Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточная реакция вторичные

    Теория клеточных реакций более сложная, чем рассмотренные здесь положения. Рекомбинации сдваивания бывают двух типов. Первичные рекомбинации возникают между радикалами, не успевающими переменить свои позиции, и протекают в течение времени, необходимого для разрыва связи. Вторичные рекомбинации проис- [c.85]

    Образование АТФ является источником энергии для многих клеточных реакций, в том числе и для активного транспорта ионов через биологические мембраны, а также субстратом для синтеза вторичного посредника - цАМФ- [c.121]


    Из внешних причин, влияющих на физико-химические взаимодействия между частицами первого уровня, существенный вклад вносят эффекты воздействия окружающей среды, т. е. эффекты вышестоящих ступеней иерархии ФХС. Они проявляются в виде кинетических, диффузионных, термодинамических и топологических эффектов типа воздействия активаторов и ингибиторов образования донорно-акцепторных комплексов при радикальной полимеризации сольватации первичных и вторичных солевых эффектов при реакциях между ионами в растворах вырожденной передачи цепи на компоненты среды клеточных эффектов и эффектов близости кинетических изотопных эффектов индуктивных и мезомерных эффектов воздействия на свободные радикалы изменения физико-химических свойств среды влияния макромоле-кулярных матриц, фазовых переходов и т. д. [3, 4, 7, 10—14]. [c.25]

    Клетки иммунологической памяти. Для иммунной системы характерно наличие памяти. Если какой-либо антиген ввести в организм, то через определенное время возникнет иммунный ответ (клеточный или гуморальный). Это так называемый первичный иммунный ответ. Если через несколько месяцев или лет в организм ввести этот же антиген, то формируется вторичный иммунный ответ, причем реакция будет более сильной и продолжительной. Это обусловлено наличием в организме долго живущих клеток иммунологической памяти по отнощению к данному антигену. В иммунизированном организме имеются Т- и В-клетки памяти, которые сами не дают ответа, но легко превращаются в активные клетки под действием соответствующего антигена. [c.484]

    Основным направлением биохимических изменений стационарных клеток является переключение метаболизма на эндотрофный обмен, синтезы резервных веществ, вторичных метаболитов и компонентов, повышающих устойчивость клеток к наступившим неблагоприятным для роста условиям (рис. 4.7). В этих условиях в клетке включается так называемый строгий ответ — сложный комплекс реакций, приводящих к резкому снижению синтезов РНК, нуклеотидов, углеводов, липидов, полиаминов, пептидогликана клеточной стенки, повышению деградации белка, ограничению мембранного транспорта. При этом повышается контроль трансляции белков и включаются синтезы сериновых протеиназ, участвующих в белковом процессинге превращения проферментов в их активные формы в результате отщепления некодирующей аминокислотной последовательности. [c.91]


    Различия в селективности катализаторов могут быть обусловлены эффектами, рассмотренными в разд. 3. Отметим, что условия приготовления катализатора влияют на соотношение числа кислотных центров Бренстеда и Льюиса и кислотную силу центров каждого типа. Если различные реакции протекают на специфичных для них кислотных центрах при определенной их кислотности, это также влияет на селективность. Этому вопросу посвящено очень мало систематических исследований [55]. Осложняющим фактором при изучении селективности является ситовой эффект цеолитных катализаторов. Определенный размер пор ограничивает попадание реагентов внутрь кристаллов (табл. 4.1), но, возможно, более важным являются вторичные превращения образующихся продуктов в полостях цеолита (клеточный эффект). [c.72]

    На основании полученных данных о кинетике биосинтеза целлюлозы в первичной и вторичной клеточной стенках (протекание реакции образования целлюлозы во вторичной клеточной стенке как реакции нулевого порядка), постоянстве молекулярного веса в течение всего периода образования целлюлозы во вторичной стенке и, особенно, монодисперсности этой целлюлозы были сформулированы некоторые представления об особенностях протекания биосинтеза целлюлозы в высших растениях и основных его принципах. [c.99]

