Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение атома и структура вещества

    Физические свойства. Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло-и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного- кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных [c.419]


    Дальнейшее развитие химической атомистики проходило, однако, весьма сложным и запутанным путем. Сам Дальтон оказался не в состоянии создать на основе атомистических представлений общую химическую систему. Он принял принцип одноступенчатого строения вещества (атом— вещество), игнорировав ранее высказывавшуюся двухступенчатую структуру (атом—молекула— вещество) и пользовался, отчасти вынужденно, рядом сомнительных допущений при установлении формул соединений, снижавших, естественно, общую ценность его химической атомистики. Вскоре после опубликования основных положений химической атомистики У. Волластон выступил с идеей эквивалента , долженствующего заменить понятие атом и особенно сложный атом Дальтона более удобным, по его мнению, понятием. Однако брошенное Дальтоном зерно химической атомистики попало на плодородную почву и в конце концов дало богатейшие плоды. [c.7]

    Изомеризация парафинов серной кислотой в отличие от изомеризации в присутствии катализаторов типа галоидных солей алюминия ограничивается лишь структурами, в которых имеются третичные атомы углерода кроме того, образуются лишь изомеры с третичным атомом углерода. Таким образом, парафины нормального строения не принимают участия в реакции ни как исходные вещества, ни как конечные продукты то же относится и к таким соединениям, как неогексан, у которого есть четвертичный атом углерода, но нет третичного. [c.33]

    По химическому составу битумы представляют собой смесь углеводородов (в основном гибридного строения) и асфальтосмолистых веществ, в состав которых, кроме углерода и водорода, входят кислород, сера, азот и незначительные количества металлов V, N1, Ре, Со и др. Битумы характеризуются групповым составом, процентным содержанием в них химически однородных фракций— масел, смол, асфальтенов, карбенов и карбоидов. Сочетание этих веществ образуют коллоидную структуру, в которой дисперсионной средой являются масла и смолы, а дисперсной фазой — асфальтены. Соотношение фаз" в системе и определяет физико-химические и физико-механические свойства битума. Масла и смолы улучшают его упругопластические свойства, особенно при низких температурах, асфальтогеновые кислоты повышают адгезию. Асфальтены сообщают битуму пластичность, снижают температуру хрупкости и повышают атмосферостойкость в битуме они являются основным структурообразующим компонентом. Сопоставление свойств и группового состава различных битумов дает основание считать, что битумы с повышенным содержанием смол и асфальтенов более водо- и ат- [c.30]


    Атом углерода, имеющий во внешней оболочке 4 электрона, отличается от других атомов постоянной валентностью, так как он не вносит в электронную структуру молекулы ни неподеленных пар электронбв, йи вакантных низколежащих орбиталей. Поэтому молекулы его соединений не способны к образованию донорно-акцепторных связей с другими молекулами через атом углерода В то же время между атомами С могут возникать прочные связи, так как малые размеры электронной оболочки благоприятствуют хорошему перекрыванию атомных орбита-лей углерода. Благодаря этому углерод обладает уникальной способностью образовывать из одинаковых атомов длинные цепочки, составляющие углеродный скелет бесчисленных молекул органических веществ. Указанные свойства углеродного атома привели к выделению химии его соединений в особую науку — органическую химию. Рассмотрим особенности строения молекул и электронной структуры некоторых родоначальников важнейших классов органических соединений. [c.204]

    По вопросу дальнейшего развития теории химического строения Бутлеров писал Само собой разумеется, что, когда мы будем знать ближе натуру химической энергии, самый род атомного движения,— когда законы механики получат и здесь приложение,— тогда учение о химическом строении падет, как падали прежние химические теории, но, подобно большинству этих теорий, оно падет не для того, чтобы исчезнуть, а для того, чтобы войти в измененном виде в круг новых и более широких воззрений . Итак, автор теории химического строения предвидел приложение механики атом-ного мира (т. е. квантовой механики) к его теории. Именно применение квантовой механики к проблемам структуры вещества подняло теорию химического строения Бутлерова на новую, высшую ступень. Только в одном не прав был Бутлеров его теория не пала, а превратилась в общехимическую теорию, являющуюся фундаментом современной химии. [c.12]

