Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры химическая неоднородность

    Выше рассматривалось фракционирование по молекулярным весам химически однородных полимерных образцов. Однако многие важные с практической точки зрения полимеры химически неоднородны. Некоторые полимеры могут содержать химически различные молекулы, например молекулы с различными степенями замещения в случае производных целлюлозы или с разными относительными количествами мономеров в случае сополимеров. Возможны также стерические различия, обусловленные, в частности для полиолефинов, наличием молекул атактического, изотактического, синдио-тактического строения или стереоблочных молекул сополимеров, а такн е степенью разветвленности полимеров. Такие различия резко влияют на свойства полимера, поэтому, как указал Гузман [9], необходимо сначала провести фракционирование по строению или составу, а затем уже по молекулярному весу. Подробное обсуждение проблем, связанных с фракционированием по составу или строению, проводится в гл. 12. [c.67]


    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]

    Полимеры представляют собой неоднородные системы в отношении как формы макромолекул, так и молекулярных масс. Такая физико-химическая неоднородность определяется условиями синтеза и очистки полимера. В отличие от низкомолекулярных соединений полимеры представляют собой смесь макромолекул различной молекулярной массы, часто различающихся даже по химическому составу (сополимеры, производные целлюлозы и хитозана, белки). Полимерные материалы (волокна, пленки) могут быть изготовлены и из смесей полимеров. [c.16]

    Если синтез полимера сопровождается побочными реакциями, то продукты этих реакций также могут входить в молекулярную цепь полимера, приводя к некоторой ее химической неоднородности. Вследствие этого кинетика реакции синтеза высокомолекулярных соединений приобретает особенно важное значение. [c.60]

    Процесс формирования надмолекулярных структур протекает по-разному в зависимости от расстояния до поверхности и связан с энергией когезии полимера. Влияние поверхности на формирование структур обусловливает возникновение неоднородностей в наполненной или армированной системе на. надмолекулярном уровне. Так как возникновение молекулярной структурной и химической неоднородности является следствием формирования полимерного материала в присутствии наполнителя, то механические свойства связующего в такой наполненной системе всегда хуже свойств связующего, отвержденного в отсутствие наполнителя. Ухудшение свойств полимерной фазы компенсируется ее взаимодействием с наполнителем и существованием структуры наполнителя, играющей важную роль в свойствах композиционного материала. [c.284]


    Сочетание гель-проникающей хроматографии с другими физикохимическими методами для анализа разветвленных и химически неоднородных полимеров [c.230]

    Классические методы исследования полимеров — светорассеяние, седиментация, осмометрия, вискозиметрия и другие сталкиваются с существенными трудностями при анализе разветвленных и неоднородных по составу полимеров. Еще более сложен, а зачастую и невозможен анализ этими методами смесей таких полимеров с линейными полимерами. Подобные смеси часто возникают при синтезе сложных полимерных систем — блоксополимеров, привитых сополимеров и разветвленных гомополимеров, когда наряду с основным продуктом получаются соответствующие линейные гомополимеры. Сочетание ГПХ с классическими методами анализа полимеров и с другими хроматографическими методами (адсорбционной и пиролитической газовой хроматографиями) позволяет проводить анализ и таких сложных систем. При этом адсорбционную хроматографию можно с успехом использовать в тонкослойном варианте (ТСХ), что позволяет осуществлять качественный и количественный анализ структурной и химической неоднородности фракций, полученных микропрепаративным ГПХ-фракционированием. С помощью пиролитической газовой хроматографии (ПГХ) можно находить брутто-состав полимеров, а классические методы дают сведения о таких средних макромолекулярных характеристиках, как характеристическая вязкость, среднемассовая и среднечисленная молекулярные массы. [c.230]

    По-видимому, химической неоднородностью продуктов объясняется и появление кристалличности на ранних стадиях гидрирования 1,4-г цс-полибутадиена. Неоднородный характер продуктов гетерогенного гидрирования может обусловливать несовместимость гидрированного полимера с исходным и затруднять тем самым процесс глубокого гидрирования. [c.309]

    Большое влияние на свойства наполненных систем оказывает возникновение надмолекулярных структур в граничных слоях и в объеме наполненного полимера [3]. Условия образования надмолекулярных структур изменяются по мере удаления от поверхности наполнителя, в результате чего в материале возникает структурная неоднородность, которая совместно с химической неоднородностью приводит к тому, что свойства полимерного связующего в наполненном или армированном полимере часто могут быть хуже свойств отвержденного в блоке чистого связующего [5]. [c.55]

    В последнее время область применения ГАХ явно расширилась [11, 12]. В настоящее время ею пользуются при разделении и изотопов водорода, и многоядерных ароматических соединений. Такие заметные успехи стали возможны благодаря разработке методов устранения нежелательной геометрической и химической неоднородности поверхности адсорбентов, а также благодаря появлению новых адсорбентов высокой химической чистоты, например графитированной сажи, углеродных молекулярных сит и ряда пористых полимеров различной полярности и пористости. [c.301]

