Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода энергия образования

    Механизм термоокислительной деструкции поликарбоната. Для инициирования реакций деструкции поликарбоната на основе дифенилолпропана в отсутствие влаги требуется затрата значительной энергии на разрыв эфирных связей. Поэтому достаточно быстрая термическая деструкция этого полимера происходит при более высоких температурах (400—500°С), чем деструкция полиэтилентерефталата и других полиэфиров. При окислении поликарбоната в указанном температурном интервале обнаруживают [107, 112— 116] в основном те же продукты, что и прн термической деструкцип воду, окись углерода, двуокись углерода, водород, формальдегид, метан, этан, этилен, фенол, крезол, этилфенол, изопропепилфенол, дифенил-карбонат, дифенилолиропан, а также ацетон, бензол, толуол, этилбензол. При термоокислении начальные скорости образования и выход продуктов, как правило, существенно больще, чем при пиролизе. [c.91]


    На сколько больше энергии получается при образовании каждой грамм-молекулы двуокиси углерода из угля и кислорода, чем расходуется на последующее превращение в окись углерода  [c.96]

    Вместе с тем надо помнить, что избыток воздуха требует больших затрат энергии, а недостаток ведет к образованию СО. Поэтому надо выбирать оптимальный режим, имея в виду, что в отходящих газах довольно велико содержание кислорода. Взаимодействие окиси углерода и кислорода приводит к так называемому догоранию (дожигу) СО, температура может возрасти до 1000— 1100°С, что в неконтролируемых условиях может вызвать значительные повреждения оборудования. Для своевременного выявления и подавления этого процесса в регенератор обычно впрыскивают воду. Если догорания не происходит то окись углерода выводят в печь, где одновременно генерируется водяной пар. В последнее время эксплуатируются установки со специальным катализатором и измененным режимом работы в них СО дожигают непосредственно в регенераторе. [c.67]

    Последовательность процессов возникновения органических веществ разной степени сложности можно представить следующим образом. В результате действия всех видов энергии из химических элементов синтезировались первичные соединения углеводороды (в первую очередь метан), аммиак, цианистый водород, окись углерода, сероводород, простейшие альдегиды (и прежде всего формальдегид) и т.д. Эти соединения сами по себе не имели биохимического значения. Основным их свойством была высокая реакционная способность. Первичные соединения служили исходными веществами для образования биохимически важных органических соединений — мономеров. Из мономеров путем конденсации возникали полимеры — основные составные компоненты всех живых организмов. [c.190]

    Винтер провел ряд опытов по изучению реакций кислорода на твердых окисях. Он представил данные [138], полученные в реакциях окиси углерода, двуокиси углерода и кислорода на катализаторах закиси меди, окиси никеля и окиси хрома. Кажущаяся энергия активации реакции на никеле составляет 5,5 ккал, а на окиси хрома — почти равна нулю. Скорость образования двуокиси углерода на этих катализаторах зависит от давления окиси углерода и тормозится двуокисью углерода. Винтер, применив изотоп кислорода 0 , показал, что, по всей вероятности, реакция протекает на небольшой части кислородных центров поверхности (менее 2,5% поверхности). Окись углерода удаляет ионы кислорода с поверхности, которые затем быстро замещаются кислородом из газовой фазы. Стадией, определяющей скорость реакции на окисях никеля [c.332]


    Значительная часть мировой потребности в энергии удовлетворяется прямо или косвенно путем использования реакций углерода и углеродсодержащих материалов с газами. Особое внимание уделяется реакциям углерода с кислородом, водяным паром, двуокисью углерода и водородом. Экзотермическая реакция углерода с кислородом была и является до сих пор основным источником энергии. Эндотермическая реакция углерода с водяным паром дает окись углерода и водород, которые употребляются как газовое топливо или как синтетический газ, который может быть превращен каталитически в ряд углеводородных топлив или в другие органические соединения. Так как двуокись углерода является первичным продуктом реакции углерода с кислородом и вторичным продуктом реакции углерода с водяным паром в реакции водяного газа, то вторичная реакция двуокиси углерода с углеродом в слое топлива тесно связана с основными реакциями углерода. Реакция углерода с водородом с образованием метана не имеет сейчас промышленного значения, но, по-видимому, ей принадлежит большое будущее. [c.9]

