Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промоторы свойства

    Влияние условий термообработки носителя и катализатора на нх физико-химические свойства и каталитическую активность. Условия термообработки значительно изменяют физическое и химическое состояние компонентов катализатора, что связано с химическим взаимодействием исходных соединений платины, носителя и промоторов на различных стадиях термообработки. Катализатор изомеризации парафиновых углеводородов должен обладать сильными кислотными свойствами, обеспечивающими высокую скорость протекания реакции изомеризации, в сочетании с гидрирующими свойствами, от которых зависит стабильность его работы в процессе. [c.50]


    Установку, сочетающую противокоррозионные свойства и возможность облучения реакционной смеси, практически изготовить очень сложно, поэтому пытались найти другие способы инициирования реакции, например, перекисью бензоила. Было показано также, что присоединение хлора идет с большой скоростью при низкой температуре без промоторов — при пропускании хлора через бензол, охлаждаемый льдом. [c.288]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами они активны как в реакциях гидрирования-дегидрирования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных соединений нефтяного сырья [119, 136]. Однако каталитическая активность молибдена и вольфрама недостаточна для разрыва углерод-углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно-ситовые свойства. Если же кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учитывать и специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите — реакции последующего более глубокого превращения с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к поли-функциональным. [c.250]

    Влияние функциональных групп на поверхности сажи на взаимодействие с полимером остается дискуссионным, за исключением случаев их использования в полярных средах и ненасыщенных соединениях в присутствии химического промотора. В связи с тем, что каменноугольный пек представляет собой полярную среду, влияние функциональных групп на поверхности сажи на структуру и свойства композиций сажа—связующее можно считать доказанным [В-4]. [c.222]

    Опыт Катали- затор Промотор Свойства катализатов Выход, % вес.  [c.343]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]


    На рис. 1Х-1 показано влияние некоторых добавок на каталитическую активность железа в процессе синтеза аммиака. Рис. 1Х-2 иллюстрирует проявление избирательных свойств катализатора. Добавки, которые сами по себе не обладают каталитическими свойствами, но усиливают активность катализатора, называются промоторами. Вещества, в присутствии малых количеств которых снижается активность катализаторов, носят название катализа-торных (контактных) ядов. Обычно они не добавляются специально к катализатору, но неизбежно отлагаются на нем в течение процесса. Ускорителями называют вещества, при добавлении которых в реакционную систему поддерживается активность катализатора за счет подавления действия катализаторных ядов или какого-либо другого воздействия. Вещества, добавляемые в процессе производства катализатора для уменьшения их активности, носят название ингибиторов, они могут иметь ценность в том случае, если катализатор вводится не для увеличения скорости реакции, а для проявления избирательности действия. [c.304]

    На активность и физико-химические свойства медных катализаторов оказывают влияние множество факторов [50—53] тип плавильных печей, время перемешивания расплавов электродинамическим полем,. режим охлаждения сплава, выщелачивания, природа и количество промотора и др. При металлографическом исследовании сплавов было показано, что сплавы, приготовленные в индукционных печах, имеют более однородную структуру, чем в Муфельной печи, за счет хорошего перемешивания расплавов индукционным полем. Микроструктура сплавов одинакового состава,, полученных при разном времени перемешивания расплавов индукционным полем, практически одинакова, [c.53]

    Кроне активного компонента, заданные свойства катализатору придают носитель, промоторы и различного рода добавки. Очень важны физические свойства катализатора. Их комбинация должна быть такой,чтобы катализатор обладал высокой прочностью в течение нескольких лет работы. Минимально допустимым сроком работы является два года. Хороший катализатор должен работать не менее пяти лет. [c.34]

    На свойства катализаторов значительное влияние оказывают примеси. Те из них, небольшое содержание которых в катализаторе повышает его эффективность, называются промоторами данного катализатора. Если же примесь (в малых количествах) снижает эффективность катализатора, то она — каталитический яд данного катализатора. Эти свойства примесей учитываются при изготовлении и эксплуатации катализаторов. [c.171]