    От строения и состава реагирующих веществ. Очень большое значение имеют при этом 2 фактора а) способность к передаче электронов, принадлежащих группе атомов, которая окружает участвующий в обмене центральный атом (например, НгО, ЫНз, С1 СМ ) б) сходство структуры веществ, участвующих в обмене (в частности, сходство структуры сольватных оболочек). [c.192]

    Таким образом, при образовании простых веществ из элементов в общем случае выделяются две стадии химического превращения атом — молекула и молекула — координационный кристалл Уже на первой стадии из одного элемента может образоваться несколько простых веществ. Например, из элемента кислорода образуются два простых вещества Оа и Оз, различающихся составом, строением, а следовательно, и свойствами. Элемент сера в парообразном состоянии существует в виде молекул 5,, 5 , причем равновесие между различными молекулярными ( )ормами зависит от температуры. На второй стадии образования простых веществ возникающие координационные кристаллы в зависимости от внешних параметров равновесия — температуры и давления — существуют в различных структурах (полиморфизм) Одному элементу соответствует несколько простых веществ (полиморфные модификации), различающихся типом кристаллической решетки ромбическая и моноклинная сера, белый, красный и черный фосфор, ГЦК и ОЦК модификации железа и т. п. [c.28]

    Таким образом, зная структуру адсорбента (ГТС) и структуру адсорбирующейся молекулы, можно вычислить молекулярно-ста-тистическим путем константы Генри, уточнить параметры атом-атомных потенциалов и проанализировать влияние сделанных при определении этих потенциалов приближений и допущений. Используя этот метод, можно произвести идентификацию на хроматограмме веществ известного строения. На приведенной ниже схеме решению прямой задачи молекулярно-статистической теории адсорбции и удерживания соответствует движение слева направо  [c.184]

    Изучение строения вещества приводит к открытию все более тонких деталей его структуры, постепенно углубляет и расширяет наши знания о нем. Такие частицы, как электрон, протон, нейтрон, которые несколько десятилетий назад принято было считать элементарными (простейшими), оказались сложными и делимыми. Подтвердилось гениальное предвидение В. И. Ленина, писавшего в 1908 г., что электрон так же неисчерпаем, как атом. [c.21]

    Алмаз — бесцветное кристаллическое вещество. Его свойства определяются строением кристалла, которое показано на рис. 9.1. Кристаллическая решетка алмаза построена таким образом, что каждый атом углерода находится в центре тетраэдра, вершины которого образуют четыре близлежащих атома. Каждый атом связан с четырьмя соседними атомами прочными равноценными ковалентными связями. Такая структура алмаза обусловливает его высокую твердость. Алмаз практически не проводит электрический ток. [c.168]


    В разд. 14.3 уже было отмечено, что причина, по которой все белки построены из ь-аминокислот, а не из смеси ь-и о-аминокислот, неизвестна. Тем не менее строение складчатого слоя и а-спирали, которые являются основными вторичными структурами белков, позволяет, по-видимому, понять это явление. Оба типа складчатого слоя имеют такую структуру, что одна из двух связей, соединяющих а-атом углерода с боковыми группами, направлена вовне почти под прямым углом к плоскости слоя и обеспечивает достаточное пространство для боковой цепи, между тем как другая связь лежит почти в плоскости слоя, где есть место лишь для атома водорода. В а-спирали, построенной целиком из ь - (или целиком из о -) аминокислотных остатков, боковые группы (при первых атомах углерода) расположены на расстоянии более 500 пм, тогда как в цепях, построенных из ь- и о-остатков, это расстояние составляет только 350 пм. Соответственно в первом случае структуры более устойчивы, так как для размещения больших боковых групп имеется больше места, чем в случае смешанных ь,о -цепей. Организмы, построенные исключительно из ь - (или о-) аминокислот (а также соответствующих углеводов и других веществ), к тому же несравненно проще, чем построенные на основе одновременно и ь- и в -форм. Дело в том, что ферменты, как правило, стереоспецифичны фермент, катализирующий реакцию с участием субстрата ь-ряда, не может катализировать ту же реакцию с участием субстрата о-ряда. Из этого следует, что существующим организмам достаточно только половины того числа ферментов, которое бы им потребовалось, если бы они были построены изь- и о-изомеров. Отбор же и-, а не в-аминокислот был, по-видимому, случайным. [c.435]

