Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические особенности ионитов

    Способность кислот и оснований к диссоциации в разбавленных водных растворах имеет в биологии большое значение. Физико-химическая особенность этого процесса связана с участием ионов растворителя. Вода, как протолит, диссоциирует по уравнению [c.193]

    Таким образом, катионоактивные и анионоактивные ПАВ не являются индифферентными по отношению к анионам сточных вод. Решая технологические вопросы очистки последних, необходимо учитывать как химические, так и физико-химические особенности взаимодействия ПАВ с ионами, вызывающие изменение свойств самих ПАВ. [c.42]


    Постановка задачи о расчете и моделировании ионообменного реактора приводит к сложным математическим зависимостям, которые, как правило, являются трудноразрешимыми даже при использовании ЭВМ. Поэтому в настоящее время остается весьма актуальной задача по разработке таких инженерных методов расчета ионообменной аппаратуры, которые позволили бы получить надежные результаты при сравнительно малых затратах. Применяемые в настоящее время равновесные теории, использующие такие понятия, как теоретическая тарелка и высота единицы переноса, не отражают основных физико-химических особенностей процесса ионного обмена. В лучшем случае они демонстрируют лишь принципиальную возможность приближенного расчета ионообменных реакторов с использованием основных положений теории массообменных процессов. Между тем известно, что надежное математическое описание, анализ и расчет подобного рода процессов и аппаратов могут быть осуществлены только на основе неравновесных теорий, учитывающих кинетические закономерности процесса. [c.95]

    Лекция 13. ФИЗИКО-ХИМИЧЕСКИЕ ОСОБЕННОСТИ БИОЛОГИЧЕСКИХ МЕМБРАН. ИОННЫЕ РАВНОВЕСИЯ. [c.131]

    В низкотемпературной плазме реализуются процессы, которые практически не существуют и неизвестны в традиционной химии. Это — неравновесные процессы. Они играют все возрастающую роль в плазмохимической промышленной технологии и, в частности, позволяют получать твердые вещества (материалы) с необычной (неравновесной) структурой и уникальными свойствами (ультрадисперсные порошки и пленки). Существуют плазмохимические процессы модификации поверхностей металлов, полупроводников, диэлектриков (силицирование, азотирование, алюминирование и т. д., ионная имплантация, плазменно-электролитные процессы и др., процессы очистки поверхностей изделий и обрабатываемых материалов). Процессы травления в электронике, применение плазмохимии в медицине также обусловлены физико-химическими особенностями неравновесной реагирующей плазмы. В такой плазме могут иметь место неравновесные концентрации реагентов, промежуточных реакционноспособных соединений и продуктов реакции, приводящие в частности к исключительно высокой селективности реакций, а также неравновесные функции распределения по энергии различных компонентов реагирующей многокомпонентной плазмы и неравновесные заселенности [c.259]

    Ионизующиеся макромолекулы (полиэлектролиты). Химические и физико-химические особенности поведения ионизующихся макромолекул (поликислот, полиоснований и их солей). Количественные характеристики силы поликислот и полиоснований. Электростатическая энергия ионизованных макромолекул. Распределение ионной атмосферы. Равновесие Доннана. Специфическое связывание противоионов. Кооперативные конформационные превращения ионизующихся полипептидов в растворах. Амфотерные полиэлектролиты. Изоэлектрическая и изоионная точки. Белки как пример амфотерных полиэлектролитов. Кооперативные химические реакции между противоположно заряжающимися макромолекулами (образование полимер-поли-мерных комплексов). [c.382]


    Для выделения и характеристики водных масс используется комплекс показателей температура, цветность, прозрачность, электропроводность, содержание в воде отдельных ионов. Изучение водных масс в Горьковском и Рыбинском водохранилищах показало, что их различное происхождение прослеживается в течение всего года. Формирование водных масс зависит от физико-химических особенностей вод, поступающих с водосбора главным образом за счет речного стока для Рыбинского водохранилища, например, за счет [c.399]

    Все процессы галогенирования по механизму делят на две большие группы радикально-цепные и ионно-каталитические, что опред ляет их существенные физико-химические и технологические особенности. [c.101]

