлениями Лавуазье называл кислотами ангидриды кислот, а соли рассматривал как продукт взаимодействия кислоты и оксида металла. Установление элементарной природы хлора и отсутствия кислорода в соляной кислоте ставили под сомнение представления Лавуазье и Берцелиуса о составе кислот. Старые взгляды были опровергнуты также открытием многоосновных кислот и работами Т. Грехема по исследованию фосфорных кислот было установлено, что один и тот же оксид, соединяясь с различным количеством воды, дает различные кислоты. [c.58]

    Для органика-практика нуклеофильное замещение при ненасыщенных центрах по сравнению с нуклеофильным замещением у насыщенных атомов углерода является в равной степени или более важным. Так, обычное ацилирование хлорангидридами и ангидридами кислот, этерификация и гидролиз сложных эфиров и многие типы нуклеофильного замещения в ароматическом ряду находят применение не в меньшей степени, чем реакции при насыщенных центрах, такие, как алкилирование ал-килгалогенидами. Тем не менее существовала тенденция рассматривать замещения при ненасыщенных центрах как второстепенный класс в той мере, в какой речь шла об их механизхме. Преимущественное положение замещений при насыщенном углероде было отчасти следствием того исторического обстоятельства, что их механизмы были выяснены первыми благодаря великолепным работам Хьюза и Ингольда [1, 2], относящимся к тридцатым годам, и отчасти следствием того факта, что по различным причинам эта область и сейчас еще активно изучается рядом лучших исследователей нашего времени. Изучение механизмов замещения при ненасыщенных центрах задержалось, и подчас авторы из-за недостатка реальных сведений о механизме пытались втиснуть реакции такого рода в рамки представлений, сформулированных для замещения при насыщенном углероде. Однако за последнее десятилетие исследования в этой области привели к быстрому прогрессу, и она может считаться полностью утвержденной в своих правах. [c.181]

    Ранние исследования синтеза фторангидридов кислот путем непосредственного фторирования были проведены Меланом и Свартсом. Более поздние работы показали, что этот метод не является удобным общим методом для получения фторангидридов карбоновых кислот, хотя он и часто применяется в ароматическом ряду. Косвенные методы, в которых хлор ангидриды кислот синтезируют in situ, обычно являются более предпочтительными. [c.164]

    Сложные эфиры, лактоны, ангидриды кислот, а) Сложные эфиры. Могут присутствовать эфиры, относящиеся к самым разнообразным группам кислот и спиртов (или фенолов). Их кипятят в течение часа с 8—10 -ным раствором NaOH в метиловом спирте, испаряют большую часть метилового спирта и смешивают с водой при наличии выделившихся веществ их извлекают эфиром, взбалтывают для з даления метилового спирта с водой, отгоняют эфир и подвергают перегонке. Если температура кипении после омыления отличается от таковой до омыления, то это означает, что из эфиров образовались спирты групп Л-Л. 1 или Т-Л. 1 нх исследуют по стр. 229 или по п. II. Если температура кипения изменилась очень мало, — это указывает либо на отсутствие сложного эфира, либо на образование такого спирта, который обладает температурой кипения, весьма близкой к темп. кип. сложного эфира. Последнее возможно только в том случае, если омылялся эфир легколетучей кислоты. Кислота определяется следующим образом небольшую пробу щелочного раствора после омыления осторожно обрабатывают на часовом стекле крепкой НгЗО и определяют присутствие легколетучей кислоты по запаху. Другие методы открытия сложных эфиров и количественного их определения по коэффициенту омыления подробно излагаются в руководствах по исследованию минеральных масел, жиров и воска. [c.249]


Смотреть страницы где упоминается термин Исследование ангидридов кислот: [c.267]    [c.272]    [c.527]    [c.191]    [c.85]    [c.293]    [c.258]    [c.181]    [c.459]    [c.85]    [c.21]    [c.433]    [c.187]    [c.568]    [c.126]    [c.308]    [c.624]   
Смотреть главы в:

Методы органической химии Том 2 Издание 2 -> Исследование ангидридов кислот

Методы органической химии Том 2 Методы анализа Издание 4 -> Исследование ангидридов кислот




ПОИСК







© 2025 chem21.info Реклама на сайте