Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь соединения ее как сульфат как катализатор

    Мешающие ионы. Нитрат-ионы надо удалить предварительно, выпаривая раствор до появления белых паров серной кислоты. Должны отсутствовать соединения, восстанавливаемые цинковой амальгамой до образования соответствующих элементов — соединения мышьяка, сурьмы, меди, олова и т. п. Хром (III) и титан восстанавливаются соответственно до хрома (II) и титана (III), но их можно вновь окислить до первоначального состояния, пропуская через раствор воздух в течение 10 мин в присутствии сульфата меди, действующего как катализатор [0,0003 г меди в 300 мл.  [c.765]


    Ацетилен в присутствии катализаторов может гидратироваться до ацетальдегида. Эта реакция открыта М. Г. Кучеровым, применившим в качестве катализатора соли ртути наибольшей активностью обладает раствор сульфата ртути в серной кислоте. Получение кетонов методом гидратации гомологов ацетилена представляет интерес для химика-органика. Соли ртути, кадмия и цинка использованы Кучеровым для катализа реакций гидратации метил-ацетилена и изопроиилацетилена, приводящих к образованию соответствующих кетонов [359—361]. Превосходные выходы кетонов (80—90%) получены при гидратации гексина-1, гептина-1, октина-1 [362] и дибутилацетилена [363]. Эти соединения кипятили с обратным холодильником в присутствии катализатора сульфат меди—серная кислота и растворителя, в качестве которого служили метанол, ацетон и уксусная кислота. [c.153]

    СО2, Н2О и S02- Газы уносятся реакционной смесью, а на поверхности катализатора вновь образуется оксид меди. Образование сульфатов на шпинелях протекает значительно медленнее, поэтому такие катализаторы более устойчивы к отравлению серосодержащими соединениями. [c.73]

    Вода, получающаяся при дегидратации, собирается в ловушку, охлаждаемую сухим льдом, и количество ее измеряется, чтобы можно было наблюдать за протеканием реакции. Должны быть приняты меры предосторожности для предотвращения сильного нагревания. Только для спиртов, устойчивых к дегидратации, температуру поднимают выше 130° и в редких случаях выше 150°. Для некоторых спиртов необходимо инициировать дегидратацию при 170°, после чего температура понижается до 150°. Выше 150° сульфат меди начинает окислять продукты, что доказывается выделением SOg. Ввиду легкого окисления продуктов реакции сульфатом меди все следы диэтилового эфира необходимо удалять. Для устойчивых спиртов рекомендуется вторичная обработка со свежим катализатором, чтобы обеспечить дегидратацию всего спирта. Безводная щавелевая кислота может быть использована в особых случаях, хотя вследствие летучести применение ее связано с большими трудностями, чем применение сульфата меди. Щавелевая кислота предпочтительнее сульфата меди, если олефины в продуктах реакции должны гидрироваться над платиновым катализатором, так как этот катализатор очень легко отравляется следами сернистых соединений. [c.506]

    В отсутствие стабилизаторов и в жидкой фазе единственным обнаруживаемым продуктом каталитического окисления водорода является вода. В качестве катализаторов предлагались Pt (10%) на активированном угле, Pt на силикагеле, суспендированные в воде [289, 290], хлорид палладия [291], аммиакаты меди [292], сульфат меди [188]. Ионы Pt, Pd, Os, Ir, Rh, Ru, добавленные к раствору 0,16 Ai сульфата уранила, содержащему растворимые водород и кислород, при 250° С восстанавливаются до металлов и настолько эффективно катализируют окисление водорода, что это приводит к взрыву [188]. Сульфат серебра и KI довольно эффективно катализируют процесс, но восстанавливаются до Ag и I2 соответственно. Такие элементы, как Ni, Со, Zn, d, Pb, As, Li, Rb, I, K, Br, Mg, Fe, TI, e, Sn, Mn, V, Ti, или их соединения (очевидно, сульфаты) в тех же условиях практически не катализируют окисление водорода [188]. [c.247]