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]

    Ход кривых титрования бывает различным. Если активность титруемого вещества (или показатель концентрации его ионов) рассматривать как функцию степени оттитровывания, то весьма целесообразной оказывается логарифмическая кривая, особенно при объяснении визуальной индикации конечной точки титрования при помощи окрашенных индикаторов. Изменение физико-химических свойств в системе титруемое вещество — реагент [c.63]

    Обмен ионами между раствором электролита и твердой фазой, являющийся разновидностью сорбционных процессов, имеет широкое практическое применение. Он используется для концентрирования ионов из разбавленных растворов, очистки веществ от примесей электролитов, определения суммарного содержания солей в природных водах и разделения некоторых ионов при их одновременном присутствии в растворе. Особенно удачным оказалось сочетание ионообменных процессов с хроматографическим методом, положившее начало развитию ионообменного хроматографического анализа многокомпонентных гомогенных растворов. Разделение анализируемой смеси ионов в растворе позволяет легко идентифицировать и определять их количественное содержание доступными химическими или физико-химическими приемами анализа. [c.37]

    Классификация хроматографических методов анализа. Разнообразие хроматографических методов, различающихся по физико-химической основе и технике выполнения анализа, не позволяет классифицировать их по какому-либо одному критерию. Наиболее важные показатели, отражающие физико-химическую сущность и особенности техники анализа, следующие агрегатное состояние разделяемых веществ — газ (пар) или жидкость (раствор) природа сорбента — твердое вещество или жидкость характер взаимодействия между сорбентом и разделяемыми веществами — распределение молекул или ионов менаду двумя фазами, образование координационных соединений в фазе или на поверхности сорбента, протекание окислительно-восстановительных реакций при контакте разделяемых веществ с сорбентом техника выполнения анализа — в колонке, капилляре, на бумаге, в тонком слое сорбента. [c.7]

    Вещества особой чистоты получают или глубокой очисткой образцов, полученных обычными методами, или выделением особо чистого вещества из другого, более сложного, особой чистоты, или, наконец, путем синтеза сложного особо чистого вещества из простых особо чистых веществ. Во всех случаях необходима глубокая очистка веществ. Для этого используются химические и особенно физико-химические методы дистилляция и ректификация экстракция различными растворителями сорбционные методы (хроматография, ионный обмен на колонках и пр.) кристаллизационные методы (направленная кристаллизация, зонная плавка и др.) электролиз (см., например, рафинирование меди в гл. УИ1, 7) вакуумная дуговая и электронно-лучевая плавка, широко используемая в промышленности для получения чистых циркония, тантала, ниобия, вольфрама и других металлов другие методы. [c.258]


    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]

    Физико-химические свойства растворов сильных электролитов складываются из свойств составляющих их ионов. Растворы различных электролитов, содержащие какой-либо общий ион (например, растворы всех кислот с общим ионом 0Н [) проявляют сходные свойства. Эта особенность растворов сильных электролитов широко используется в качественном анализе для обнаружения ионов. [c.33]

    Вторая часть книги, двадцать две ее главы (т. 2 и 3 в русском переводе), содержит систематическое описание строения молекул, молекулярных, олигомерных или бесконечно-полимер-ных ионов и кристаллов соединений разных химических классов. Очередность изложения материала можно назвать классической это именно тот порядок, который принят в большинстве учебников по неорганической химии. Просмотрев оглавление, читатель убедится, что автор движется по группам периодической таблицы Д. И. Менделеева последовательно рассматриваются соединения с участием водорода, галогенов, кислорода, серы и других халькогенов, азота, фосфора и их аналогов по группе и т. д. Такой порядок расположения материала делает монографию, с одной стороны, очень удобным и нужным дополнением к учебникам по неорганической химии (особенно полезным для аспирантов и соискателей степени кандидата наук), с другой стороны, хорошим источником сведений о структурных основах для научных работников — специалистов в той или иной области неорганической химии. Каждая глава (или группа глав) книги может служить фундаментом для разработки углубленных концепций о связи между реакционной способностью, строением и физико-химическими свойствами соответствующих классов соединений. [c.6]