    Отсутствие или значительное ослабление качественных реакций на лигнин во вторичной клеточной стенке и их появление после обработки древесины разбавленными растворами минеральных кислот. [c.146]

    В двух предыдущих главах было показано, как функционирует ансамбль клеточных белков, делая клетку тем, что она есть, —машиной, построенной из высокоспецифичных структурных компонентов и ферментов, осуществляющих сложную сеть метаболических реакций. Теперь можно снова подойти к основной проблеме самовоспроизведения клетки, поставив вопрос по-новому каким образом за время генерации происходит удвоение всего аппарата белков клетки, так что каждая из двух дочерних клеток, образующихся при делении родительской клетки, оказывается наделенной своим собственным полным набором ферментов В предыдущей главе был сформулирован основной закон, согласно которому первичная структура полностью определяет вторичную, третичную и четвертичную структуру белка. Исходя из этого закона, вопрос о самовоспроизведении клетки можно свести к следующему вопросу каким образом двадцать аминокислот собираются в определенную последовательность, составляющую первичную структуру любого из одной-двух тысяч различных молекул ферментов Сами аминокислотные строительные блоки синтезируются, конечно, в ходе метаболических путей, примеры которых мы рассматривали в гл. П1. Нетрудно представить, что реакция дегидрирования, благодаря которой аминокислоты соединяются пептидными связями в полипептидные цепи, катализируется одним или несколькими специфическими ферментами клетки. Однако при попытках понять, каким образом на каждой стадии процесса сборки определенной полипептидной цепи из двадцати доступных аминокислот выбирается одна и только одна аминокислота, мы сразу же сталкиваемся с трудностями. [c.112]

    Повышение выходов при использовании водяного пара объясняется тем, что ускоряется вынос ценных продуктов из реакционного пространства и задерживается развитие реакций вторичного распада. Кроме того, прн соприкосновении водяного пара с капиллярной системой древесины на поверхностных слоях ее возможна конденсация пара, что создает условия для термического разложения в кислой водной среде. При этом реакции разложения происходят в первую очередь в слоях клеточной стенки, которые расположены с внутренних сторон клеточных полостей и состоят преимущественно из нетер.мостойких гемицеллюлоз, легко отщепляющих ацетильные группы и часть свя-за-нных с ними метоксилов, образуя соответственно уксусную кислоту и метиловый спирт. [c.33]

    Вторичные посредники не только способствуют передаче внешнего сигнала во внутриклеточный, но и обеспечивают значительное его усиление. Каждая молекула рецептора, присоединившая сигнальную молекулу, активирует много молекул аденилатциклазы, которые, в свою очередь, катализируют образование множества молекул цАМФ. В итоге по всей це1Ш от рецептора до клеточной реакции происходит усиление сигнала в 10 -10 раз. Таким образом, несколько сигнальных молекул эффектора могут изменять функциональную или метаболическую активность всей клетки. [c.79]

    Исследование состава полисахаридов в сформировавшихся клеточных стенках дает основание судить о содержании и расиреде-лении ГМЦ в клеточных стенках лигнифицированных тканей. Оиределение расиределения ГМЦ в радиальном наиравлении клеточной стенки является трудной задачей и решается обычно только совместно с изучением распределения лигнина и целлюлоз, количество которых легче определить, применяя современные методы исследований. К исследованию расиределения лигнина в клеточной стенке привлекаются специфические цитохимические реакции, УФ- и электронная микроскопия [[8, 36, 37, 40]. Расиределение лигнина в клетке исследовано также под микроскопом иосле удаления полисахаридов клеточной стенки и получения лигнинных скелетов . Распределение лигнина в клеточной стенке древесины исследовали Асунма и Ланге, Фрей, Вергин и Фергус и др. (цит. по [8]). Они пришли к выводу, что доля лигнина в срединной пластинке (М) и первичной оболочке Р) древесины составляет 60—90%. В районе вторичной стенки лигнин распределен равномерно, и вблизи люмена содержание его составляет 12—20% [36, 46], [c.40]


