Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикальные реакции распада

    При неглубоком крекинге, в условиях, когда можно пренебречь вторичными реакциями полимеризации, ароматизации и др., а также влиянием продуктов крекинга на его течение, радикально-цепной процесс более прост и включает реакции зарождения радикалов, взаимодействия их с молекулами алканов и распада сложных радикалов — реакция развития цепей, составляющих цепной цикл, и, наконец, реакции обрыва цепей путем рекомбинации радикалов или захвата их стенками. Совокупность выще перечисленных реакций составляет основу первичного процесса термического радикально-цепного распада алканов. [c.5]


    Первичные реакции распада могут осуществляться либо термически по радикально — цепному механизму, или каталитически на апротонных (льюисовских) центрах алюмосили — катной матрицы ЦСК  [c.118]

    Вторым шагом по пути решения проблемы глубокого крекинга должно явиться изучение взаимодействия продуктов между собой, что позволит включить в проблему крекинга комплекс вторичных реакций, как полимеризация, конденсация, ароматизация и др. Учет этих возмущений , так сказать, второго рода потребует выяснения связи между этой категорией вторичных процессов и реакциями радикально-цепного распада. Связь между этими процессами несомненно существует, так как полимеризация и другие названные процессы также, по-видимому, происходят по радикально-цепному механизму и поэтому могут инициироваться радикалами первичного крекинга, хотя высокие температуры крекинга менее благоприятны для реакций роста полимерных цепей. С другой стороны, крекинг самих олефинов, согласно концепции В. В. Воеводского, может происходить радикаль-но-цепным путем. [c.6]

    Применение радикально-цепной теории позволяет определить количества продуктов первичного распада н-нарафинов. Выше показано, что среди этих продуктов присутствуют значительные количества олефинов С и выше, которые далее распадаются до низкомолекулярных продуктов. Поэтому расчет состава продуктов пиролиза олефинов необходим при теоретическом определении результатов глубокого пиролиза углеводородов. Естественно использование в таком расчете сведений о радикальных реакциях. Отметим пока, что глубокий пиролиз олефинов дает выходы этилена и пропилена, близкие к выходам их при глубоком пиролизе парафинов с тем же, что и у олефинов, числом углеродных атомов. [c.240]

    Формула (157) хорошо согласуется с экспериментальными значениями, найденными для энергии активации многих реакций диссоциации радикалов. Для тех же реакций, энергия активации которых неизвестна, формула (157) позволяет вычислить энергии активации обратимой радикальной реакции, если известен с хорошей точностью тепловой эффект. Так можно было вычислить энергии активации реакций диссоциации третичных изобутильных и винильных радикалов. да и других реакций. Результаты расчета Кр по отношению констант скоростей прямой и обратной реакций, представлены в табл. 46. Эти результаты также приводят к выводу, что при температурах обычного крекинга реакции присоединения атомов Н к непредельным углеводородам смещены в сторону сложных радикалов, образующихся в результате присоединения атомов Н по месту кратных связей. В тех же условиях реакции диссоциации пропильного и бу-тильного радикалов на молекулы олефинов и СНз-радикалы сильно смещены в сторону продуктов диссоциации, что свидетельствует об их неустойчивости относительно этого направления распада. [c.253]


    Скорость рассматриваемой радикальной реакции распада толуола  [c.58]

    Наличие изолированных или сопряженных ненасыщенных связей, находящихся на концах и в цепи макромолекулы, может вызвать и ионно-молекулярные и радикальные реакции распада. Роль полиеновых структур, образующихся при дегидрохлорировании, в зависимости от условий энергетического воздействия и реакционности среды может быть положительной или отрицательной. При низких температурах в инертной среде образование полиеновых структур приводит к самостабилизации при повышенных температурах или в присутствии кислорода образование полиеновых структур может быть одной из причин дальнейшего углубления распада. [c.146]