    Координационные свойства природных соединений. Накопление функциональных групп в органических молекулах, которые могут выступать как лиганды, особенно в соединениях полимерного характера (полисахариды, полипептиды, белки, нуклеиновые кислоты и др.), сильно осложняет картину комплексообразования с ионами и солями металлов. Это происходит в результате того, что свойства функциональной группы будут зависеть от расположения в сложной молекуле, от конформации этой молекулы и от стерического экранирования реакционного центра окружающими фрагментами молекул. Эта ситуация создает много трудноразрешимых затруднений для физико-химического исследования такого комплексообразования и для его термодинамического описания. [c.179]

    Торф в естественном состоянии характеризуется большим содержанием влаги. Различают химически и физико-химически связанную воду в торфе, а также воду энтропийной связи и механического удерживания. Первые два вида включают воду, связанную с активными функциональными группами гуминовых веществ, углеводного комплекса и лигнина. Особенность различия здесь заключается в том, что связь имеет объемный, а не поверхностный характер. Энтропийная вода удерживается в торфе осмотическими силами внутри агрегатов торфа, перегородки между которыми являются проницаемыми для молекул воды и не проницаемыми для ионов. Вода механического удерживания включает капиллярную, внутриклеточную и структурно-захваченную. [c.42]

    Поляризацией ионов можно качественно объяснить некоторые особенности физико-химических свойств многих электролитов, например, уменьшение длины диполя ионных молекул по сравнению с межъядерным расстоянием. [c.261]

    Однако физико-химические свойства не очень разбавленных растворов сильных электролитов, а особенно растворов средних и высоких концентраций, не соответствуют представлениям об их полной диссоциации. Измеряемая степень диссоциации электролита в них может быть заметно меньше единицы, она стремится к единице лишь при бесконечном разбавлении. Это явление свидетельствует о том, что, хотя сильный электролит и диссоциирован нацело, но ионы в растворе не могут двигаться совершенно независимо друг от друга, подобно молекулам идеального газа, а взаимодействуют не только с растворителем, но и друг с другом. [c.182]

    Таким образом, из анализа физико-химических особенностей отмывки ионитов видно, что для этой стадии характерно одновременное проявление диффузионных, тепловых, электрических явлений, явлений гидратации и реологических изменений в материале ионита. Существующие математические модели построены в основном для описания процессов ионного обмена, т. е. для процессов эксплуатации ионита как готового подукта, и не отражают явлений гидратации при смешении жидких фаз они не учитывают одновременного влияния диффузионных, электрических, тепловых явлений, эффектов гидратации и изменения реологических свойств материала ионита. [c.394]

    Электрохимия как наука изучает физико-химические свойства ионных систем (растворов, расплавов, твердых электролитов)—. лонику, а также явления, возникающие на границе двух фаз с участием ионов и электронов,— электродику, включая механизм электродных процессов и их кинетику. Особенность электрохимических процессов состоит в пространственном разделении окислительных и восстановительных электродных реакций. При этом на -кинетику каждой стадии влияет уже не только температура и концентрация компонентов, но также и величина электродного потенциала, природа материала электрода, состояние его поверхности. [c.57]

    Кроме дифференциации клеток важной особенностью их является склонность к аггломерации (от лат agglomeratus — скопление) Это может происходить в различных условиях и с клетками различного уровня организации — прокариотами и эукариотами Те из них, которые имеют клеточную стенку, чаще аггломерируют за счет химических компонентов, локализованных в ней Причем процесс "скучивания" является физико-химическим (адсорбция, ионное и ковалентное взаимодействия), зависящим не только от особенностей клеток, но и от компонентов среды, используемой для их культивирования Поэтому аггломерация может быть следствием 1 адгезии (от лат айЬаезю — склеивание, слипание) клеток друг к другу или к поверхности культурального сосуда за счет веществ — адгезинов, расположенных на их поверхности, и других причин, 2 агглютинации по схеме "антиген-антитело", когда в качестве антигена оказываются культивируемые клетки, а в качестве антитела — гомологичные или гетерологичные агглютинирующие иммунные сыворотки, 3 слияния клеток с образованием гибридов [c.149]