    Химическим строением Бутлеров назвал последовательность связи атомов в молекуле. Он указал, каким путем на основании изучения химических реакций данного вещества можно установить его структуру и написать структурную формулу, которая для каждого химического индивидуума является единственной адэкватной. В соответствии с этой формулой можно и синтезировать данное соединение. Свойства определенного атома в соединении прежде всего зависят от того, с каким атомом он связан. Так, свойства водорода, связанного с кислородом, иные, чем водорода, связанного с углеродом, и, зная эти свойства, можно установить, с каким атомом связан интересующий нас атом. Например, атом водорода, связанный с кислородом, как в спиртах, способен замещаться на натрий при действии металла (так же как водород в воде — неорганическом прототипе с тем же характером связи), а водород, связанный с углеродом, обычно инертен по отношению к натрию. На свойства данного атома влияют и другие его соседи, непосредственно с ним не связанные. Хотя это влияние более слабое, но оно такн е должно быть учтено при установлении химического строения. [c.17]

    При реализации принципа систематичности нужно учитывать закономерности процесса познания, движение от известного — к неизвестному, от простого — к сложному. Необходимо вскрывать связи, существующие в реальной действительности, добиваться правильного отражения их в сознании учащихся. Так, например, изучение свойств веществ опирается на знание их состава и строения, а применение — на знание свойств. Понятие химический элемент первоначально трактуется как вид атома, после изучения теории строения атома — как вид атомов с одинаковым зарядом ядра. Сам атом сначала характеризуется как химически неделимая частица, а затем — как сложная частица, имеющая свою структуру, и т. д. [c.19]

    Нельзя отождествлять степень окисления с валентностью элемента, если даже их абсолютные значения совпадают. Валентность атома, определяемая как число химических связей, которыми данный атом соединен с другими атомами, не может иметь знака (+ или -) и быть равен нулю. Поэтому особенно неудачны выражения "положительная и отрицательная валентность", тем более "нулевая валентность", бытующие поныне в химической литератур>е. Например, у метана СН4, метилового спирта СН3ОН, формальдегида НСОН, муравьиной кислоты НСООН и диоксида углерода СО2 валентность углерода равна четырем, а степени окисления его равны соответственно -4, -2, О, +2 и +4. Кроме того, для установления валентности атома требуется знание химического строения, а определение степени окисления производится в отрыве от структуры вещества, т.е. формально. [c.56]

    Суммарная форлг/ла (эмпирическая, брутто-формула)—это простейший вид формулы. Она правильно отражает состав вещества и степени окисления входящих в него элементов, но ничего не говорит о его строении, т. е. о последовательности и кратности связей между атомами. Например, фор Мула диоксида кремния ЗЮа показывает лишь, что в этом соединении на один атом кремния приходятся два атома кислорода, но ничего не говорит о структуре оксида кремния она очень похожа на эмпирическую формулу углекислого газа СО2, однако строение этих двух веществ разное. Другой пример в молекуле серной кислоты атом водорода соединен с атомом кислорода, однако из формулы Н2504 это не следует. [c.27]