    Таким образом, при равномерной пропитке растительного материала разбавленным раствором катализатора, когда все стадии процесса образования фурфурола протекают непосредственно в клеточной стенке, потери фурфурола из-за побочных реакций пентоз и вторичных превращений фурфурола весьма значительны и потому выход его при всех известных ранее способах получения, основанных на этом принципе, не превышает 50—55% от теоретически возможного. Кроме того, целлолигниновый остаток в этом случае уже не может быть использован для дальней- [c.218]

    Уже было сказано, что основным стерином животного мира является холестерин. Кроме выполнения структурной функции в составе клеточных мембран, он служит субстратом для биосинтеза стероидных соединений. В организме млекопитающих большая часть эндогенного и пищевого холестерина расходуется на биосинтез желчных кислот. Последние образуются из него серией реакций окисления и восстановления, ведущих к веществам с укороченной боковой цепью и с гидроксильными заместителями в тетрацик-лическом остове. Двойная связь холестерина в ходе этих метаболических превращений насыщается, а циклы А/В оказываются г/с-сочлененными, т.е. желчные кислоты принадлежат к стереохимическому ряду копростана. Желчь человека и других млекопитающих содержит четыре основные стероидные кислоты холевую 2.987, хенодезоксихолевую 2.988, дезоксихолевую 2.989 и литохолевую 2.990. Первые две называют первичными, остальные — вторичными желчными кислотами. Деление на первичные и вторичные вводится потому, что только вещества 2.987 и 2.988 синтезируются в печени. Остальные — это продукты трансформации первых микроорганизмами кишечника. [c.274]

    Таким образом, вторичные сшивки меньшей сульфид-ности эквивалентны стабильным сшивкам, рассматриваемым в расчетной модели Флори и Сканлана. Сам по себе этот факт еще, однако, не позволяет прийти к механизму реакции, описываемому схемой (V), (VI). Недостаточным для выдвижения такого механизма является и установление сопряженности деструкции и вторичного сшивания. Конкретная клеточная модель (V), (VI) возникает только при совместном учете инициирующей роли термического распада серных сшивок в условиях термоокислительной деструкции и того влияния, какое оказывают на этот распад ингибиторы. Действительно, если не учитывать данные о влиянии ингибиторов, то вторичное сшивание можно было бы представить, например, следующим образом  [c.165]

    Новые морфологические варианты и новые, более сложные морфологические задачи возникают при синтезе макромолекул и при их химических реакциях. Часто катализатор должен обеспечивать определенную взаимную ориентацию или определенное чередование мономеров в макромолекулах, например определенную ориентацию Н и групп В при полимеризации олефинов КСН = СН, (рис. 3), определенное соотношение и чередование аминокислот в полипептидах или в искусственных сополн-мерах, образование молекулярных спиралей правого и левого типа и других сложных вторичных пространственных структур. Число различных структурных морфологических вариантов очень велико. Морфологический катализ преобладает в биохимии живой клетки. Его самый сложный и совершенный пример ферментативное управление синтезом индивидуальных белков, сосредоточенное в клеточных рибосомах, и управление процессами деления клеток и передачей наследственных свойств, сосредоточенное в хромосомном аппарате клеточного ядра. [c.21]

    Этот эффект называют клеточным эффектом, или эффектом Франка — Рабиновича [5] он имеет существенное значение в некоторых реакциях. Например, в случае фотохимических реакций в растворах пара образовавшихся в какой-то момент свободных радикалов займет свою клетку, окруженную молекулами растворителя, и может оказаться, что рекомбинация произойдет прежде, чем эти радикалы смогут разойтись. Явление такого рода называют первичной рекомбинацией, в отличие от вторичной рекомбинации, которая совершается уже после того как радикалы отдалятся друг от друга. [c.220]