    В литературе появилось большое количество статей, посвященных реакции кислорода с углеродом. В большей части этих работ изучается реакция окисления угля, кокса, древесного угля и других подобных им веществ. Анализ реакций таких сложных веществ чрезвычайно труден, особенно имея в виду значительный недостаток сведений о реакциях чистого графита. В литературе можно встретить значения энергии активации от 15 до 90 ккал/моль, а для зависимости скорости реакции от давления — нулевой и более чем первый порядок. В данном исследовании показано, что не только загрязнения, которые, несомненно, являются причиной значительного расхождения результатов разных авторов, но также и размер частиц и их пористость влияют на кинетику окисления графита. До сих пор остается нерешенным вопрос о том, что является первичным продуктом окисления окись углерода, двуокись углерода или оба эти окисла одновременно. Для печи, используемой ниже, при 900°, независимо ог того, какой окисел является первичным продуктом, гомогенное и гетерогенное окисление окиси углерода до двуокиси, по-видимому, неизбежно будет приводить к образованию больших количеств двуокиси углерода. В работах [1—7] изучалось влияние ингибиторов на гомогенное окисление окиси в двуокись углерода. Использование замедляющих реакцию соединений приводит к тому, что в продуктах реакции окисления графита оказывается около 90% окиси углерода. Однако недавно Викке [8] показал, что ингибиторы оказывают на реакцию существенное влия- [c.182]

    При хемосорбции кислорода, когда при диссоциации образующегося комплекса выделяется окись углерода, активированный комплекс включает в себя два соседних атома углерода на поверхности. Известно, что расстояние между угловыми атомами углерода, принадлежащими двум соседним базисным граням, составляет 3,35 А для атомов в базисной плоскости вдоль направления (П20) это расстояние равно 2,46 А, а вдоль направления (ШТО) оно составляет 1,42 и 2,84 А. Было бы интересно рассмотреть, совпадает ли теоретическое значение энергии активации с одним из четырех значений расстояния между атомами, участвующими в образовании активированного комплекса, [c.361]

    Окись углерода образует координационные соединения с атомами переходных металлов, в которых молекула связывается с металлом через атом углерода. В молекуле окиси углерода имеется десять валентных электронов, четыре от атома углерода и шесть от атома кислорода. Кроме того, у каждого атома имеется два внутренних электрона, не принимающих участия в образовании связи. Валентные электроны в окиси углерода находятся на следующих молекулярных орбиталях, которые могут быть расположены в порядке возрастания энергии 1а, 2а, пу, 1л2 и Зст. [c.64]

    Существуют карбидные печи открытого, полузакрытого и закрытого типов. В открытых печах окись углерода, выделяющаяся при образовании карбида кальция, сгорает на поверхности шихты. При этом выделяется большое количество тепла и много пыли, что ухудшает условия обслуживания печи. В настоящее время мощные механизированные закрытые печи с автоматическим обслуживанием вытесняют печи открытого типа. Применение таких закрытых печей позволяет снизить расход сырья, энергии, электродов, уменьшить трудозатраты на обслуживание агрегатов, повысить их производительность, а также значительно улучшить условия труда и предотвратить загрязнение воздушного бассейна печными газами. Закрытые печи имеют подвижную ванну, которая медленно вращается или совершает возвратно-поступательные движения. В печах с подвижной ванной шихта лучше разрыхляется, что ускоряет ее расплавление. [c.604]


    Такая окись углерода, как углекислый газ ( OJ, имеет большое значение, так как при его образовании освобождается большое количество энергии. При полном сгорании 1 т углерода, согласно уравнению [c.69]