    Таким образом, в термодинамическом аспекте исследования эффекта траисвлияния в комплексных соединениях металлов 8-й группы, а теперь и золота и других переходных металлов сформировалось два подхода — 15 одном изучается атомная структура вещества, в другом изучаются особенности электронного строения. К первому подходу следует отнести, главным образом, рентгеноструктурный анализ, а также ИК-спектроскопию, ко втО рому — в основном рефрактометрический метод. Выще уже приводились примеры изменения длин связей в результате трансвлияния, которые дают хорошую иллюстрацию идеи Черняева о ионизации лиганда в трансположении к активному атому или радикалу. Однако табл. 112, к сожалению, не характеризует только траисвлияние, поскольку длины связей во внутренней сфере комплексных соединений зависят от многих факторов (состава и структуры), априорный учет которых пока еще невозможен. На колебательные спектры, помимо многочисленных структурных факторов, влияют еще и прочности связей, и массы колеблющихся атомов. [c.265]

    Исследования, произведенные на координационных (комплексных) соединениях, значительно продвинули наши познания о химич. связи в этих веществах. Так, напр., атом железа обнаруживает в растворах Fe l, магнитный момент, свидетельствующий о наличии у ГеЗ+ 5 неспаренных электронов. В комплексном же соединении KgfFei N) ] железо обнаруживает момент, свойственный лишь 1 неспаренному спину. Соединение K4[Fe( N)e] вовсе лишено магнитного момента, что объясняется отсутствием неспаренных электронов. Или, папр., у иона Ni + оказывается момент, свойственный двум неспаренным электронам, а в квадратных плоских комплексах типа K.,[. i( N)4] момент атома никеля равен нулю. Карбонил железа Ке(С0)5 лишен магнитного момента, что показывает, что он имеет структуру, при к-рой все 6 связей, имеющихся у атома Ге, насыщены. Магнетохимич. исследования позволили этим путем выяснить [электронное строение таких сложных веществ, как гемопротеины. [Магнитный момент молекулы гемоглобина, как оказалось, соответствует 5 неспаренным спинам, между тем как оксигемоглобин во всех случаях лишен магнитного момента. Это означает, что при окислении гемоглобина насыщаются все свободные валентности. [c.502]

    Полученный указанными выше способами аморфный кремний представляет собой бурый порошок с температурой плавления 1420°С. Существует и другая аллотропная модификация кремния — кристаллический кремний. Это твердое вещество темно-серого цвета со слабым металлическим блеском, обладает тепло- и электропроводностью. Кристаллический кремний получают перекристаллизацией аморфного кремния. Аморфный кремний является более реакционноспособным, чем химически довольно инертный кристаллический кремний. Кристаллический кремний — полупроводник, его электропроводность возрастает при освещении и нагревании. Это обусловлено строением кристаллов. Структура кристаллического кремния аналогична структуре алмаза. В его кристалле каждый атом окружен тетраэдрически четырьмя другими и связан с ними ковалентной связью, хотя эта связь значительно слабее, чем между атомами углерода в алмазе. В кристалле кремния даже при обычных условиях ковалентные связи частично разрушаются, поэтому в нем имеются свободные электроны, которые обусловливают небольшую электропроводность. При освещении, нагревании, а также при наличии некоторых примесей увеличивается число разрушаемых связей, а значит, увеличивается число свободных электронов и возрастает электропроводность. [c.447]

    Как известно, изоморфные вещества образуют друг с другом твердые растворы — гомогенные твердые вещества сложного состава, в структуре которых атомы распределены статистически. В твердых растворах ионных соединений, металлов, полимеров атомы соединены межатомными связями. Поэтому подобные вещества являются твердыми атомными соединениями. Каждому непрерывному твердому раствору соответствует ряд однотипных твердых химических соединений, в том числе соединений, обладающих равноценными статистическими структурами, и в ряде случаев интерметаллических соединений. Например, медь и золото образуют непрерывный ряд твердых растворов, но при концентрациях золота от 20 до 70 ат. % в сплавах, полученных отжигом (т. е. выдерживанием сплава при высокой температуре), проявляются интерметаллические соединения СизАи и СиАи, имеющие строго закономерную структуру. Следовательно, твердые растворы не всегда имеют неупорядоченное строение. Эта неупорядоченность — во многих случаях результат закрепления атомов при [c.44]