    Затем возбужденная молекула участвует в том или ином химическом или физическом процессе например, А В — реакция внутримолекулярного превращения А А В + D — реакция распада А на радикальные частицы В и D А + В АВ — реакция взаимодействия с присутствующими в системе молекулами А + М А + М — дезактивация А в результате взаимодействия с другими молекулами или стенкой сосуда А А + h — дезактивация А за счет излучения кванта энергии. [c.611]

    В промышленности для проведения цепной полимеризации используют совместное воздействие теплоты и химических агентов инициаторов или катализаторов. Инициаторы (в основном соединения перекисного характера органические перекиси, гидроперекиси и азосоединения) в течение реакции распадаются на реакционноспособные радикалы, которые входят в состав молекул полимера в виде конечных групп. Радикалы инициаторов возбуждают молекулы мономера в результате возникают радикалы мономеров, присоединяющиеся к радикальной цепи. Следовательно, радикальная полимеризация обязательно включает стадию образования свободных радикалов и последующий рост цепи полимера. [c.193]

    Однако возможен другой путь разложения молекул органических соединений, а именно радикально-цепной механизм распада молекул через свободные радикалы, при котором сначала, в первичной стадии процесса, образуются два свободных одновалентных радикала путем непосредственного разрыва простой связи. Затем радикалы, возникшие в первичной реакции, вступают во вторичные реакции с молекулами исходных веществ, радикалами и стенками, которые приводят к образованию конечных продуктов. В этом случае гамма получающихся конечных продуктов является следствием сложного многостадийного превращения, в котором участвуют промежуточные активные вещества в форме радикалов. Выход различных продуктов в сложном радикальноцепном превращении определяется соотношением скоростей конкурирующих между собой радикальных реакций, в которых радикалы появляются, заменяются или исчезают. Обыч-14 [c.14]

    Кинетика радикально-цепного распада определяется наиболее медленной стадией сложной схемы превращения. Такой трудной стадией является реакция образования или-зарождения радикалов, которая требует подвода энергии не меньщей, чем энергия отдельной наиболее слабой связи в молекуле. В целом радикально-цепной распад будет имитировать реакцию первого порядка, как это было показано еще в сороковых годах. [c.15]

    Вопросы кинетики и состава продуктов крекинга неотделимы друг от друга, так как соотношение продуктов определяется соотношением скоростей радикальных реакций их образования. Главные продукты крекинга определяются наиболее быстрыми радикальными реакциями, характером цепного цикла, а кинетика крекинга — наиболее медленными стадиями процесса, то есть реакциями инициирования и распада радикалов. [c.27]

    Расхождения между следствиями, которые вытекают из радикально-цепных схем крекинга алканов, и опытом (о котором говорилось выше) связаны с неполнотой предложенных схем распада, а отнюдь не с ошибочностью основной предпосылки цепной теории распада через радикалы, как это отмечалось автором [22, 46]. Причинами несовпадения рассчитываемых величин с определяемыми экспериментальным путем являются неверные значения энергий активации, принятые для элементарных реакций в схемах распада, зависимость кинетики распада от глубины крекинга, не учитываемая в схемах, а также возможная обратимость некоторых элементарных радикальных реакци в условиях крекинга. [c.28]

    Радикально-цепные схемы распада этана и пропана с учетом обратимости реакций распада указанных выше радикалов дают при их обработке методом квазистационарных концентраций для скорости крекинга уравнения, выражающие самотормозящуюся с увеличением глубины распада кинетику [51—53, 22]  [c.30]

    Кроме механизма торможения, связанного с обратимостью некоторых элементарных радикальных реакций развития цепей и, в частности, термодинамической обратимости реакций распада этильных, изопропильных, третичных изо-бутильных радикалов (сущность которого состоит в связью вании активных передатчиков цепей олефинами путем реакции соединения), возможен и другой механизм торможения. Этот механизм заключается в реакции замещения активных относительно развития цепей радикалов менее активными, которая происходит между активными радикалами и молекулами олефинов или других непредельных соединений. При этом в роли менее активных радикалов выступают аллиль- [c.32]