    В состав электролита помимо чистой серной кислоты или чистого бисульфата аммония входят поверхностно-активные добавки (промоторы), такие, как фторид, хлорид, роданид и цианид аммония. Анионы этих солей, адсорбируясь на активных центрах поверхности платины, повышают перенапряжение выделения кислорода и этим увеличивают выход по току 5208. Анионы р- и С1- в ходе технологического процесса почти не расходуются. Однако они повышают агрессивность среды, будучи активаторами коррозии, и это затрудняет их использование. Роданид аммония, наоборот, приходится непрерывно вводить в анолит, поскольку анионы СЫ5 легко окисляются на аноде. Впрочем, продукты разложения роданида также обладают промотирующим действием. В отличие от галогенидов роданид не влияет на коррозионные свойства электролита, в отличие от циа- [c.186]

    Часто при добавлении к катализатору малых количеств вещества, которое само по себе не обладает каталитическими свойствами для данного процесса, активность катализатора увеличивается. Такие вещества называются промоторами. Их действие, по-видимому, связано с образованием на поверхности новых активных центров. В качестве промоторов используются металлы, оксиды металлов, соли. [c.300]

    Во-вторых, промотору приписывается способность влиять на кинетику процесса приготовления, обеспечивая образование более дисперсных или более дефектных твердых тел. Основное влияние добавки обусловлено изменением числа активных центров, увеличением поверхности без значительного изменения свойств активных центров и энергии активации реакции. Механизм действия добавки проявляется в увеличении предэкспоненциального множителя. [c.133]

    При полимеризации часто используют окислительно-восстанови-тельное инициирование. В этом случае в систему вместе с инициатором вводят восстановитель — промотор. В результате окислительно-восстановительной реакции образуются свободные радикалы, инициирующие полимеризацию. Особенностью окислительно-восстановительного инициирования является очень низкая энергия активации 50,1 — 83,6 кДж/моль (12—20 ккал/моль) вместо 146 кДж/моль (35 ккал/моль) при термическом распаде инициатора. Это позволяет проводить полимеризацию при более низких температурах, при которых уменьшается возможность протекания побочных процессов, приводящих к изменению кинетики реакции и свойств получаемого полимера. [c.70]


    Величины ко и Е зависят не только от свойств веществ С , но и от наличия в реакционной смеси катализаторов (промоторов и [c.13]

    Мультиплетная теория позволяет объяснить ряд свойств катализаторов. Избирательность действия промоторов, свойства смешанных катализаторов объясняются изменением числа и.строения мульти-плетных комплексов на поверхности катализатора. Отравление ки1а-лизаторов связано с адсорбцией ядов на атомах мультиплета. [c.445]

    Гетерогенные катализаторы редко применяются в виде индивидуальных веществ и, как правило, содержат носитель и различные добавки, получившие название модификаторов. Цели их введения разнообразны повышение активности катализатора (промоторы), его избирательности и стабильности, улучшение механических и структ урных свойств. Фазовые и структурные модификаторы стабилизируют соответственно активную фазу и пористую структуру повар шости катализатора. [c.83]

    Металлический компонент катализатора, обладающий дегидриче-скими свойствами, ускоряет реакции дегидрирования и гидрирования. Он также способствует образованию ароматических углеводородов, частичному удалению промежуточных продуктов реак ц11и, ведущих к коксообразованию. Металлы-промоторы полиметаллических катализаторов, помимо взаимодействия с основным активным компонентом катализатора (платиной), влияют на селективность процесса, взаимодействуя с носителем (окисью алюминия). [c.10]

    Кислотные свойства катализатора определяют его крекирующую и изомеризуюшую активность, а также глубину превращения сырья. Для усиления кислотной функции катализатор, как правило, промо-тируют галогеном, что способствует замедлению реакции крекинга, стабилизует высокую дисперсность платины. В качестве кислотного промотора в состав АП—56 входит фтор, остальные отечественные катализаторы промотированы хлором. [c.10]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Применение. Лантаноиды применяют как добавки к различным сплавам. Введение Се в сталь значительно улучшает ее свойства, так как Се связывает растворенную в стали серу и выводит ее в шлак. Из стали, содержащей 6% Се, изготовляют хирургические инструменты. Введение лантаноидов в магниевые сплавы повышает их прочность (из этих сплавов делают детали самолетов и ракет). Оксиды ЬпгОз, СеОз используют как катализаторы и промоторы для катализаторов. Лантаноиды входят в состав многих лазерных материалов, в частности широко применяют лазеры из стекла, содержащего N(1. Пропитка солями Ьп углей дуговых ламп для кг носъемок сильно увеличивает яркость света. [c.606]