    Плодотворное развитие ионообменной хроматограммой СМС предполагает обязательное изучение физико-химических закономерностей ионного обмена как в водных, так и иевод-ных и смешанных средах, исследовашге селективности ионитов по отношению к отдельным ПАВ, испытание новых к,пассов ионитов (особенно жидких, ионообменных производных сефа-дексов и др.). [c.104]

    Но, пожалуй, самым важным является то, что присутствие ацетона в водном растворе, даже в значительных количествах, не оказывает отрицательного влияния на протекание ионных процессов, которые, как уже отмечалось, имеют место при образовании двойной (комплексной) соли [АгЫгЬСиСЦ. Это следует отнести за счет благоприятных для данного процесса физико-химических особенностей ацетона. Как известно, способность вешества диссоциировать на ионы в сильной мере зависит от природы растворителя. Из физических свойств в этом случае первостепенное значение имеют диэлектрическая постоянная (е) и величина дипольного момента (м.) растворителя. У ацетона эти константы имеют сравнительно большие значения (е = 21,5 и 11=2,95 D). [c.292]

    Изучением физико-химических особенностей ионитов типа амберлит Ш-4 сравнительно с применяемыми в медицине сорбируюш,ими агентами занимались также Мартин и Вилькинсон [3]. Эти авторы установили, что смолы типа амберлит Ш-4 при тончайшем измельчении быстро связывают соляную кислоту, находяш уюся в желудке. После того, как смола вместе с пищей поступает в кишечник, кислота сорбированная амберлитом Ш-4 нейтрализуется щелочами кишечных соков. При определении нейтрализующей способности амберлита Ш-4 найдено, что для нейтрализации 2500 жл 0,1 N соляной кислоты до pH 4 необходимо ввести 5,0 г амберлита Ш-4 (нри температуре 37,5°). Для нейтрализации такого же количества соляной кислоты до pH 4 обычно применяют 1 г коллоидальной гидроокиси алюминия при длительности действия его в течение часа. Однако введение коллоидальной гидроокиси алюминия в желудок для нейтрализации излишней кислотности не может быть рекомендовано, так как она обладает свойством вызывать запоры, в то время как амберлит П -4 даже при одновременной дозе в 20 г является лишь мягким слабительным. При действии 4 г смолы на 600 мг свежего желудочного сока, pH его повышается с 1,5 до 2, что соответствует уменьшению содержания свободной кислоты на 33% от первоначальной величины. 1 г смолы амберлит Ш-4, переведенный в ОН-форму едким натром, может нейтрализовать до 60 млО, N соляной кислоты, а та же смола, переведенная в ОН-форму бикарбонатом натрия,— 50 мл 0,1 N соляной кислоты. Реакция нейтрализации проходит мгновенно, но практически ес скорость несколько уменьшается и определяется временем, необходимым для диффузии кислоты к ионогенным грунпам смолы. Естественно, что скорость ионного обмена зависит от степени измельчения смолы. Так, при уменьшении величины частиц смолы (просев через сита вместо 40 меш через сито в 200 меги) скорость реакции возрастает в 1000 раз, а расход ее уменьшается примерно в четыре раза [1, 2, 3]. [c.310]

    Полученные результаты (см. рис. 40) показывают, чго процессь декатионирования и деалюминирования высококремнистых цеолитов протекают параллельно. Порядок и степень извлечения обменных катионов и тетраэдрических атомов в структуре этих цеолитов примерно одинаковы, и ряд, соответствующий уменьшению прочности связи этих атомов, имеет следующий вид 51 > А1 > К > Са > Ма. Такой порядок элементов в ряду можно объяснить кристаллохимическими особенностями данных Цеолитов и физико-химическими свойствами ионов. В общем случае можно сказать, что прочность связи зависит в основном от трех факторов радиуса катиона и соответственно размера его гидратной оболочки, заряда или, точнее, его ионного потенциала и местонахождения в структуре цеолита. Ионы Ма , как имеющие небольшой радиус и заряд и расположенные обычно в наиболее доступных центрах, извлекаются значительно легче остальных катионов. Ионы Са , хотя и имеют больший заряд, чем ионы [c.135]