    Получение из эксперимептальпых данных по адсорбционному равновесию термодинамических характеристик адсорбции для ряда молекул близкого и разного состава и строения необходимо как для практических применений, так и для развития молекулярной теории адсорбции и межмолекулярных взаимодействий вообще. Во-первых, термодинамические характеристики являются опорными для определения соответствующих величин для экспериментально не изученных веществ, что, в частности, помогает идентифицировать неизвестные вещества в адсорбционной хроматографии. Во-вторых, эти данные нужны для определения атом-атомных потенциальных функций межмолекулярного взаимодействия и теоретического расчета термодинамических характеристик адсорбции на основании структуры молекулы адсорбата и строения адсорбента (см. гл. X). Наконец, в-третьих, эти данные нужны для решения обратных задач, т. е. при известных атом-атомных потенциальных функциях межмолекулярного взаимодействия экспериментальные термодинамические характеристики адсорбции позволяют сделать заключение о структуре молекулы адсорбата (подробнее об этом см., например, разд. 4 гл. X). В этой главе рассмотрены полученные из экспериментальных данных термодинамические характеристики адсорбции на графитированной термической саже при малом (нулевом) заполнении поверхности. Основная литература по экспериментальному исследованию адсорбции на графитированных термических сажах была указана в разд. 1 гл. П. Поэтому здесь даются ссылки лишь на те работы, в которых были получены, наиболее точные данные, использованные для определения термодинамических характеристик адсорбции при нулевом заполнении поверхности. [c.180]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]

    Таким образом, молекулы СиС1 в паровой фазе и твердый хлорид меди — это вещества, разные по структуре, а следовательно, и по свойствам. Количественный состав твердого хлорида меди такой же, как и молекул на атом меди приходится атом хлора. Для хлорида меди в парах формула СиС является истинной, а для твердого состояния — только простейшей. Истинная формула кристаллического хлорида меди может быть написана, как для полимерного вещества (СиС1)д. На рис. 6, а представлена идеальная структура стехиометрического соединения АВ, когда все атомы размещены по узлам решетки. На рис. 6, б один атом А находится в междоузлии, а узел (откуда ушел атом А) остается незанятым. Рис. 6 отражает различное кристаллохимическое строение стехиометрического соединения одного и того же состава. Как показывают опыт и теория, реальные кристаллы предпочтительнее образуют дефектную структуру (рис, 6, 6), Концентрация же дефектов (в данном примере атом А в междоузлии и вакансия в узле) находится в зависимости от способа получения и предыдуп ей обработки вещества. [c.20]

    В форме простых веществ галлий, индий и таллий представляют собой серебристо-белые металлы, при этом галлий хрупок, а индий и таллий очень мягкие. Индий и таллий кристаллизуются в плотноупакованной кубической или близкой к ней решетке. Кристаллохимическое строение галлия оригинально и необычно для металлов. Структуру галлия лишь условно можно назвать псевдотетрагональ-ной. Каждый атом галлия имеет ближайшего соседа на расстоянии 0,243 нм, шесть других находятся на расстоянии от 0,270 до 0,279 нм. Другими словами, металлический галлий как бы состоит из двухатомных молекул, образующих слои, связь между которыми слабая, чем и объясняется его аномально низкая температура плавления. Характеристики элементов и простых веществ П1А-груп-пы приведены ниже. [c.339]

    Электронное строение и типы связей элементов периодической системы - ключ к пониманию Сфуктуры и свойств простых и сложных веществ, образованных эти.ми элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана фуппа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа ато.мов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической сфуктуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симмефия орбиталей атомов данного конкретного элемента полностью определяют число, длину, ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в пространстве, т е. кристаллическую структуру, основные физико-химические свойства элемента. [c.30]