    Метан, этан и этилен появляются в продуктах только при высокой конверсии, что свидетельствует об их получении при последующих каталитических или термических превращениях первичных продуктов каталитического крекинга. К сожалению, в литературе очень мало информации о реакциях, в которых образуются легкие газообразные соединения в качестве первичных продуктов. Появление изобутана в качестве первичного продукта трудно объяснить в рамках традиционного одноступенчатого механизма крекинга. Разные авторы [5] обнаруживали изопарафины среди первичных продуктов при крекинге н-гексадекана и метилциклогексана. Механизм, объясняющий присутствие метилалканов в первичных продуктах, предполагает, что перед десорбцией с поверхности катализатора карбокатиона последний быстро изомеризуется [15]. Дальнейшего доказательства требует постулат о том, что короткоцепные продукты изомеризуются благодаря повторяющимся вторичным реакциям внутри пористой системы цеолита с участием клеточного эффекта. [c.119]

    В ряде опытов был изучен фосфоролиз, т. е. обращение реакции полимеризации [158, 166, 168]. Для этого используемый полинуклеотид инкубировали с ферментом в присутствии избытка неорганического фосфата, что приводило к образованию нуклеозиддифосфатов в результате последовательного отщепления моно-нуклеотидных единиц. Оказалось, что легко фосфоролизируются не только полимеры, полученные путем биосинтеза, но и обладающие затравочной активностью олигонуклеотиды. Динуклеотиды же и динуклеозидмонофосфаты, как и следовало ожидать, не поддаются фосфоролизу. РНК вируса табачной мозаики и высокополимерная РНК дрожжей могут легко подвергнуться фосфоролизу, но если дрон<жевую РНК предварительно обрабатывают щелочью, то фосфоролиз протекает медленно. Медленно протекает и фосфоролиз многочисленных тяжей, образованных, например, из поли-А и поли-У. Неполностью (па 20—30%) протекает фосфоролиз транспортной РНК клеточной цитоплазмы, что можно объяснить особенностями вторичного строения s-PHK. По-видимому, фосфоролиз затрагивает преимущественно концевые группы. [c.256]

    Главная масса многочисленных концентрич. вторичных слоев d построена гл. обр. из целлюлозы по микрохимич. реакции о флороглюцином (красное окрашивание) в них также обнаруживают присутствие лигнина. В клеточных стенках Д. различают еще внешнюю часть вторичной стенки с и внутренний незначительный по толщине и нелигнифи1 ированный третичный спой. В состав древесных тканей входят [c.602]

    О начале дифференцировки свидетельствует ноявление частиц в срединной пластинке (фото 37). Интересно, что этот первый признак предстоящих морфологических изменений клеточной стенки обнаруживается не на поверхности стенки, а внутри нее. Таким образом превращение первичной клеточной стенки во вторичную есть результат химических реакций в самой стенке. Возможно, что накопление частиц в срединной пластинке находится под гормональным контролем, так как образование трахеид в целом контролируется гормонами [13]. Вскоре после появления упомянутых частиц клеточная стенка начинает расти (фото 38). При этом с одной стороны срединной пластинки или с обеих сторон одновременно происходит образование утолщений (фото 39). Двустороннее утолщение говорит о том, что первичные события имеют место в самой стенке, так как они предопределяют характер стенки сразу в двух клетках. Затем происходит отложение большого количества це.тлюло-зы и лигнина, до тех пор пока кольцо или спираль не будут завершены (фото 40). Микрофибриллы целлюлозы располагаются параллельно оси спиральных утолщений, т. е. почти перпендикулярно направлению роста. Микротрубочки обнаруживаются в непосредственной близости от растущей стенки, причем и в данном случае они опять-таки оказываются ориентированными параллельно микрофибриллам (фото 41). [c.93]