    Недавние физико-химические исследования (дальняя ИК-, ЯМР-спектроскопия, кондуктометрические измерения) в ТГФ и ДМСО подтвердили, что основным типом енолятов является ионная пара с анионом в и-форме. Особенно поражает тот факт, что соли тетрабутиламмония ведут себя так же, как и соли щелочных металлов. Это указывает на ионность связи в этих ено-лятах и, что еще более важно, на отсутствие жестких требований к положению катиона по отношению к узкой области локализации заряда аниона. В то время как небольшой ион щелочного металла может располагаться на плоскости между 0-атомами (истинный хелат), ион аммония вынужден находиться выше плоскости и-образного аниона [363]. [c.198]

    Структура осадка прежде всего определяется гидродинамическими факторами, к числу которых относятся пористость осадка, размер составляющих его твердых частиц и удельная поверх1Ность или сферичность этих частиц. Однако на структуру осадка очень сильно влияет и ряд других факторов, которые до некоторой степени условно можно назвать физико-химическими. Такими факторами являются, в частности, степень коагуляции или пептизации твердых частиц суапензии содержание в ней смолистых и коллоидных примесей, закупоривающих поры влияние двойного электрического слоя, возникающего на границе раздела твердой и жидкой фаз в присутствии ионов и уменьшающего эффективное сечение пор наличие сольватной оболочки на твердых частицах (действие ее проявляется при соприкосновении частиц в процессе образования осадка). Вследствие совместного влияния гидродинамических и физико-химических факторов изучение структуры и сопротивления осадка крайне ослоя няется, и возможность вычисления со противления как функции всех этих факторов почти исключается. Влияние физико-химических факторов, тесно связанное с поверхностными явлениями на границе раздела твердой и жидкой фаз, в особенности проявляется при небольших размерах твердых частиц суспензии. По мере увеличения размера твердых частиц усиливается относительное влияние гидродинамических факторов, а по мере уменьшения их размера возрастает влияние физико-химических факторов. [c.14]

    Наиболее распространенными физико-химическими системами, с которыми мы сталкиваемся в повседневной жизни, являются растворы. Самая характерная особенность раствора, называемого истинным, состоит в том, что растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя. Иначе говоря, истинные растворы однофазны, т. е. в них отсутствует граница раздела между растворителем и растворенным веществом. Растворы могут существовать в любом из агрегатных состояний газообразном, жидком или твердом. Например, воздух можно рассматривать как раствор кислорюда и других газов (углекислый газ, благородные газы) в азоте. Морская вода — это водный раствор различных солей в воде. Металлические сплавы — твердые растворы одних металлов в других. [c.63]

    Под сиектрофотометрическим и потенциометрическим титрованием понимается комбинированный метод физико-химического исследования, позволяющий одновременно контролировать и регистрировать происходящие в системе изменения оптической плотности и электродного потенциала, характеризующего величину pH, электропроводности, окислительно-восстановительного потенциала п других свойств системы. Одной из интересных и перспективных особенностей метода является возможность получения информации о поведении системы ири фиксированных значениях параметров pH, диэлектрической проницаемости, ионной силы и т. и. [c.274]

    Для более полного истолкования особенностей адсорбции органических веществ в области анодных потенциалов необходимо дальнейшее накопление экспериментального материала с использованием комплекса физико-химических и физических методов. Исследования должны быть направлены на более глубокое выяснение кинетики хемосорбции и электроокнсления хемосорбированных частиц, природы неоднородности поверхности, установление структуры хемосорбционного комплекса и ее зависимости от по-тенциалл и адсорбции атомов и ионов на поверхности. [c.123]

    В силу своего неравновесного характера комплексные соединения коваленпного типа в ряде случаев не подчиняются правилу фаз. Особенности физико-химических свойств ковалентных комплексов по сравнению с ионными изложены в главе Физико-химические свойства комплеконых соединений . [c.14]