    К отказу от укоренившихся воззрений на термический крекинг, как на гомогенный процесс, нас давно уже привели некоторые обстоятельства, связанные с трактовкой кинетического уравнения (3), хорошо описывающего зависимость скорости крекинга алканов от глубины распада [53, 104, 107]. Коэффициент торможения р, входящий в эмпирическое уравнение (3), зависит от размеров и геометрической формы реактора [53], гетерогенного фактора [107,] уменьшаясь с увеличением набивки. Попытки вывести уравнение (3) на основе представления о гомогенном характере радикально-цеп-ного крекинга алканов не привели к успеху, давая неизменно второй порядок реакции распада вместо первого относительно давления алкана [1041. Лишь приняв гипотезу о гетерогенном зарождении радикалов, можно получить правильный порядок. Можно получить также первый порядок реакции относительно алкана, если принять, что реакция зарождения цепей является гомогенной, бимолекулярной, как это было показано для этана [154]. [c.53]

    Для развития радикально-цепного распада через промежуточное образование метил-радикалов кинетический расчет приводит к полуторному порядку валовой реакции распада метана. Для того чтобы совместить кинетику распада первого порядка, как этого требует опыт при давлении порядка 10 мм ртутного столба, с обрывом цепей тримолекулярным путем Н + Н -Ь М, как это было принято в радикально-цеп-ной схеме распада, отношение концентраций Н и СНз-радикалов должно быть гораздо больше 10 . Это не согласуется с тем, что атомарный водород не был обнаружен в опытах по идентификации радикалов [174]. Гипотеза о том, что распад метана идет посредством метил-радикалов, но без развития цепей, т. е. как радикальная реакция, также приводит к противоречию с опытом энергия активизации должна в этом случае быть порядка 100 ккал, как это найдено для реакции образования радикалов [174], тогда как из опыта для валового распада получено 79,4 ккал. [c.81]

    Рассмотренные выше кинетические зависимости приобретают еще более простой смысл, если в реакциях распада участвует только один тип активных центров, например ра-/дикалы При этом константы радикальных реакций, вхо- [c.148]

    Однако в настоящее время на пути применения формул (114), (120) и др. к мономолекулярным реакциям распада и изомеризации радикалов и бимолекулярным реакциям радикалов с молекулами или между собой возникают трудности, связанные с отсутствием необходимых сведений о радикалах и вообще гораздо менее полным знанием свойств радикалов по сравнению со свойствами молекул. Это принуждает при решении указанных задач искать приближенных подходов, порой грубоватых, но позволяющих получать удовлетвори-, тельные количественные результаты, а самое главное — на основании этих расчетов получать некоторые обобщения относительно поведения различных радикалов в определенных реакциях и связи их строения с реакционной способностью и дать истолкование экспериментальным данным по определению стерических факторов в радикальных реакциях. [c.181]

    В качестве иллюстрации связи между кинетическими параметрами отдельных элементарных реакций, с помощью которых моделируется радикально-цепной процесс, и кинетическими параметрами самого процесса рассмотрим термический распад молекулы М( ) и представим его в виде последовательности радикальных реакций  [c.71]

    Рассмотрим конкуренцию реакций распада и изомеризации бутильных радикалов в условиях обычного и инициированного крекинга бутанов [352]. Радикально-цепной крекинг бутана сопровождается распадом первичных и вторичных бутильных радикалов  [c.204]

    Изучение различных радикальных реакций с участием низших алканов служит основой для моделирования механизма процессов превращения сложных алканов. Это обусловлено тем, что, начиная с некоторой длины цепи радикала или молекулы, кинетические и термодинамические характеристики однотипных реакций замещения, присоединения или распада практически слабо зависят от природы радикалов. Аналогичная картина наблюдается для процессов с участием сложных соединений других классов (галоген-производных, спиртов, альдегидов, кетонов и кислот). [c.214]

    Большим успехом радикально-цепной теории крекинга алканов на ее первых стадиях развития явилось объяснение первого порядка суммарной реакции распада и вычисление эффективной энергии [c.215]