    Остановимся коротко на физических предпосылках существования энергетической неоднородности. Она может вызываться химической неоднородностью фиксированных ионов, различиями в их доступности или, наконец, малыми изменениями электронной плотности за счет деформации химических связей в объеме полимера [3]. Отметим, что появление энергетически неравноценных фиксированных ионов —при любых предположениях (из перечисленных выше) об их происхождении — может быть связано с по явлением областей переплетения углеводородных цепей каркаса в местах образования поперечных связей  [c.127]

    Химический состав полимера. У химически неоднородных полимеров растворимость зависит от химического состава, на-лример у производных целлюлозы с разной степенью замещения. [c.49]

    Порошки полимеров характеризуются значительной физической и в ряде случаев химической неоднородностью частиц. [c.26]

    Морфологическая и химическая неоднородность проявляется в разной скорости впитывания полимерами пластификаторов. Так, блочный поливинилхлорид поглощает пластификатор в 100 раз быстрее, чем суспензионный. Очистка суспензионного полимера (переосаждение из раствора) приводит к значительному увеличению сорбционной способности [43]. Существенно отличаются по скорости поглощения пластификатора также эмульсионный и суспензионный поливинилхлорид [48], что обусловлено не только разной морфологией частиц, но и их размером. [c.26]

    Линейные полимеры, молекулы которых состоят из одинаковых последовательно соединенных звеньев, представляют собой смеси линейных гомологов с различными молекулярными весами, или длинами цепей. Разветвленные полимеры типа полиэтилена низкой плотности неоднородны как по длине цепей, так и по их структуре. В подобных кристаллическому полипропилену полимерах, содержащих изотактические блоки, длины и количества последовательностей d- и Z-мономерных единиц различны в каждой молекуле. Сополимеры, молекулы которых состоят из двух и более видов различных по химической природе звеньев, неоднородны по химическому составу. Распределение звеньев вдоль цепи сополимера различно в разных молекулах. Подробно проблемы химической неоднородности будут рассмотрены в гл. 12. [c.7]


    Другие полимеры, обладающие химической неоднородностью [c.200]

    Химическая неоднородность полимеров и методы ее исследования [c.292]

    В случае химической неоднородности типа Б для характеристики соединения уже недостаточно указать среднюю длину последовательности звеньев одного сорта. Можно полагать, что в процессе синтеза подобного образца некоторые кинетические закономерности обусловливают различие длин таких последовательностей в начале стадии роста цепей и в конце стадии (осаждение полимера, молекулярный вес которого превысил определенную величину, и т. д.). В итоге в процессе реакции меняются условия образования этих различных последовательностей звеньев одного типа и становится необходимым указывать распределение по длинам таких последовательностей в макромолекулах для каждой фракции. Типы В и Г химической неоднородности обусловлены возникновением структурных изомеров. Последние могут появляться как в макромолекулах, состояш их из одинаковых мономерных звеньев (тин В), так и в макромолекулах, содержащих различные мономерные звенья (тип Г). В общем случае такие изомеры распределяются статистически, так что нельзя говорить о химической неоднородности в строгом смысле. Однако известны случаи нестатистического распределения изомеров (см. колонку 3 табл. 12-1). Одновременное образование нециклических и циклических структур в процессе полимеризации мономера (например, диаллилового эфира) можно было бы рассматривать как процесс сополимеризации. Этот случай выделен здесь, поскольку исходное вещество представлено только одним мономером. [c.294]

    В общей схеме табл. 12-1 не учитывается тот факт, что все макромолекулы могут быть разветвленными. Частичный отбор по степени разветвленности происходит в процессе фракционирования при условии, что степень разветвленности существенна и различается от молекулы к молекуле. Фракционируя поливинилацетат или полисахариды, можно получить фракции макромолекул с различными степенями разветвленности, поскольку растворимость этих макромолекул зависит от разветвленности. Более подробно этот вопрос освещен в разд. IV. На основании вышеизложенного разветвленность следует рассматривать как один из типов химической неоднородности. Для того чтобы охарактеризовать образец, необходимо определить следующие параметры число точек разветвления, отнесенное, например, к 100 мономерным звеньям, природу боковых ветвей (длина, распределение по длинам и химическое строение) и распределение ветвей вдоль основной цепи. Основную цепь трудно определить в полимерах, содержащих большое число длинных боковых цепей, поскольку невозможно провести разграничение между главной цепью и этими цепями. Необходимо отметить, что метод определения химической неоднородности, указанный в колонке 4 табл. 12-1, иногда оказывается весьма сложным и в ряде случаев не может быть реализован с помощью современных экспериментальных средств. Это особенно верно в случае исследования распределения отдельных звеньев вдоль главных цепей и характеристики блоков и боковых ветвей. [c.294]