    Синтез присадки MA K аналогичен синтезу присадки АСК, отличие лишь в том, что в готовую присадку АСК вводится дополнительное количество гидроксида кальция и в качестве промотора ири синтезе используют метиловый спирт. Присадка MA K представляет собой коллоидную систему, содержащую кроме основного компонента — алкилсалицилата кальция, также определенное количество гидроксида кальция и карбоната кальция. Присадки АСК и MA K обладают высокими моющими и антиокислительными свойствами. [c.86]

    Разработаны специальные модификации катализаторов и промоторов, позволяющие осуществлять в регенераторе окисление оксида углерода в диоксид, улавливание оксидов серы из дымовых газов регенерации и последующее их восстановление в сероводород в зоне крекинга, повышать на 3—4 пункта октановое число (и. м.). У катализаторов последних модификаций резко выросла способность сохранять каталитические свойства при осаждении больших количеств металлов из сырья. Так, на обычных промышленных цеолитсодержащих катализаторах при суммарном содержании никеля и ванадия 0,5% конверсия сырья снижается более чем в 2 раза, резко ухудшается селективность кре-КИН13, повышается выход кокса, сухого газа и водорода. На специально приготовленных цеолитсодержащих катализаторах в этих же условиях конверсия сырья практически не снижается, селективность изменяется незначительно. [c.115]

    Донорные свойства непредельной связи и акцепторные свой-ства атакующей положительной частицы способствуют образованию я-комплексов, или комплексов с переносом заряда, что приводит к повышению дипольного момента либо появлению новых полос, определяемых УФ-спектроскопией. я-Комплекс способен распадаться на исходные компоненты, так как энергия связи в нем составляет лишь несколько кДж/моль и характеризуется значительно большими межатомными расстояниями, чем в а-комплексе. Образование комплексов зависит от наличия в реакционной смеси промоторов типа НС1 и Н2О, поскольку чистые олефины при контакте с безводными металлгалогенидами [c.64]

    Снижение активности и селективности катализаторов риформинга вызвано главным образом побочными реакциями, приводящими г к образованию на их поверхности бедных водородом углеродсодер-,, жащих отложений, которые- обычно называют кйксом. Одновременно, закоксовывание катализаторов приводит к значительному сокращению продолжительности реакционного периода. Влияние отложений кокса на свойства катализаторов, применяемых в процессах превращения углеводородов, химическая природа таких отложений, механизм образования кокса и ряд других, относящихся сюда вопросов, явились предметом многих исследований [92—941. Ниже будут рассмотрены некоторые данные и зависимости, характеризующие процесс отложения кокса на бифункциональном алюмоплатиновом катализаторе в условиях риформинга. Чтобы сохранить необходимую последовательность изложения, мы обсудим в следующей главе вопрос о влиянии металлических промоторов на процесс коксообразования. [c.50]

    Известно [14], что скорость образования окиси этилена нелинейно зависит от степени покрытия поверхности кислородом и имеет резкий максимум при степени покрытия 0,5—0,6. Такой характер скорости обусловлен, по-видимому, структурным превра-щеппем поверхности металла и связанным с этим изменением типа связи металла с кислородом. Это происходит в результате взаимодействия кислорода как с поверхностью катализатора, так и с его приповерхностными слоями. Кислород, внедряясь в приповерхностные слои серебра, оказывает, очевидно, модифицирующее действие, подобное модифицирующему действию других электроотрицательных элементов [15]. Аналогия между глубоко адсорбированным кислородом и электроотрицательными промоторами и характер изменения активности и избирательности катализатора прп введении промоторов позволяют предположить, что эффект повышения селективности окисления этилена в нестационарном циклическом режиме обусловлен понижением энергий активации стадий, определяющих скорость окисления этилена по маршрутам полного и парциального окисления, причем более сильным понижением по последнему. Нестационарные условия позволяют, очевидно, провести процесс при более высоких концентрациях реакционного кислорода, благодаря чему и достигается более высокая избирательность. Пока нельзя исключить, что экстремум избирательности при величине периода 30 с связан с динамическими свойствами реактора и не обусловлен динамическим свойством поверхности катализатора. [c.35]