    В последнее время методом малоугловой рентгеновской дифракции в кристалличес ких и аморфных полимерах обнаружено возникновение в нагруженном образце множества субмикроскопи-ческих трещин [16, с. 286]. В кристаллических полимерах они возникают в аморфных прослойках. Субмикротрещины ориентированы перпендикулярно растяжению, их размеры порядка десятков нанометров. Установлено, что они образуются за счет протекания цепных свободно-радикальных реакций распада напряженных молекул. Образование субмикротрещин вызывает разгрузку в прилегающих к ним вдоль оси растяжения областях (порядка сотен нанометров) и повышение напряжения в боковых относительно трещин зонах, что проявляется в увеличении растяжения этих зон. Прослежена кинетика образования субмикротрещин вплоть до разрыва образца. С течением времени их размеры не увеличиваются, но растет их число. Скорость накопления субмйкротрещин растет с повышением напряжения. Когда субмикротрещин образуется достаточно много, они начинают сливаться, и в конце концов образуется магистральная трещина, которая, быстро прорастая, приводит к разрушению образца полимера. [c.216]

    В работе [10] был проведен анализ механизмов распада метана через метиленовые и метильные радикалы, соответственно двум различным схемам распада. В радикальной схеме метиленовые радикалы образуютсоя в реакции первичного распада метана, затем СН2, соединяясь с метаном, дают этан и последовательные реакции дегидрогенизации этана, этилена и ацетилена приводят к водороду и углероду. В радикально-цепной схеме распада метана в первичном акте образуются метильный радикал и атом Н, цепь развивается через СНз и Н. а обрыв их связан с реакциями рекомбинации одинаковых и различных радикалов. В первой схеме учитываются обратные реакции, а во второй схеме цепи предполагаются достаточно длинными. Кинетические расчеты по этим схемам приводят к довольно громоздким уравнениям для скорости суммарного распада метана [10]. Однако для первой радикальной схемы распада метана через метиленовые радикалы уравнение суммарной скорости распада можно с хорощим приближением представить в форме rf( H,) ( H4i  [c.80]

    РАДИКАЛЬНЫЕ РЕАКЦИИ РАСПАДА НЕКОТОРЫХ ПЕРАНГИДРИДОВ И ПЕРЭФИРОВ [c.53]

    Реакции цис-транс-томерязация (табл. 7.12) могут служить возможными приме(рами подлинного мономолекулярного механизма, однако, к сожалению, экспериментальные данные для них не всегда надежны ввиду поверхностных эффектов и возможности радикальных реакций распада. Кэнделл [36], а также Лин и Лейдлер [c.217]

    В отличие от низших гомологов, например диацетилперекиси, пероксидиянтарная кислота достаточно стабильна при хранении при обычных температурах, нечувствительна к толчкам и трению, к воздействию минеральных кислот, что обеспечивает до известной степени безопасность работы с ней. Пероксидиянтарная кислота эффективна при инициировании радикальных реакций. При термическом распаде могут образоваться радикалы двух видов [21, с. 267]  [c.424]

    Термический распад сырья с образованием большого количества непредельных углеводородов заканчивается в пирозмеевике, который интенсивно обогревается, так как для реакций распада требуется подвод тепловой энергии. Если бы продукты подвергались на выходе из пирозмеевика быстрому охлаждению (закалке), то цепь радикальных превращений при этом заканчивалась бы и рекомбинация радикалов приводила бы к образованию большого количества непредельных углеводородов. Но в реакторе радикальные превращения продолжаются, в результате чего образуется повышенное количество асфальтенов, вы-сокомолекуля1рная часть которых уплотняется до нерастворимых в бензоле. Реакции уплотнения—(перехода в новую форму с наименьшей свободной энергией сопровождаются выделением тепла. И чем выше температура сырья на входе в реактор, тем [c.29]

    Временную зависимость процесса термолиза при заданных температуре и давлении можно представить следзгющим образом. При термолизе ТНО в начале процесса в результате радикально-цепных реакций распада и поликонденсации происходит накопление в жидко11 фазе полициклических ароматических углеводородов, смол и асфальтенов (т.е. происходит как бы последовательно химическая эволюция групповых компонентов). Признаком последовательности протекания [c.62]