    Сущность метода. Образец полимера (примерно 5 г) нагревают со смесью серной кислоты, оксида ртути (II), сульфата меди и селенового катализатора с целью превращения азотсодержащих органических соединений в сульфат аммония. В конце нагревания к реакционной смеси добавляют сульфат калия, чтобы поднять температуру кипения до 380°С, после чего смесь продолжают нагревать до полного удаления углеродсодержащих веществ. [c.17]

    Нами изучено влияние ряда соединений тяжелых металлов на скорость озонирования мочевины. Исследованы как растворимые, так и труднорастворимые соединения - сульфаты №(П) Си(П) и Fe(ll) хлорид Ре(П1) нитраты Сг(П1) и Со(П) оксиды Си(П) и Hg (И), ацетил-ацетонат меди и др. Концентрация катализатора в растворе составляет 100 мг/дм при исходной концентрации мочевины 60 мг/дм и скорости подачи газовой смеси 1 дм /мин. Концентрация озона в озоно-воздушной смеси - 12,2 мг/дм.  [c.83]

    Соединения азота вредно влияют на катализаторы крекинга и способствуют смолообразованию в бензинах. Связанный азот в сырой нефти и продуктах переработки определяют нагреванием с серной кислотой в присутствии катализатора, отгонкой аммиака с водяным паром и последующим добавлением реактива Несслера. Переведение амидного азота и азота гетероциклических соединений, за исключением пиридина, в аммонийный азот катализируется окисью ртути HgO, сульфатом меди и селеном нитро- и нитрозогруппы восстанавливают добавлением салициловой кислоты. Определения можно выполнять с точностью +10% при содержании от 0,002 до 1,0% азота. Метод был также успешно применен для определения небольших количеств азота в катализаторах, синтетических каучуках и других твердых веществах, содержащих до 7% азота. [c.124]

    При использовании катализаторов с активным компонентом оксидом меди хлор и газообразный хлористый водород реагируют с ним с образованием хлорида меди. Если в основе катализаторов используются оксиды алюминия, газы, содержащие сернистые соединения, реагируют с образованием сульфатов. С другой стороны, взаимодействие оксидов с ЗОг при 300 °С очень ограничено. [c.190]

    Разложение. Смесь из красной окиси ртути, сульфата меди и селена является очень мощным катализатором процесса разложения азотистых органических соединений и превращения их в неорганические (ЫНз). С этим катализатором количественное разложение достигается за несколько часов. Но при перегонке аммиака соединения ртути частично разлагаются и на внутренней поверхности холодильника оседает небольшое количество металлической ртути. Поэтому вести перегонку, разбирать и мыть перегонную аппаратуру нужно, соблюдая меры предосторожности. [c.284]

    Аминогруппы можно замещать на нитрогруппы, причем промежуточно образуются соли диазония. Хотя синтез имеет ограниченное применение, оп может оказаться наилучшим, когда желательно синтезировать соединение с определенным положением заместителей. Например, /г-динитробензол нельзя получить прямым нитрованием, но он образуется с выходом 76% из га-нитроанилина в результате превращения последнего сначала в соль диазония. которая затем с нитритом натрия дает диннтросаединепие [20]. Выход того же продукта через фторборат диазония 67—82% [21]. Используют различные соли диазония хлорид, сульфат [22]. фгорбэрат [21] и кобальтинитрит [231. Для превращения этих солей в нитросоединения в качестве катализаторов применяют закись меди с сульфатом [c.494]

    Для осуществления изомеризации окиси этилена в ацетальдегид можно также пропускать ее при 180—300 °С над такими катализаторами, как пирофосфат магния, сульфаты меди или церия (с добавками окисей некоторых металлов), их гидроокиси или карбонаты . Активное, катализирующее вещество наносится на носитель. В качестве катализаторов предлагаются также галоидные или оксигалоидные соединения щелочноземельных металлов — хлорокиси или хлориды магния и бериллия . [c.82]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]