    При использовании низких энергий ионизирующих электронов, близких к потенциалам ионизации (в источниках с электронной бомбардировкой), очень важно добиться постоянства энергии электронов. Даже малые изменения этих энергий, вызываемые колебанием величины работы выхода катода или значений контактных потенциалов, могут оказать сильное влияние на результаты исследований. Непостоянная эмиссия электронов, обусловленная образованием нитратов на катоде при реакции вольфрама с углеводородами и азотсодержащими веществами, сильно сказывается, когда потенциалы появления ионов различных соединений отличаются незначительно. Энергия электронов определяет и вероятность образования различных изотопных разновидностей, в связи с чем выбираются наиболее удобные ионы для регистрации (молекулярные или осколочные). Широкий диапазон потенциалов появления различных ионов соединения при ионизации двухатомных молекул позволяет без труда останавливаться на любой ионной разновидности при определении изотопной распространенности. В качестве примера можно привести разновидности ионов, образовавшиеся в результате электронной бомбардировки молекул СО [80]. Окись углерода применяется как [c.138]

    Отрицательные ионы в ионизационной камере образуются вследствие прилипания электронов к нейтральным атомам или молекулам, с которыми они сталкиваются. Этот процесс характеризуют коэффициентом прилипания, определяюш,им вероятность присоединения электрона к нейтральному атому или молекуле при отдельном соударении. Значение этого коэффициента сильно колеблется в зависимости от рода газа кроме того, он зависит от энергии электронов и, следовательно, от напряженности электрического поля. Особенно велик коэффициент прилипания для галоидов (—10 ). Весьма большую склонность к образованию отрицательных ионов проявляют пары воды и кислород, (—10 ). Многие газы, например азот, аммиак, аргон, водород, метан, окись углерода, имеют сравнительно малые коэффициенты прилипания (—10 ). [c.48]

    Часто при адсорбции металлами таких реакционноспособных газов, как водород, кислород, окись углерода и другие, происходит как физическая адсорбция, так и хемосорбция, которая приводит к образованию новых поверхностных соединений. В этом случае адсорбированная молекула или продукты ее превращения локализуются на поверхности с большой энергией связи с поверхностными атомами металла [270], так что значительно более слабыми межмолекулярными взаимодействиями хемосорбированных молекул друг с другом можно пренебречь. Однако в случае благородных газов, особенно таких, как криптон и ксенон, и некоторых других химически инертных молекул, таких, например, как перфторметан, наблюдается только молекулярная (физическая) адсорбция на поверхности металла. Исследование молекулярной адсорбции на чистой поверхности металла представляет значительный интерес для развития молекулярной теории адсорбции. Большинство металлов обладает простой кристаллической решеткой, например, медь и же- [c.56]

    Значительная часть мировой потребности в энергии удовлетворяется непосредственно или косвенно путем использования реакций угля и углеродсодержащих материалов с газами. Наиболее важными являются реакции с кислородом, водяным паром, двуокисью углерода и водородом. Экзотермическая реакция угля с кислородом служит главным источником получения энергии во всем мире. Эндотермическая реакция угля с водяным паром дает окись углерода и водород, которые используются либо непосредственно как газообразное топливо, либо в виде синтез-газа, превращаемого каталитическими методами в ряд углеводородных топлив или в органические химикалии. Так как двуокись углерода является непосредственным продуктом реакции угля с кислородом и вторичным продуктом реакции угля с водяным паром, получающимся по реакции конверсии водяного газа, вторичная реакция двуокиси углерода с углем в слое топлива тесно связана с первичными реакциями углерода с газами. Реакция водорода с углем, приводящая к образованию метана, в настоящее время не имеет большого промышленного значения, но в будущем найдет, по-видимому, широкое применение. [c.152]

    В случае практического использования выделенной окиси Углерода несомненный интерес представляет ее дальнейшее окисление до двуокиси углерода. Сжигание 0,45 газа (в пересчете на 100%-ную степень чистоты) дает 135,3 ккал теплоты. В условиях крупномасштабного производства, где образование окиси углерода при ведении пирогенных процессов носит систематический и массовый характер, использование извлеченного продукта в качестве дополнительного источника энергии, возможно, сулит и большие экономические выгоды. Ведь генераторные газы, основной составляющей частью которых является окись углерода, до сих пор используются в качестве топливных систем. Более подробно об окислении окиси углерода и особенностях технологического процесса будет сказано в главе, посвященной термическим методам утилизации отходящих газов. [c.207]