    Во второй части главы развита кинетическая схема глубокого термического крекинга на основе представления о самоторможении радикально-цепного распада некоторыми продуктами с учетом всех возможных типов зарождения и обрывов цепей и механизма торможения, рущно ть которого состоит в замещении активных радикалов менее активными в результате реакций пе едатчи1юв цепей с непредельными молекулами тормозящих продуктов крекинга. Проведен подробный анализ соотношений для скорости, являющихся следствием развиваемой схемы, и путем выполнения конкретных вычислений проведено сопоставление с опытом. Эти расчеты позволяют однозначно выбрать механизм глубокого крекинга. [c.10]

    Так как состав продуктов в основном определяется наиболее быстрыми реакциями, то, зная наиболее вероятные направления распада различных сложных радикалов, можно определить качественный и количественный состав продуктов крекинга. При помощи радикально-цепных схем распада впервые удалось вычислить состав продуктов крекинга различных алканов [32, 35]. Предсказанный теорией состав продуктов крекинга хорошо совпадает с находимыми методами химического анализа составом продуктов распада на небольшую глубину. Теория радикально-цепного распада была проверена на примерах распада гексана, октана, изомерных октанов 2,2, 4-триметилпентана и 2,5 диметилгексана) и других алканов [36, 38], и во всех случаях было найдено хорошее согласие теории с опытом. На основе этого сопоставления были внесены уточнения в расчет продуктов крекинга некоторых индивидуальных алканов и их смесей [39] и включены реакции, которых прежде не учитывали [32]. [c.26]

    Применение более низких величин энергий активации элементарных реакций развития цепей в прежних радикально-цепных схемах разложения этана не дает уже первого порядка для кинетики распада, хотя и сближает вычисленную и измеренную концентрации радикалов. После того, однако, как было показано, что реакция распада тормозится продуктами крекинга и скорость последнего описывается уравнением самозамедляющихся реакций <3), требование соблюдения первого порядка для кинетики процесса в целом, предъявляемое только к радикально-цепньш схемам, утратило смысл. Правильной является только та радикально-цепная схема распада, которая отражает самоторможение и удовлетворяет уравнению (3). [c.32]

    Количественный метод изучения крекинга алканов, основанный на влиянии малых добавок ингибиторов на скорость распада, позволяет не только определять эффективнук длину цепей (по отношению скоростей распада алкана в присутствии ингибитора и на пределе торможения), но также провести сравнительное изучение действия различных ингибиторов, располагая их в ряд по силе тормозящего влияния и устанавливая связь последовательности расположения с особенностями строения ингибиторов. Поскольку же действие ингибитора оказывается селективным, направленным на определенную элементарную радикальную реакцию в системе реакций, то изучение тормозящего влияния малых добавок веществ становится методом исследования динамических характеристик отдельных радикальных реакций торможения, которые могут служить моделями для многих других сложных превращений. Подобное исследование в состоянии раскрыть механизм торможения и дать более полные сведения [c.34]

    Результаты расчетов, изложенные в работе [203], с достаточной (при современном состоянии наших сведений о кинетике элементарных радикальных реакций) убедительностью показывают, что объяснение целого комплекса явлений, характерных для глубокого крекинга (падение мономолекулярной постоянной с глубиной распада, подчиняемость ее уравнению (3), явление предела скорости в самотормозящемся распаде или в присутствии тормозящих добавок, независимость предела от специфики ингибитора, подчиняемость заторможенного крекинга алканов уравнению прямой (7) и некоторые другие особенности), возможно на основе 154 [c.154]

    В растворах эти побочные реакции идут с участием растворителя, как например, в случае распада натрий-этила в-эфире [272]. Изучение распада этилсеребра в растворе [273] показало, что разложение не инициирует полимеризации стирола или метилметакрилата, как это обычно наблюдается при распаде соединений, поставляющих радикалы. Однако-радикальный механизм распада еще не может быть окончательно исключен на основании этого факта. Термический распад паров тетраэтилсвинца [274], тетраэтилсилиция [275] и тетраэтилгермания [276] изучен только при высоких температурах, и разнообразие образующихся продуктов затрудняет интерпретацию опытных данных. При фотолизе этил-иодида [2771 было найдено, что реакцией рекомбинации диспропорционирования этильных радикалов можно пренебречь по сравнению с другими реакциями этил-радикалов. [c.223]