    Сущность метода. При нагревании органических веществ са смесью концентрированной серной кислоты и сульфата калия (т. кип. 315—370°С) в присутствии катализатора — соли меди или ртути — происходит разложение этих веществ с образованием суль-. фата аммония (метод Кьельдаля). Раствор подщелачивают, отгоняют аммиак и определяют его в отгоне. Так находят суммарное содержание азота органических соединений и азота, который первоначально был в пробе в виде аммонийной соли. Вычитая из поч [c.64]

    ДИТСЯ При температурах —45—55° для ускорения реакции применяется катализатор—медная бронза или безводный сульфат меди. При взаимодействии четырехфтористого кремния с диазометаном кремнийорганических соединений не образуется. [c.267]

    Термокаталитическое разложение алифатических дназосоединений обычно осуществляется в присутствии мелко-измельченной металлической меди ( медной бронзы ) или солей одно- и двухвалентной меди (безводного сульфата, стеарата, галогенидов, комплексов галогенндов с эфирами фосфорной кислоты и др.). Выбор катализатора и его количество зависят от конкретных условий опыта нуклеофильности, способности к комплексообразованию акцептора карбена, устойчивости дназо-соединения и др. Наиболее активным катализатором считаются соединения одновалентной меди, наименее активным — медная бронза. Сульфат меди заггимает промежуточное положение. [c.23]

    Общее содержание азота. В соответствнн с традиционным методом онределения содержания азота но Кьельдалю (1883 г.), азотсодержащее соединение сначала разлагают, нагревая его с концентрированной серной кислотой. Разложение ускоряется в присутствии дегидратирующих агентов, таких как сульфат калия, или катализаторов, например сульфата меди (II) ири этом углерод окисляется до диоксида углерода, а входящий в состав анализируемого соединения азот превращается количественно в сульфат аммония. Далее гидроксид калия взаимодействует с сульфатом аммония с образованием слабоосновного гидроксида аммония, который преврагцают в газообразный аммиак, абсорбируют и титруют кислотой. [c.95]

    Замена галогена. В ряду производных бензола реакция замены галогена на аминогруппу практически имеет очень ограниченное применение и используется только для соединений типа /г-нитрохлорбензола. В противоположность этому, в ряду пиридина широко применяется замена галогена на аминогруппу. В первую очередь эта реакция применима к 2-и 4-хлорпиридинам как более реакционноспособным соединениям, однако не ограничивается только ими. Так, при нагревании 3-бромпиридина в автоклаве с концентрированным аммиаком в присутствии сульфата меди в качестве катализатора в течение 20 час. при 140° образуется 3-аминопиридин с выходом 62% (с учетом не вступившего в реакцию исходного вещества превращение идет на 73%). Поданным Хертога и Вибо [121, выход 3-аминопиридина достигает 75—80%, если вести реакцию с концентрированным аммиаком при 200° в течение 30 час. [c.426]

    Способность образовывать соединения типа шпинелей или комплексы с различными соотношениями промотора и катализатора и вызывать повышение каталитической активности, не является общим свойством для всех окисей, лрименяемых в качестве промоторов. При каталитическом разложении раствора хлорноватистокислого натрия [173] окись кальция, кадмия, ртути, магния и бария, карбонаты кальция и бария, сульфат бария, оксалат бария, оксалат кальция и хромат бария служат промоторами для окиси меди, употребляемой как катализатор, и максимальное повышение активности получалось при различных соотношениях промотора и катализатора, без какого-либо указания на связь между структурой кристаллов промотора и его активностью. [c.368]