    Поступая аналогичным образом, можно вычислить изменение свободных энергий и для остальных (4 — 9) реакций. При желании, эти вычисления читатель может выполнить сам. Приведенный здесь пример показывает, что, располагая данными о свободных энергиях образования соединений из элементов только для четырех веществ (вода, окись углерода, углекислота, метан), мы смогли вычислить свободные энергии для девяти реакций причем, легко показать, что навги возможности этим далеко еще не исчерпаны. Пользуясь теми же данными, можно выполнить аналогичные расчеты, нанример, для реакций [c.101]

    Предложенная схема механизма гомогенного термического распада окиси этилена включает образование активированных мо.чекул ацетальдегида. Однако Касселц подверг критике эту схему , так как считает маловероятным образование возбужденных молекул ацетальдегида и их последующий распад на СО и СН или их дезактивацию при столкновении с другими молекулами. При разложении окиси этилена в интервале 435—505 °С среди продуктов распада ни на одной из стадий процесса не был обна-ружен ацетальдегид. Были найдены только метан, окись углерода, небольшое количество водорода и этана. При определении констант скорости распада окисн этилена при давлениях от 15 до 800 мм рт. ст. было установлено", что прн 475 °С и давлениях выше 250 М.М. рт. ст. реакция распада строго следует мономолекулярному закону в согласии с данными . В интервале давлений 250—40 мм рт. ст. реакция становится бимолекулярной. Энергия активации процесса для давлений выше 300 мм рт. ст. составляла 54 ккал1моль, а для давления 20 мм рт. ст. — около 50 ккал/моль. Эти значения для энергии активации также близки к дaнныл . [c.58]

    Энергия активации реакции образования углекислого газа из акролеина равна 22—24 ккал моль, а окиси углерода 38 ккал/молъ. Окись углерода начинает образовываться пз акролеина нри более высоких температурах, чем СОа- табл. 37 приведены удельные [c.156]

    Д. Дауден рассматривает случаи, ведущие к образованию различных форм адсорбционной связи. Прочная химическая адсорбция может быть обусловлена наличием остаточных валентностей вследствие неполного заполнения связывающих 5р-орбит у поверхности металла и атомных -орбит [187]. Поэтому увеличение числа -вакансий в металле должно вести к повышению прочности адсорбционной связи. Образование более прочных хр-связей при адсорбции требует значительной энергии возбуждения электронов, что может достигаться при достаточно высоких-температурах. Поэтому у металлов, не имеющих -вакансий ( р-металлов), адсорбционные связи, за некоторыми исключениями, оказываются слабыми [194]. Быстрая химическая адсорбция при низких температурах обусловлена наличием -вакансий в металле [186, 194]. Отмечается [186] различие адсорбционных свойств -металлов (обладающих -вакансиями) и 5р-металлов кислород химически адсорбируется всеми металлами, но водород, азот и насыщенные углеводороды—только- -металлами (с небольшими исключениями) окись углерода и ненасыщенные углеводороды прочно адсорбируются всеми -металлами. [c.58]

    Распределение энергии между молекулами в реакции, которая дает две многоатомные молекулы, является ключом к возможному использованию фотолиза недокиси углерода для получения активированных молекул. Облучение недокиси углерода светом с длиной волны больше чем 2500 А дает, но-видимому, окись углерода и молекулу ССО. Энергия недостаточна для дальнейшего расщепления молекулы. Теплота первичной реакции составляет около 44 ккалЫолъ и, следовательно, минимальная теплота образования ССО — около 45 ккал/молъ. Молекула ССО будет реагировать с олефинами с образованием смеси алкинов и диенов, как показано в нижеследующей таблице [24] и,  [c.43]