    Реакции распада алканов на радикалы, взаимодействия последних с молекулами алканов и алкенов, распада сложных радикалов на более простые радикалы и молекулы алкенов, а также реакции рекомбинации и диспропорционирования радикалов составляют основу радикально-цепного крекинга алканов и других превращений органических соединений, которые происходят по цепному механизму. Знание скоростей всех этих реакций и термодинамических пределов, до которых они могут происходпть в заданных условиях, имеет первостепенное значение для решения вопроса о механизме сложного химического процесса, промежуточными стадиями которого являются радикальные реакции. [c.245]

    Принимая во внимание особенности приведенных моделей активированного комплекса, можно перейти к оценке Л-факторов сходственных радикальных реакций, делая априорное предположение о том, что однотипные реакции протекают по одинаковому механизму (и, в частности, активированный комплекс имеет сходные структурные и механические свойства в области реагирующих связей). Нет оснований считать такое предположение неверным, тем более, что имеется немало экспериментальных данных, подтверждающих постоянство механизма в реакционной серии (понятие о реакционной серии или ряде сходственных или однотипных реакций возникло в связи со стремлением подчеркнуть одинаковый механизм данной группы элементарных реакций между структурно подобными соединениями). Так, на основе полужесткой модели активированного комплекса возможна успешная интерпретация Л-факторов реакций распада радикалов, при которых происходит разрыв С—С-связи. Свободный активированный комплекс применяется для объяснения высоких значений Л-факторов реакций диссоциации молекул, а модель АК4 используется для оценки Л-факторов реакций отрыва атома Н. [c.32]

    В большинстве случаев образование в системе структурно-изо мерных радикалов или продуктов можно объяснить последователь ностью бимолекулярных радикальных реакций замещения, присоедине ния и распада, не прибегая к представлению о радикальной изомери зации. Это привело к тому, что в литературе, посвященной свобод но-радикальным процессам в газовой фазе, накопилось множеств противоречивых данных и выводов относительно возможности изо [c.186]

    В схемы радикально-цепного распада различных углеводородов, изображающие механизмы крекинга или пиролиза, входят модельные радикальные реакции зарождения, развития и обрыва цепи (см. гл. И—VI), что собственно и позволило в свое время Райсу и Герцфельду свести все многообразие превращений к двум типам механизма — квазимономолекулярному и с полуторным порядком реакции. Для построения различных механизмов сложных превращений должны быть известны кинетические характеристики элементарных реакций. [c.214]

    Так, концентрации атомов Н, измеренные при термическом крекинге этана и пропана методом орто-параводородной конверсии, оказались на три порядка ниже вычисленных на основании радикальных схем распада, которые согласуются с экспериментально найденными порядком и энергией активации [359, 360]. Измеренные концентрации радикалов в зоне распада СаНе и СдНд значительно превышали равновесные концентрации в реакциях На 2Н или СН4 = -СНз + Н при температурах крекинга, что является прямым доказательством участия радикалов в процессе. Однако указанное расхождение между вычисленной и экспериментальной концентрациями радикалов свидетельствует о том, что радикально-цепные схемы Райса и Герцфельда не описывают реального крекинга. Последнее обстоятельство послужило даже поводом к отказу некоторых исследователей [359] от радикально-цепной концепции распада в пользу чисто молекулярного механизма разложения. [c.216]


Смотреть страницы где упоминается термин Радикальные реакции распада: [c.43]    [c.229]    [c.60]    [c.64]    [c.7]    [c.28]    [c.32]    [c.182]   
Введение в электронную теорию органических реакций (1977) -- [ c.594 , c.595 ]




ПОИСК





Смотрите так же термины и статьи:

Радикальные реакции

Реакция распада



© 2025 chem21.info Реклама на сайте