    В обоих комплексах галоген обладает повышенной реакционной способностью. Эмиссию на метиленовых протонах хлористого бензила можно объяснить двояким образом. Поляризованный хлористый бензил образуется непосредственно в реакции хдррида бензилмагния с комплексами, причем этот процессе проходит па- раллельно главной реакции — взаимодействию перекиси с реактивом Гриньяра. Второй путь — это возникновение поляризации хлористого бензила по типу замещения в первичной радикальной паре [78]. Отрыв атома хлора бензильным радикалом от комплекса происходит настолько быстро, что во вторичной радикальной паре сохраняется спиновая мультиплетность предыдущей радикальной пары. Образующийся таким образом хлористый бензил дол жен иметь эмиссию на метиленовых протонах аналогично продукту клеточной рекомбинации — бензилбепзоату. [c.85]

    Вторичная реакция организма на введение антигена есть более сильное и интенсивное развитие процессов, происходивших при первичной реакции. Тут растормаживапие специфических клеток оказывается столь сильным, что рост соответствующих клеточных колоний в пределах лимфатического узла удается видеть в микроскоп (с помощью техники флуоресцентной метки). Организм реализует все свои потенции в синтезе данного вида у-глобулина, и в крови поддерживается высокая концентрация антител. [c.508]

    Можно не сомневаться в том, что в клеточной ДНК происходят такие же потери и замены оснований, какие обнаруживаются при облучении ДНК in vitro. Иным может быть только выход тех или других реакций в зависимости от соотношения клеточных ингибиторов и сенсибилизаторов, вторичного действия ра-диотоксинов и ферментов. Согласно экспериментальным данным об изменении молекулярного содержания оснований, в ДНК АТ-типа облученных растительных и животных объектов преобладают, по-видимому, замены АТ на ГЦ. Однако о первичном выходе необратимых замен оснований судить по этим данным нельзя, так как наблюдения проводились в ранние сроки, в условиях резкого отклонения от правил Чаргаффа (пир пур<1). Ориентировочно можно оценить лишь полный выход потерь и замен оснований по уменьшению коэффициента специфичности (АТ/ГЦ). Для растительных объектов [7, 8] этот выход приближается к 2,5 для животных [5] он в несколько раз выше. [c.37]

    Перечисленные выше механизмы поражения синтеза ДНК могут еще более усиливаться за счет развития в ядре и цитоплазме облученных клеток вторичных процессов. Накопление некоторых метаболитов ДНК при активации процессов ее катаболизма или при блокировании реакций синтеза предшественников может привести к дальнейшему, более глубокому угнетению реакций синтеза ДНК или по механизму отрицательной обратной связи, или за счет специфического их действия на некоторые системы. Изменения проницаемости мембран, наблюдаемые после облучения, могут повлечь за собой обеднение клеточного ядра некоторыми критическими метаболитами синтеза ДНК, Этот процесс может привести к выходу из органелл клетки в цитоплазму разнообразных катаболических ферментов. Развиваясь и взаимноусиливаясь, все эти процессы приводят к гибели клетки. [c.128]

    Технологии проведения созревания давно привлекают внимание ученых. Так, увеличение количества тепла в процессе созревания вина на дрожжевом осадке результатов не дало. Похоже, что это связано как с инактивацией некоторых нротеаз при температурах ниже 30 °С, так и с тем, что вторичные реакции побочных продуктов происходят с иной скоростью, чем протеазные реакции. К другим методам ускорения созревания относятся внесение дрожжевых экстрактов или смешивание. Они не ускоряют и не усиливают автолиз, но могут увеличить содержание в вине аминокислот путем усиления их экскреции из клеточных стенок [13,19,28,40]. [c.191]