    Модифицирование никель-алюминиевого сплава незначительными добавками других металлов приводит к образованию новых фаз и, следовательно, к изменению структуры и свойств катализаторов. Характер этих изменений зависит от природы и количества промотора. Так, иапример, изучение никель-алюминиевых сплавов, содержащих Мо, Сг, У, показывает, что в них кроме Ni2Alз, [c.35]

    Кислотную функцию в алюмон/атиновом катализаторе выполняет окись алюминия. Она определяет активность катализатора в реакциях изомеризации и гидрокрекинга. Для усиления кислотности в окись алюминия вводят 0,3% фтора или 0,5—2% хлора. Более высокое содержание галогена значительно повышает крекирующие свойства катализатора и приводит к увеличению выхода газа. Применение хлора в качест]1о промотора имеет некоторое преимущество перед использованием фтора. Хлор в меньшей мере способствует реакциям крекинга и, кроме того, стабилизирует высокую дисперсность платины за сче" образования комплекса с платиной и окисью алюминия. [c.256]

    С двуокись углерода с парциальным давлением 3 ат будет реагировать с окисью цинка и снижать прочность катализатора. При более высоких температурах можно без риска работать с более высоким парциальным давлением СО3. Действие Н О и СОа на окись цинка сходно с термическим спеканием, но происходит при более низких температурах (гл. 1). Структурообразующие свойства окиси цинка будут ослаблены, если условия реакции приблизятся к условиям возможного образования карбоната цинка. Используемая в катализаторе форма окиси алюминия не должна реагировать с рабочим-газом, но должна иметь хорошие стабилизирующие свойства. Инертность А12О3 не создает проблем. В катализаторе Ай-Си-Ай 52-1, в котором окись цинка и окись алюминия являются субмикроскопи-ческими структурными промоторами, окись алюминия не только уменьшает термическое спекание меди, но также затрудняет реакцию спекания окиси цинка и увеличивает стабильность катализатора, в условиях реакции. [c.139]

    Исследование работы катализатора АП-56 при риформинге фракции 62—105 °С показало, что глубина дегидрирования шестичленных нафтеновых углеводородов не зависит от длительности работы катализатора. Для циклогексана глубина дегидрирования составляет около 85%, для метилциклогексана — 100%. Глубина дегидрирования пятичленных нафтеновых углеводородов значительно ниже в начальный период работы катализатора только 25% метилцикло-пентана превращается в бензол, а диметилциклопептана — 60%. По мере отработки катализатора (при работе на сырье с повышенным содержанием серы и с высокой влажностью циркулирующего газа) степень превращения метилциклопентана в бензол падает до нуля и после окислительной регенерации катализатора она не восстанавливается. Изменение свойств катализатора объясняется понижением степени дисперсности платины и потерей кислотного промотора фтора [55]. [c.20]

    В данной работе рассмотрены зависимости кислотных свойств К0ГШ03И1ЩЙ иД 1/ -АХзОз/промотор ( 2л ) от содержания отдельных компонентов, условий введения промотора и условий последующих обработок. Пля исследования использовали цеолит ЦШ ( 02/ 120 = 35) и гидратированный оксид алюминия, синтезированные в АО АНХК. Промотог) вводили методом ионного обмена и пропитки по водо- [c.136]

    Как уже отмечалось, наиболее эффективными промоторами пента-силсодержащих катализаторов ароматизации углеводородов являются катионы цинка и галлия. Были изучены кислотные свойства катализаторов, промотированных различными количествами цинка. ИК-спектро-скопические исследования промотированных образцов показали, что в спектрах ОН-групп после промотирования не появляются дополнительные полосы поглощения, которые можно было бы отнести к колебаниям ОН-групп, связанных с модифицирующим оксидом (см. рис. I). [c.140]