    Основная причина почвенной коррозии — наличие воды. Даже при минимальной влажности почва становится ионным проводником электрического тока, т.е. представляет собой электролит. К почвенной коррозии применимы основные закономерности электрохимической коррозии, справедливые для жидких электролитов. Однако электрохимический характер почвенной коррозии имеет особенности, отличающие ее от коррозии при погружении металла в электролит или от коррозии под пленкой влаги. Это связано с тем, что почва имеет сложное строение и представляет собой гетерогенную капиллярно-пористую систему. Почвы обладают водопроницаемостью и капиллярным водоперемещением, они накапливают и удерживают тепло и вместе с тем снижают испаряемость влаги. Если вода находится в порах или в виде поверхностных пленок на стенках пор, то ее связь с почвой имеет физико-механический характер. При этом влага удерживается в почве в неопределенных соотношениях. Другой вид связи — физико-химическая, при которой возникают коллоидные образования почвы. Возможна также химическая связь, которая характеризуется строго определенным молекулярным соотношением компонентов, например при образовании гидратированных химических соединений. [c.41]

    Одна из особенностей двуокиси марганца заключается в том,, что часть атомов кислорода в кристаллической решетке может быть замещена гидроксильными группами 0Н , а в плоскостях между кристаллами могут находиться посторонние ионы металлов. Все эти отклонения от идеального состава МпОа возможны лищь при сохранении общей нейтральности зарядов в кристалле. По этим причинам физико-химические свойства — электропроводность, ионный обмен в контакте с электролитом — различны для разных двуокисей марганца. [c.55]

    Гидриды рубидия и цезия МеН в зависимости от метода получения представляют собой либо белое сильно блестящее вонлоко-образное вещество, либо белую довольно плотную массу. Подобно гидридам других щелочных металлов, гидриды рубидия п цезия имеют кубическую гранецентрированную решетку типа хлорида натрия [69]. Основные физико-химические свойства НЬН и СзН приведены в табл. 4. Гидриды рубидия и цезия относятся к солеобразным соединениям, содержащим анион Н , который по своим физическим особенностям близок к галогенид-ионам. Наличие структуры Ме" —Н можно объяснить большим потенциалом ионизации атома водорода (13,595 эв) по сравнению с потенциалом ионизации рубидия и цезия (см. табл. 1) и наличием у атома водо- рода небольшого сродства к электрону (0,75 эв) .  [c.82]

    При изменении структуры всегда меняется в той или иной степени тип химической связи. Последнее обстоятельство сказывается на изменении физико-химических свойств, причем тем значительнее, чем резче меняется тип связи, и особенно сильно в том случае, когда одна из модификаций имеет гомодесмическую структуру, а вторая — гетеродесмическую (например, алмаз и графит). Изменение валентного угла кислорода в структурах кварца и тридимита, конечно, тоже связано с изменением характера химической связи от более ковалентной к более ионной. [c.225]

    Физико-химические процессы переработки отходов широко применяются в индустриальных технологиях металлургии, основных химических производств, органического синтеза, энергетики и особенно в природоохранных технологиях (пыле- и газоулавливание, очистка сточных вод и т.п.). В утилизационных способах они образуют наиболее представительную группу методов, используемых в основном не столько для переработки и тилизации, сколько для обезвреживания промышленных и бытовых отходов. В этом плане можно назвать методы коагуляции и флокуляции, экстракции, сорбции, ионного обмена, флотации, ультрафиолетового излучения, радиационного воздействия и другие, подробно рассмотренные ранее (Авт. Экология.,.). [c.19]


Смотреть страницы где упоминается термин Физико-химические особенности ионитов: [c.163]    [c.139]    [c.151]    [c.9]    [c.57]   
Смотреть главы в:

Ионообменный хроматографический анализ металлов -> Физико-химические особенности ионитов




ПОИСК





Смотрите так же термины и статьи:

Химическая ионная



© 2025 chem21.info Реклама на сайте