    Коппик и Фаулер [78] предложили технику окрашивания (модифицированную реакцию Толленса), при которой срезы последовательно обрабатываются насыщенной хлорной водой, 3%-ным спиртовым раствором мо-ноэтаноламина и 5%-ным водным раствором азотнокислого серебра. Структуры, содержащие много лигнина, окрашиваются в темно-коричневый цвет до черного, тогда как слабо лигнифицированные зоны окрашиваются в светло-желтый цвет до янтарного. Результаты этой цветной реакции полностью подтверждают предшествующие работы по исследованию химии клеточной стенки. Сложная срединная пластинка глубоко окрашивается, следовательно, в ней много лигнина (как показано Риттером [80], Харлоу [81.1 и А. Бейли [82]) лучевые клетки и паренхимные ткани содержат много лигнина (как показал Харлоу и Уайз [83]). Вторичные стенки волокнистых элементов у древесины лиственных пород, растущих в умеренном климате, более светлые, следовательно, они менее лигнифицированы, чем вторичные стенки хвойных пород. Стенки сосудов у лиственных пород окрашены в более темный цвет, чем окружающие волокнистые элементы, следовательно, они содержат больше лигнина мембраны пор также сильно лигнифицированы [84]. [c.103]

    Одиако несмотря на такое усиленное развитие генетики основная концепция этой науки — концепция гена — оставалась в сущности лишенной материального содержания. Генетики не только не вникали в физическую природу гена, но и не могли объяснить ни того, как ген может с высоты своего ядерного трона управлять специфическими физиологическими процессами в клетке, ни того, как он ухитряется успешно осуществлять свою собственную точную репликацию в течение цикла клеточного деления. Всего лишь в 1950 г. в очерке, написанном к золотому юбилею вторичного открытия работы Менделя, Г. Мёллер, являвшийся в то время одним из старейших генетиков и ведущим исследователем проблемы гена, так описывал существовавшее положение ...истинная сущность генетической теории все еще покоится в глубинах неизвестного. Мы до сих пор ничего толком не знаем о механизме, лежащем в основе того уникального свойства, которое делает ген геном, — его способности вызывать синтез другой, в точности такой же структуры, синтез, при котором копируются даже мутации исходного гена... По-видимому, при этом происходит следующее. Из в сущности бесконечного ряда возможных реакций в результате отбора происходит именно та единственно верная реакция, благодаря которой материал обычной среды синтезируется в точную копию структуры, регулирующей эту реакцию. В химии мы пока не знаем таких процессов . [c.30]

    Вопрос о механизме действия сердечных гликозидов все еще не решен. Все они, по-видимому, действуют одинаково, различаясь лишь по эффективности при приеме внутрь, а также по длительности действия и активности. Согласно наиболее широко принятой в настоящее время теории, сердечные гликозиды подавляют или замедляют активный транспорт ионов калия и натрия через клеточные мембраны, в том числе мембраны клеток сердца, путем ингибирования мембранной АТФазы. Это приводит к накоплению натрия в клетках и потере калия, а также (вторичный эффект) к росту внутриклеточной концентрации свободных ионов кальция, что сопровождается повышением сократимости миофибрилл. Эта теория находит подтверждение в результатах клинических наблюдений так, наиболее частой причиной непереносимости препаратов наперстянки служит диурез, приводящий к гипо-калиемии. Гиперкальциемия часто усугубляет токсические реакции на препараты наперстянки, так как кальций- потенцирует их гипокалиемическое действие. Лучшим способом борьбы с аритмиями, возникающими при приеме сердечных гликозидов (если главное нарушение — самопроизвольные разряды в клетках сердечной мышцы), служит введение солей калия. [c.96]

    В настоящее время не вызывает сомнений тот факт, что биологические мембраны играют ключевую роль в процессах приема, переработки и передачи информации в клетке, обеспечивающих согласованное протекание множества биохимических реакций целостного организма. Изучение молекулярных механизмов регуляции клеточного метаболизма с помощью внешних (первичных) и внутриклеточных (вторичных) сигналов (проблемы клеточной сигнализации) является предметом пристального внимания биофизиков, биохимиков, молекулярных биологов, иммунологов. Эта стремительно развивающаяся область мембранологии как комплексной научной дисциплины начала развиваться во второй половине XX века после открытия Е. Сазерлендом (Нобелевский лауреат, 1971) циклического аденозин-3,5-монофосфата (сАМР) и создания концепции вторичных сигналов (мессенджеров). Рассмотрим более подробно основные принципы функционирования систем получения и переработки информации в клетке. [c.64]