    В предыдущем сообщении били рассмотрены кислотные свойства композиций ЦВМ/ /М120з/промотор. Показано, что варьируя соотношение компонентов и условия последапцих обработок, можно существенно изменять концентрацию и силу кислотных центров. Данная работа посвещена изучению каталитических свойств этих композиций в ароматизации пропилена, пропана, н- и изо-бутана. [c.142]

    Следует отметать, что при сопоставлении вариантов введения промотора пропиткой по водопоглощению, а также ионным обменом с последрщвй пропиткой в избытке раствора не было обнаружено существенного различия в каталитических свойствах модифисщрованных образцов. [c.146]

    Если вернуться к реакции синтеза аммиака, выражаемой уравнением (1.1), следует напомнить об ее обратимости и зависимости равновесных концентраций реагентов от условий, т. е. в первую очередь от температуры (Г) и общего давления (Р). В табл. 1 приведены равновесные концентрации аммиака (в мольных процентах) для двух температур и трех давлений, полученные Ф. Габером в начале текущего века. Они показывают, что равновесная концентрация аммиака увеличивается с давлением. При повышении давления от 1 до 600 атм это увеличение характеризуется отношениями ПО (400° С) и 360 (500° С). Таким образом, синтез аммиака следует проводить при возможно более высоком давлении. Как известно, это требование соблюдается в методах синтеза, применяющихся в промышленности, где давления достигают 1000 атм. С другой стороны, повышение температуры уменьшает равновесную концентрацию (выход) аммиака. Следовательно, его синтез надлежало бы проводить при возможно более низкой температуре, у вторую рекомендацию, вытекающую из изучения тепловых явлений и термических свойств, не удается использовать в полной мере. Дело в том, что приведенные в таблице данные характеризуют равновесное, т. е. конечное, состояние реагирующей системы и ничего не говорят, за какое время это состояние может быть достигнуто. Фактор времени учитывается в другом разделе физической химии — химической кинетике. Она подсказывает, что скорость химической реакции очень быстро уменьшается с понижением температуры. Поэтому может оказаться, что при какой-то температуре хороший выход может быть достигнут за слишком продолжительное время, скажем за миллиард лет. С другой стороны, согласно данным кинетики скорость реакцин можно увеличить применением катализаторов. В итоге комплексного физико-химическоге изучения, реакцию синтеза аммиака проводят при температуре 450— —500° С на катализаторах, состоящих из металлического железа, содержащего некоторые активаторы (промоторы). [c.6]

    Гетерогенные катализаторы сравнительно редко применяются в виде индивидуальных вешеств и часто содержат различные добавки, так называемые модификаторы. Цели их введения очень разнообразны повышение активности катализатора (промоторы), избирательности и стабильности работы, улучшение механических или структурных свойств. Фазовые и структурные модификаторы стабилизируют активную фазу твердого катализатора или пористую структуру его поверхности. Так, в медь-хромовых катализаторах идрированный окспд хрома препятствует восстановлению оксида меди (И) с превращением его в неактивную форму. Добавление уже 1 % А1гОз к железному катализатору увеличивает его площадь поверхности, препятствуя спеканию и закрытию пор и т. п. Некоторые модификаторы существенно повышают стабильность работы катализатора или сильно изменяют характер его каталитической ак- [c.441]

    Из практики известно, что обкладочные резины (резины, предназначенные для крепления к текстильному или металлическому корду, ткани или проволоке) следует тщательно предохранять от попадания силоксановых каучуков и кремнийорганических жидкостей, поскольку они, как правило, несовместимы с углеводородными каучуками и, вследствие этого, стремятся выйти на поверхность раздела между армирующим материалом и полимером. От этих процессов в наибольшей степени страдают адгезионные свойства композиций. В то же время, известно, что в некоторых случаях малые добавки кремнийорганических соединений оказывают положительное влияние на свойства эластомерных композиций на основе обычных углеводородных каучуков, в частности, на их вязкость и уровень упруго-прочностных и динамических показателей их вулканизатов. Известно также, применение кремнийоранических добавок, содержащих функциональные группы, в качестве промоторов взаимодействия неполярных каучуков с гидрофильными наполнителями, особенно, кремнекислотного типа. [c.112]