    Иное наблюдается при воостановлении, например, кислорода ( незатрудненная реакция). Роль носителя в этой реакции значительно возрастает, особенно в области разведенных слоев. Это обнаружено нами нри изучении газофазного восстановления избытка кислорода окисью углерода (окисление окиси углерода) на палладиевых, платиновых и смешанных катализаторах на носителях [10]. Указанная реакция по своей схеме имеет много общего с реакцией восстановления л-бензохинона и нитросоединений. 1В обоих случаях кислородоодержа-щие соединения — акцепторы электронов адсорбируются на поверхности металлического катализатора, отнимая от него электроны, с образованием отрицательно заряженных соединений. Восстановитель — донор электронов (водород, окись углерода) активируется на поверхности при мгновенной адсорбции из газовой фазы с отдачей электрона. При этом чем выше энергия связи донора электронов с атомной фазой, тем выше скорость реакции. Однако в характере участия металлического катализатора на носителе в рассматриваемых процессах наблюдается существенная разница. Она заключается в следующем. Для протекания восстановления сложных по строению органических соединений с максимальной скоростью требуется сочетание двух типов двухатомных активных центров, одни из которых расположены на крупных кристаллах, обладающих объемными свойствами металла  [c.55]

    При реакции между атомарным кислородом и сероводородом выделяется такое больщое количество энергии, что смесь светится голубоватым светом. Углеводороды при смешивании с атомарным кислородом воспламеняются. Спектры их пламени содержат полосы, обусловленные радикалом гидроксилом, а также полосы, которые можно приписать группам С — Н и С—С- Окисление углеводородов не идет сразу до образования продуктов полного окисления. При реакции атомарного кислорода с метаном получается большое количество окиси углерода. При окислении метилового спирта окись углерода составляет 62% всех продуктов. В соответствии с этим было найдено, что сухая окись углерода медленно реагирует с атомарным кислородом при комнатной температуре, а в присутствии влаги, когда могут образоваться гидроксильные радикалы, окисление Происходит i-ораздо быстрее. [c.109]

    ТОЧНОГО образования поверхностного комплекса СО3, который разлагается избытком окиси углерода [76]. Проведенная в последнее время работа показала, что хотя на закиси никеля этот комплекс легко образуется при 20° С, он не является промежуточным соединением при окислении окиси углерода [77]. Действительно, окисление СО при комнатной температуре на NiO постепенно замедляется в результате хемосорбции двуокиси углерода [90], вероятно, с образованием комплекса СО3. Реакция, для которой энергия активации составляет 2—3 ккал/моль, по-видимому, протекает на очень небольшом количестве активных мест поверхности, и в этом случае изменения в электронной структуре окисла не оказывают влияния на энергию активации. В области температур 150—200° С и при более высоких температурах механизм реакции на окислах р-типа будет изменяться вследствие того, что окись углерода начинает действовать на поверхность, образуя анионные вакансии, как и в случае окислов п-типа. Это наблюдал Парравано [113] для закиси никеля, причем энергия активации повышалась от 2— —3 ккал/моль до 14 ккал/моль. Кроме того, в этом высокотемпературном интервале энергия активации чрезвычайно чувствительна к изменениям дефектной структуры окисла. Уменьшение концентрации положительных дырок в окисле снижает энергию активации реакции, и наоборот. Сходные результаты получил Парравано [114] для энергии активации реакции восстановления NiO водородом, т. е. для процесса, в котором также образуются только анионные вакансии. Эти данные согласуются с той точкой зрения, что обратимой хемосорбции СО или водорода благоприятствуют окислы п-типа или модифицирование окислов в направлении р-типп-тип. [c.530]

    П. характеризуется достаточно высокой термостойкостью в расплавленном состоянии (до 280—290°С). Выше 300°С начинается значительная деструкция П. с преобладающим разрывом эфирных связей и образованием карбоксильных и винилэфирных групп. Термич. деструкция сопровождается выделением газообразных продуктов, соотношение количеств к-рых в интервале 283—306°С почти неизменно ацетальдегид (80%), углекислый газ (9%), окись углерода (8%), этилен (2%), вода, метан, бензол и др. (1%). Энергия активации термич. деструкции 210 кдж/моль (50 ккал/моль). При темп-рах переработки происходит термоокислительная деструкция П.— образование перекисных радикалов и гидроперекисей. На воздухе деструкция П. начинается примерно на 50°С ниже, чем в среде азота энергия активации термоокислительной деструкции ок. кдж/моль (ок. 40 ккал/молъ). Начальная скорость выделения НаО и СОа на воздухе возрастает примерно в 7 раз, а скорость образования ацетальдегида — в 3 раза по сравнению с прогревом П. при тех же темп-рах в инертной среде. П. стабилизируют обычными антиоксидантами, напр, замещенными фенолами, ароматич. аминами, производными фосфорной или фосфористой к-ты. [c.55]