    Ионы Ка и широко распространены в неживой природе. В клетке эти ионы распределены неравномерно ионы натрия выбрасываются из клетки, ионы калия накапливаются в ней. В результате создается разность концентраций одновалентных ионов на клеточной мембране, необходимая для генерации возбуждения в нервных и мышечных клетках. Первично-активный транспорт ионов, осуш5ествляющийся с использованием энергии АТР или окислительно-восстановительных реакций, происходит с участием транспортных АТФаз (см. раздел 1.2.4). Однах о градиент концентрации одновалентных ионов необходим и для функционирования систем вторично-активного транспорта (в том числе сахаров и аминокислот). В клетке ионы калия являются активаторами многих ферментативных процессов, таких как синтез ацетилхолина, синтез белка на рибосомах, дыхание митохондрий, ДНК-полимеразная и РНК-полимеразная реакции, фосфо-фруктокиназная реакция. [c.75]

    Дальнейшее усложнение метаболизма потребовало более четкого согласования последовательностей составляющих его биохимических реакций. Коферменты, обладающие каталитической активностью значительно более низкой, чем современные ферменты, и не обладающие свойством субстратной специфичности, на определенном уровне развития клеточного метаболизма не могли отвечать необходимым тре--бованиям. Поэтому они были заменены или дополнены более мощными и совершенными катализаторами — ферментами. Вероятно, первым в процессе эволюции у предшественников современных ферментов появилось свойство каталитической активности, а свойство субстратной специфичности возникло значительно позднее. В качестве предшественников современных ферментов можно рассматривать простые пептиды. В настоящее время имеются эксперименталыные данные, подтверждающие способность пептидов ускорять определенные реакции, в частности, реакции гидролиза, аминирования различных соединений, а также реакции карбоксилирования а-кетокислот. Эволюция ферментных белков из предшественников — простых пептидов— прошла длительный путь в направлении наилучшего приспособления их первичной, вторичной и третичной структур к выполняемым функциям. [c.173]

    Несомненно участие цАМФ и цГМФ как вторичных посредников в координированной реакции в ответ на стимуляцию клеточного роста. Вследствие большого числа данных и сложности этой проблемы мы не будем пытаться сделать обзор сведений об участии циклических нуклеотидов в контроле роста клеток. Вместо этого мы отошлем читателя к другим, более исчерпывающим обзорам о роли циклических нуклеотидов в контроле клеточного роста (Pastan et aL, [c.344]

    Последние достижения биохимии, молекулярной и клеточной биологии, электрофизиологии, использование современных физико-химических методов позволили преодолеть фрагментарность в описании структуры и функции клеток. К настоящему времени клетка представляется уже не статической структурной единицей, включающей многочисленные строго специализированные органеллы, не сосудом , в котором протекают независимые друг от друга ферментативные реакции, но относительно автономным образованием, отделенным от внешней среды плазматической мембраной и способным эффективно координировать свои функции посредством набора вторичных мессенджеров. Вторичные мессенджеры можно разделить на две группы образующиеся в ходе ферментативных реакций (циклические нуклеотиды, диацилглицерин, инозиттрисфосфат) и проявляющие свое действие благодаря существованию собственного трансмембранного градиента (ионы кальция). [c.112]


Смотреть страницы где упоминается термин Клеточная реакция вторичные: [c.344]    [c.339]    [c.114]    [c.128]    [c.217]    [c.166]    [c.73]    [c.15]    [c.252]    [c.192]    [c.98]    [c.387]    [c.191]    [c.227]    [c.204]    [c.30]   
Свободные радикалы (1970) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции вторичные



© 2025 chem21.info Реклама на сайте