    Другим большим разделом химии углеводов является химия полисахаридов. Полисахариды представляют собой полимеры моносахаридов, точнее продукты их поликонденсации, и их молекулы образуют цепи, состоящие из моносахаридных звеньев, связанных друг с другом через атом кислорода. Полисахариды — типичные высокомолекулярные вещества, и этот раздел химии углеводов по принципиальным и методическим подходам сходен с другими разделами химии полимеров. В частности, уже само понятие индивидуального вещества в данном случае теряет смысл и часто заменяется понятием фракции, содержащей идентичное по строению, но различающееся по молекулярному весу семейство полимергомо-логов. Это накладывает свой отпечаток на методы выделения и разделения полисахаридов. Далее, понятие структуры полисахарида и методы ее установления также сходны с соответствующими понятиями и методами высокомолекулярной химии. [c.9]

    Боле, Хьюитт и Ньюмен [126] сформулировали общее положение, которое удовлетворительно предсказывает поведение фенилфеназониевых солей Фе-нилфеназониевые соли, которые по своему строению неспособны к образованию п-хиноидной структуры, очень неустойчивы они реагируют со многими веществами таким путем, что образуются соединения, способные переходить в п-хиноидную, а также в о-хиноидную форму с образованием такого соединения исчезает чрезмерная реакционноспособность . Таким образом, элиминирование только одной аминогруппы феносафранина при действии избытка азотистой кислоты заставляет предположить, что другая группа стабилизируется в п-хиноидной структуре в виде иминогруппы, которая не диазотируется. Однако в концентрированной серной кислоте иминогруппа также образует соль, которая может затем подвергаться дезаминированию. Разница в легкости гидролиза первой аминогруппы по сравнению со второй еще раз подтверждает вышеприведенное положение. На этом основании возможно также объяснить реакции аминолиза и гидролиза дихлорфеназониевых солей, полученных Фишером и Геппом [127]. Следует отметить, что второй атом хлора по своей реакционноспособности совершенно отличен от первого [126]. [c.533]

    В клетках, составляющих живое вещество, содержатся особые высокомолекулярные нуклеиновые кислоты, связанные с белком, видимо, водородными связями. В течение последних десятилетий были изучены состав и строение нуклеиновых кислот и установлена их роль в биосинтезе белка. Ядра клеток содерл<ат дезоксирибонуклеиновую кислоту (ДНК), анализ продуктов гидролитического расщепления которой показал, что это слол ное вещество, содерлощее 1>-дезоксирибозу, фосфорную кислоту и смесь веществ гетероциклической структуры — производных пурина — аденина и гуанина и производных пирами-дина — тимина и цитозина. В плазме же клеток содержатся рибонуклеиновые кислоты (РНК), в составе которых обнарул<ены /З-рибоза, фосфорная кислота и гетероциклы — аденин, гуанин, цитозин и урацил (вместо тимина). [c.264]

    В природе встречается немало других циклических соединений, несущих атом азота в боковой алифатической цепи. Они не образуют больших структурных групп, но некоторые представляют интерес для практики и теории. Так, например в грибах-мухоморах Amanita mus ari a) содержится четвертичное основание мускарин 6.13. Этому веществу было уделено очень много внимания в истории химии природных соединений. Несмотря на простоту химического строения, доказательство его структуры заняло 150 лет. Это объясняется, главным образом, трудностью получения солей 6.13 в чистом виде и крайней лабильностью загрязненного препарата. [c.432]


Смотреть страницы где упоминается термин Строение атома и структура вещества: [c.78]    [c.156]    [c.502]    [c.191]    [c.301]    [c.197]    [c.72]    [c.10]    [c.28]    [c.362]    [c.228]    [c.89]    [c.187]    [c.717]    [c.120]    [c.237]    [c.89]    [c.187]    [c.118]   
Смотреть главы в:

Как ты знаешь химию -> Строение атома и структура вещества




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Атомы структура

Вещества строение



© 2025 chem21.info Реклама на сайте