    Опыты по десорбции показали, что молекулы, ответственные за возникновение полос с большими частотами, были менее прочно связаны и удалялись с поверхности при вакуумировании раньше, чем молекулы, ответственные за появление полос с меньшими частотами. Наблюдавшиеся эффекты Эйшенс и сотр. (1956) объяснили неоднородностью поверхности. Более активные центры хемосорбировали окись углерода первыми с более высокими теп-лотами адсорбции, давая мостиковую структуру карбонилов. Менее активные центры заполнялись позднее и давали главным образом линейные карбонильные соединения. Поверхность рассматривали как совокупность групп центров различной энергии, причем в каждой группе центры энергетически однородны. Эта точка зрения была высказана ввиду дискретного характера появления полос поглощения и роста их интенсивности. Было также высказано предположение, что различные центры могут относиться к главным кристаллографическим плоскостям металла. Аналогичная точка зрения была высказана ранее Биком (1945), исходившим не из спектроскопических данных, а из необходимости объяснения каталитической активности напыленных металлических пленок. Предполагалось, что появление высокочастотных полос в области 2070—2050 указывало на то, что все двойные центры, необходимые для образования мостиковой структуры, заполнены, и адсорбция не зависит от типа кристаллической грани. [c.73]

    Фотохимический распад кетена [106] и диазометана [107] был рассмотрен Норришем [85] с точки зрения энергий связей (табл. 4). Кетен распадается фотохи-мически на окись углерода и этилен, что указывает на образование свободных СНд радикалов распад диазометана, хотя он и протекает более сложно, тоже может быть удовлетворительно объяснен лишь путем допущения первичного образования СН радикалов. Распад кетена можно изобразить следующим образом (фигурная скобка указывает на сочетающиеся стадии  [c.334]

    В гл. И сказано, что вычисление энергий резонанса подтвердило представление о резонансе между различными возможными электрон- 1ыми структурами молекулы или какой-нибудь иной конфигурации атомов. Энергия резонанса равна разности между наблюдаемой теплотой образования молекулы и теплотой образования данной системы связей в молекуле при предположении аддитивности энергии связи. Окись углерода дает хороший пример такого расчета, и поэтому следует рассмотреть ее несколько подробнее. Ксли изображать эту [c.509]

    Соединения азота типа третичных аминов представляются неподходящими для модифицирования по двум причинам будучи сильными основаниями, они дают соли с кислотами — гидрокарбонилами металлов и тем самым подавляют реакцию кроме того, атом азота не имеет обладающих низкой энергией й-орбиталей [19], необходимых для прочного связывания с металлом путем образования л-связи в результате амины практически не способны замещать окись углерода в карбонилах кобальта. Первый недостаток отсутствует у атома азота в пиридине, бензил- и фенилзамещенных аминах в случае а, а -дипиридила и ортофенантролипа, по-видимому, возможно и образование л-связи [20]. Особого внимания заслуживает тот факт, что пиридин сильно влияет на соотношение изомеров в гидрокарбоксилировании и других, родственных гидроформилированию реакциях [21, 22]. [c.9]

    Энтальпия сгорания и термохимические параметры образования. Сжигание лактида проводилось по методике [9]. Давление Ог в бомбе было 3-ЮЗ кПа. После каждого сжигания проводили анализ газообразных продуктов сгорания на СОг и СО. Точность анализа на массовые доли СОг составляла 0,05% чувствительность анализа на СО 6-.10- г, причем окись углерода не обнаружена ни в одном из опытов. В табл. 3 приведены результаты опытов по определекию изменения внутренней энергии (А Цв) лактида при сгорании его в условиях калориметрической бомбы. [c.106]