    Серная кислота. Этилен не полимеризуется в присутствии серной кислоты, потому что образуются устойчивые этилгидросульфат и этил-сульфат. Однако этилен полимеризовался ири обработке его 2 %-ным раствором сульфата ртути и 5 %-ным раствором сульфата меди в 95 %-ной серной кислоте [11]. В присутствии этих солей ссрнан кислота поглощала этилена в 100 раз больше, чем в их отсутствии. При стоянии в течение некоторого времени раствор расслаивался на два слоя верхний — углеводородный и нижний — пастообразный. Если небольшое количество пасты сразу же смейать с чистой серной кислотой, то смесь приобретает максимальную способность к поглощению этилена. Эта активность катализатора постепенно уменьшалась и совершенно терялась через 24 часа. Углеводородный слой состоял из смеси предельных углеводородов, включая парафины и циклопарафины. Непредельные соединения, напоминающие углеводороды с открытой цепью и циклические терпены, также были выделены при разбавлении водой сернокислотного слоя [3]. [c.190]

    Сущность метода заключается в восстановлении окисленных соединений азота до ионов аммония сплавом Деварда. Затем пробу выпаривают почти досуха, все азотные соединения превращают в сульфат аммония в присзггствии концентрироваанной серной кислоты и сульфата калия для повышения температуры кипения смеси и меди в качестве катализатора. Затем аммиак выделяют из смеси дистилляцией, поглощают раствором борной кислоты с индикатором и определяют его титриметрическим или спектрометрическим методом. [c.149]

    Получение из бензойной кислоты. Из бензойной кислоты получают практически чистый фенол. Для этой цели рекомендуют вести процесс при 180—370°С, но чаще при 230—240°С [94—96]. Обычно в качестве катализатора применяют соли двухвалентной меди сульфат, хлорид, ацетат [76], фосфат и молибдат [97]. Отмечают, что фосфаты несколько активнее [97] практически удобнее использовать бензоат меди. Отмечено участие аниона в реак-всионном процессе так, при использовании хлорида меди появляются примеси хлорфенола [76]. Имеются патенты и работы, в которых в качестве катализаторов упоминаются и соединения других элементов (молибдена [98], серебра [99], марганца [100], [c.164]

    Такое объяснение арилирования подтверждается рядом фактических данных. Установлено что в отсутствие в реакционной смеси ионов галоида арилирование таких соединений как коричная кислота, а-мет илстирол, несимметричный дифенилэтилен и др. не происходит. Кстати, это также объясняет, почему только галогениды меди являются эффективными катализаторами реакции, а сульфаты, нитраты и т. т. оказались неактивными. Ведь возможность образования и существования атомарного хлора (а также и брома) уже давно доказана, в то время как существо вание радикалов 504 и НОз в этих условиях маловероятно. [c.298]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Реакцию эту проводят обычно в условиях, при кйторых диазотиро-ванный амин разлагается в растворе серной или соляной кислоты, подбирая концентрацию кислоты так, чтобы температура кипения смеси была равна 130—160°. Поскольку концентрированная серная кислота стабилизирует диазосоединения, для повышения температуры кипения можно применять разбавленную серную кислоту и сульфат натрия концентрированная кислота может также сульфировать полученные соединения. В качестве катализатора, ускоряющего разложение диазосолей, применяют также сульфат меди. Для подавления побочных реакций диазосоединений с образующимися фенолами реакциюведут в среде нейтральных органических растворителей. Скорость добавления раствора диазосоли к серной кислоте нужно регулировать таким образом, чтобы в реакционной смеси нельзя было обнаружить избытка диазосоеди нения или, в крайнем случае, чтобы обнаруживалось только небольшое количество его (проба на диазосочетание). Отрицательная проба нг диазосоединения свидетельствует об окончаний разложения. [c.457]

    Ряд патентов, не раскрывая химизма процесса, указывает на возможность ускорения окисления сырья и улучшения свойств битума. Так, для получения битума, имеющего более высокую пенетрацию при данной температуре размягчения, применяют следующие катализаторы и инициаторы окисления сырья кислородом воздуха двуокись марганца [488] хлорид алюминия [463] двуокись марганца и азотную кислоту [437] мелкораздробленный известняк [528] каустическую соду или углекислый натрий [348] бентонит или мелкоизмельченный кокс [315] серу [293] серную кислоту с добавлением металлических солей серной или борной кислот [388] металлические фторобораты [361] борную, фосфорную или мышьяковистую кислоты [406] пятиокнсь фосфора и его сульфиды (РгЗз, Р45з, Р45 ) [492] смесь пятиокиси фосфора и сополимеров изобутилена и стирола, смесь орто-фосфорной кислоты и борофтористого соединения [270] хлорат калия [479] хлорид или сульфат цинка, алюминия, железа, меди или сурьмы [306] хлорид цинка или [c.157]