    На основании сравнения последовательностей разных промоторов выведена каноническая последовательность промотора, в которой представлены наиболее часто встречающиеся в каждом положении нуклеотиды. Каноническая последовательность участка —10 — ТАТААТ (эта последовательность называется также блоком Приб-нова), участки —35 — TTGA A (при рассмотрении промоторов обычно приводят последовательность только той нити ДНК, которая в транскрибируемой части совпадает с последовательностью РНК, т. е. является незначащей). Каноническая последовательность промотора несимметрична, что отражает его функциональную несимметричность. Действительно, промотор определяет не только место начала транскрипции, но и ее направление. Среди природных промоторов пока не обнаружено ни одного с канонической последовательностью, но искусственно сконструированный промотор с канонической последовательностью отличается очень высокой эффективностью (этот результат не был заранее очевиден усредненная последовательность вполне могла бы обладать средними свойствами). О том, что каноническая последовательность является наиболее эффективной, свидетельствуют и результаты многочисленных данных по мутационным изменениям последовательности промоторов изменения, приближающие последовательность промотора к канонической, как правило, увеличивают его силу, тогда как изменения, уменьшающие его сходство с канонической,— уменьшают его силу. Изменения нуклеотидной последовательности вне участков —10 и —35 обычно слабо сказываются на силе промотора. Знание этих закономерностей, однако, еще не позволяет надежно предсказывать силу промоторов и находить промоторы, рассматривая последовательность ДНК, хотя РНК-полимераза делает это очень быстро. [c.141]

    Благодаря использованию большого набора мутаций по промоторам и генам активирующих белков дрожжей удалось выяснить некоторые особенности взаимодействия белков-активаторов с АП, а также характерные свойства этих белков. Белок GAL4 активирует гены, необходимые для катаболизма галактозы. GAL4 связывается с АП, представленной повторяющимися элементами по 17 п. н-Степень активирующего действия пропорциональна числу этих элементов в промоторе. Функция связывания ДНК и активации транскрипции принадлежит разным участкам белка GAL4, который содержит 881 аминокислоту. 73 остатка с N-конца молекулы белка достаточны для обеспечения специфического связывания с ДНК. Эгот участок связывает ионы цинка и содержит характерную структуру — цинковые пальцы , обнаруженные в целом ряде белков, активирующих транскрипцию (см. раздел 4 этой главы). Два других дискретных участка белка, включающих аминокислоты 149—196 и 768—881, достаточны для обеспечения активации транскрипции. Эти участки содержат кислые аминокислотные остатки. По-видимому, в разных активаторных белках эти районы обладают [c.196]

    В ней выделяются районы А и Б. Волнистой чертой отмечена после довательность, необходимая для экспрессии разных генов, кодирующих белки, индуцируемые в условиях теплового шока. Гены, к которым присоединяют этот участок промотора, начинают также активно экспрессироваться при тепловом шоке. В промоторных районах А и Б гена теплового шока дрозофилы подчеркнуты повторяющиеся четырехнуклеотидные мотивы T G и GTT . Наличие района Б необходимо для полной экспрессии гена. Элементы А и Б, взаимодействующие с белковыми факторами транскрипции, имеют сходные функциональные свойства и обладают синергическим действием, активируя транскрипцию. Гены теплового шока дрозофилы, введенные в клетки млекопитающих, начинают активно экспрессироваться при повышении температуры. Это говорит о том, что не только сами гены теплового шока, но и регуляторные компоненты этой системы генов достаточно консервативны в эволюции. [c.200]


Смотреть страницы где упоминается термин Промоторы свойства: [c.329]    [c.67]    [c.152]    [c.90]    [c.169]    [c.96]    [c.59]    [c.118]    [c.469]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.415 , c.438 ]




ПОИСК





Смотрите так же термины и статьи:

Промоторы



© 2024 chem21.info Реклама на сайте