    Проведенное выше обсуждение касалось только некоторых факторов, влияющих на термодинамическую устойчивость связей углерод — металл. А теперь рассмотрим факторы, с которыми связана кинетическая устойчивость (реакционная способность) комплексов, хотя обычно нелегко разделить термодинамическую и кинетическую составляющие. Устойчивые комплексы всегда содержат, помимо алкильной или арильной группы, связанные с металлом незаряженные лиганды. Обычными лигандами, способствующими устойчивости комплексов, являются циклопентадиенильная группа, окись углерода, олефины, третичные фосфины, арсины и стибины. Каждый из этих лигандов не только предоставляет металлу пару электронов, но и имеет незаполненную орбиталь с симметрией и энергией, пригодными для образования связи с -орбиталями металла. [c.16]

    Была изучена зависимость количества энергии, излучаемой в сухих смесях окиси углерода с кислородом, от давления. Кривая давление — энергия излучения, по данным Гарнера и Холла, представляет собой приблизительно прямую линию, которая, однако, пересекает ось давления не в начале координат, а примерно при давлении, равном 120 мм Hg. Это обстоятельство рассматривается как указание на то, что инфракрасное излучение пламени окиси углерода имеет не только тепловую, но, по крайней мере частично, и химическую природу. Та-К011 вид этой зависимости может быть объяснен, если предположить, что среднее время жизни возбужденных молекул порядка 10 сек оно может быть даже значительно меньше, если только передача энергии между молекулами СОа происходит без затруднений. Эти заключения подтверждаются данными, полученными при изучении действия различных инертных примесей. Гелий, обладающий весьма высокой теплопроводностью, уменьшает инфракрасное излучение это указывает на то, что процесс излучения обусловлен, по крайней мере частично, тепловым делением в пламени. С другой стороны, кислород, азот, окись углерода и аргон несколько увеличивают количество испускаемой энергии, а это может быть объяснено, только если предположить, что большая часть энергии из л учае тс г впд е люмине сценции молекул СО2, образованных при горении. [c.176]

    МЫ ИЗЛОЖИЛИ выше. В таких случаях атом углерода имеет положительный заряд. Очевидно, что при этом усиливается притяжение электронов на других орбиталях к такому заряду, т. е. электроотрицательность углерода (относительно других связей) должна соответственно увеличиться. В свою очередь это приведет к укорачиванию связей и увеличению их энергий. Этот эффект будет возрастать по мере увеличения числа электроотрицательных атомов, связанных с рассматриваемым атомом углерода. Такой эффект действительно наблюдается в рядах соединений КзСР, К2Ср2, КСРз, СР4. Связь СР становится тем короче и прочнее, чем большее число атомов фтора соединено с данным углеродом. Подобный эффект часто наблюдается в ацеталях КгС(0К)2 и ортоэфирах КС(ОК)з, теплоты образования которых значительно выше, чем можно было бы предсказать, основываясь на аддитивности энергий связи. В случае ацеталей расхождение составляет от 10 до 15 ккал/моль, а у ортоэфиров достигает даже 20 ккал/моль [3]. Как впервые указал Буравой [4] еще в 1948 г., оба эти эффекта можно отнести за счет изменения эффективной электроотрицательности атома углерода. [c.197]

    Величина ми энергий связей следует пользоваться толысо для молекул, содержащих атомы с нормальными гомеопо-лярными валентностями (четыре для углерода, три для азота и т. д.). Эти данные нельзя применять к солям аммония илл таким веществам, как окись триметиламина. Энергии связей не годятся и для таких молекул, как пятихлористый фосфор. Интересно указать, что теплота реакции РСЬ (газ) + +2С1(газ) P lr, (газ), 78,7 ккал1мол соответствует образованию двух ионных связей Р — С1 с энергией 39,4 ккал/мол (на связь). Это гораздо меньше нормальной энергии связи Р — С1 (62,8 ккал/мол). [c.65]


Смотреть страницы где упоминается термин Окись углерода энергия образования: [c.120]    [c.537]    [c.40]    [c.325]    [c.333]    [c.135]    [c.55]    [c.53]    [c.40]    [c.287]    [c.263]    [c.74]    [c.645]    [c.25]    [c.376]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.42 , c.207 , c.229 , c.368 , c.376 , c.380 , c.381 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.42 , c.207 , c.229 , c.368 , c.376 , c.380 , c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Энергии с углеродом

Энергия образования



© 2025 chem21.info Реклама на сайте