    Наиболее щироко применяют ацетальдегид, бензальдегид и ацетон, образующие соответственно этилиденовые, бензилиденовые н изопропилиденовые производные, однако могут быть использованы и другие карбонильные соединения. В большинстве случаев карбонильное соединение служит одновременно и растворителем. В качестве катализатора обычно применяют серную кислоту (0,1—5 % ), хлороводород (0,2—1 % ) и кислоты Льюиса, например хлорид цинка н трифторид бора. При синтезе изопропилиденовых производных действием ацетона к реакционной смеси прибавляют безводный сульфат меди. В более поздних работах в качестве эффективного катализатора применяли катионообменные смолы в Н+-форме в присутствии безводного сульфата кальция. [c.174]

    Каталитическую очистку газов от органических сернистых соединений проводят в реакционных аппаратах, загруженных неподвижным слоем катализатора. В качестве катализаторов применяют сульфид никеля, сульфат магния с окисью цинка, тио-молибдат никеля, меди, кобальта, железа и других металлов. Наиболее широко применяется в промышленных условиях окис-ный кобальтомолибденовый и медноалюмохромовый катализаторы. [c.211]

    Хорошим катализатором является также продукт, полученный превращением растворимой соли никеля сперва в нерастворимое соединение никеля, а затем в муравьинокислый никель путем добавления муравьиной кислоты [480]. Например, из сернокислого никеля осаждается никель в виде карбоната, который в сухом или мокром виде смешивают с 85% муфавьиной кислотой и высушивают. Лоане [268] предложил новый способ приготовления окисных катализаторов, в частности окиси никеля, для применения при окислении окиси углерода при температурах между —70 и +150°. Способ заключается в получении окисных катализаторов либо электролизом растворов Сульфата никеля, кобальта, железа, марганца или меди с амальгамирующими катодами и разложении амальгамы перегонкой под вакуумом, либо разложением безводных азотнокислых солей кобальта, никеля, железа [c.275]

    Регенерация таких катализаторов, как никель, медь, железо и хром или Другие тяжелые металлы, а также их смесей, потерявших активность при реакции с сернистыми соединениями, может быть осущ ествлена тремя путями 1) превращением содержащегося в смеси металла в каталитически активнее соединение путем нагревания с гидроокисями щелочей или их карбонатами и освобождением от серы промывкой, которая при этом превращается в соответствующий сульфат 2) прибавлением щелочи и обработкой катализатора при комнатной температуре вместо повышенной температуры и 3) обработкой при высокой температуре и под давлением, благодаря чему регенерация контактной массы стансвится всесторонней [48]. [c.307]

    Для выделения азотистых соединений авторы выбрали метод, предложенный Милнером (6), заключающийся в экстрагировании их 92%-ной серной кислотой. Экстракт разлагали по методу Кьельдаля при 380°С в присутствии смешанного катализатора (5), состоящего из селена, сульфата меди и окиси ртути. Образующийся в результате сульфат аммония разлагали, как обычно, щелочью, а выделяющийся аммиак отгоняли В раствор борной кислоты и титровали стандартным раствором сульфаминовой кислоты, как рекомендует Милнер. Однако в качестве индикатора применяли не дефицитный метиловый пурпуровый, а смешанный. Были подобраны оптимальные условия разложения и удобная аппаратура. [c.61]

    Изомеризацию окисей олефинов в альдегиды или кетоны можно осуществить пропусканием их в парообразном состоянии при 180—300° через катализатор. Последний состоит из таких -веществ, как пирофосфат магния, сульфаты меди или церия с добавлением (или без) окисей металлов, их гидроокисей или карбонатов. Обычно при.меняются носители При этих услониях окись пропилена образует пропионовый альдегид, аллиловьгй спирт и ацетон, а окиси 1-бутилена к 2-бутилена дают нормаль,ные и изомасляныё альдегиды, метилэтилкетон и ненасыщенные бутенолы. Другая группа катализаторов — такие вещества, как галоидные или оксигалоидные соединения щелочноземельных металлов, например хлор окиои или хлориды магния и бериллия [c.592]

    Вторая группа катализаторов — металлы, такие, как медь [58, 59], иридий [60] и ванадий [60] (к их числу не относятся серебро, железо, цинк и никель). Кроме того, эта группа включает соли металлов сульфат [59] и стеарат [53, 54] меди (II), цианид меди (I) [59], смесь иодида меди (I) с аминами [60], хлорид и бромид меди (I) [61, 62], хлорид золота (III) [63], трихло-рид иридия и ванадия, тетрахлорид платины [60], иодид [64] и хлорид [65] цинка. В результате взаимодействия диазометана с этими неорганическими соединениями образуются либо полиметилен, либо этилен, либо металлоорганические соединения типа М(СН ,Х) . Образование этих соединений Виттиг и Шварценбах [66] связывают с отличиями в восстановительных потенциалах соответствующих металл-катионов, которые введены в реакцию  [c.22]

    Эти данные были подтверждены Дьяконовым [38, 39], который также показал, что строение получающегося продукта реакции определяется взятым количеством сульфата меди. Так, в присутствии 10 моля катализатора образуется исключительно циклопропен VIII, тогда как фуран X является единственным продуктом, если взято 10 моля (или более) сульфата меди. В присутствии 4-10" молей катализатора была получена смесь соединений VIII и X [39] [c.123]

    Можно было ожидать, что ацетилен должен реагировать с ароматическими соединениями, образуя виннльные производные, которые далее будут превращаться в диарилэтаны. В действительности этот метод дает смесь продуктов отчасти вследствие склонности стиролов к полимеризации. Одиако в присутствии катализатора, обычно сульфата меди, продукты получаются с удовлетворительным выходом. Из толуола и ацетилена, например, образуется 1,1-ди-л-толилэтан с выходом 64% (СОП, 1, 202)  [c.72]

    Замещение диазониевой группы реакцией с нитрит-анионом проводят в нейтральной или щелочной среде как в отсутствие, так и в присутствии катализатора — соединений меди [773]. Для удаления кислоты соль диазония осаждают в виде сульфата, тетрафторбората, гексанитрокобальтата или нейтрализуют раствор диазосоединения после диазотирования. При получении о- И д-динитробензолов из соответствующих иитрОанилинов хорошие результаты дает приливание раствора соли диазония к раствору, содержащему избыток нитрита и гидрокарбоната калия. [c.344]

    Роль катализа соединениями меди ярко проявляется при получейии двух- и трехатомных фенолов, в отсутствие катализатора протекающем по типу к ше-замещений. Так, нагревание о-хлорфеноксида натрия с порошком КОН в о-дихлорбензоле при 178 °С приводит к смеси резорцина и пирокатехина в соотношении 1,6 1, а нагревание о-хлорфенола в водном растворе NaOH при 190°С с добавкой сульфата медн(П) дает пирокатехин с выходом 90—95%. При взаимодействии /г-хлорфенола с 20%-м раствором NaOH при 265°С образуется всего 3% гидро- [c.353]


Смотреть страницы где упоминается термин Медь соединения ее как сульфат как катализатор: [c.156]    [c.122]    [c.73]    [c.32]    [c.511]    [c.120]    [c.331]    [c.30]    [c.49]    [c.393]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор медь

Сульфат меди

Яды катализаторов сульфаты



© 2024 chem21.info Реклама на сайте