    ХИМИЧЕСКАЯ НЕОДНОРОДНОСТЬ ПОЛИМЕРОВ И МЕТОДЫ ЕЕ ИССЛЕДОВАНИЯ 295 [c.295]

    При оценке результатов фракционирования, полученных для химически неоднородных образцов, возникает принципиальная сложность. Необходимо установить, какие полученные при различных условиях фракционирования результаты можно считать единственно верными В принципе ответ может быть получен путем проведения фракционирования при различных условиях и отбора тех результатов, которые свидетельствуют о наиболее полном разделении на фракции как по молекулярному весу, так и ио химической природе. Но такие результаты могут оказаться все еще не единственно правильными. Последующие фракционирования иногда приводят к дальнейшему разделению образца. В связи с ограниченностью времени и средств исследователь должен провести несколько предварительных экспериментов, с тем чтобы выбрать оптимальные условия фракционирования. Будучи однажды подобранными, эти условия должны строго соблюдаться и подробно указываться для каждого эксперимента по фракционированию. В. любом случае такие условия обычно подбираются отдельно для каждого полимера. Подобный подход несколько произволен, но является обязательным с практической точки зрения. [c.295]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Для получения производных хитозана с минимальной химической неоднородностью полимер предварительно переосаж-дается. [c.333]

    Таким образом, структура полимеров достаточно сложная и для ее оценки недостаточно знании химического строения макромолекул необходимо определить молекулярную массу конфигурацию и конформацию макромолекул, степень их упорядоченности в конденсированном состоянии, г, е. надмолекулярную структуру. Анализ этих параметров подтверждает, что (юлимеры представляют собой высокомолекулярьые соединення, имеюише цепное строение, их макромолекулы построены ия звеньев определенных химического строения, конфигурации и конформации В зависимости от строения макромолекула может принимать ту или иную форму и изменять ее лри определенных условиях, т. е. проявлять гибкость. Полимеры крайне неоднородны МО молекулярной массе, строению звеньев, их конфигурации и конформации, по характеру надмолекулярных структур. [c.105]

    Мономерный виниловый спирт не существует в свободном состоянии, так как легко превращается в ацетальдегид, являющийся кето-формой ВС. Предпринимались неоднократные попытки [14, с. 142] синтезировать ПВС полимеризацией ацетальдегида в присутствии различных катализаторов триэтиламина, ацетиленидов, амидов и ртутных амальгам щелочных металлов, сплавов щелочных металлов с оловом, [а. с. СССР 190021], трет-бутилата калия, Однако этим способом удалось получить лишь химически неоднородные олигомеры ВС с ММ до 3000. Поэтому синтез ПВС и сополимеров ВС осуществляется путем полимераналогичных превращений полимеров простых и сложных виниловых эфиров. Простые виниловые эфиры (винилбензиловый, винил-тргт-бутило-вый, винилтриметилсилан и др.) используются в основном для препаративного синтеза ПВС с целью исследования его структуры [c.72]

    Значение модуля и ход кривой модуля позволяют сделать выводы об агрегатном состоянии и о структуре полимерных образцов. С помощью динамических исследований можно также определить степень кристалличности, степень сшивания, химическую неоднородность, а также отличить статистические сополимеры от блок-со-плимеров. Метод торсионных колебаний удобен для исследования полимеров, которые содержат пластификаторы или наполнители (рис. 28 и 29). [c.100]

    Неодвородность полимера по химическому составу заключается в том, что в одной и той же цепи содержатся звенья различного состава. Например, у промышленных образцов вторичных ацетатов целлюлозы одни звенья могуг бить проэтерифииированы полностью, в то время как в других звеньях имеются свободные гидроксильные группы. Химическая неоднородность наблюдается у всех промышленных образцов эфиров целлюлозы, поливинилового спирта и некоторых других полимеров Химический состав таких полимеров принято характеризовать сродним процентным содержанием имеющихся в них функциональных групп "(папример, ацетильных) или содержанием азота и т. Д- [c.21]

    В большинстве случаев этим методом пс1лучают химически неоднородные иолиморные продукты, т. к. в результате протекания побочных реакций образуются мономеры, олигомеры и полимеры, различающиеся по структуре и свойствам. [c.496]

    Стерические факторы связаны со структурой клубка, влияние его плотности не идентично влиянию стерических препятствий, в случае которых играет роль еще и конфигурация. Клубки мало растворимы, но они достаточно проницаемы для низко молекулярного соединения [11, 44]. Степень проницаемости клубка в 0-растворителе имеет тот же порядок, что и в хороших растворителях, и составляет по Фольмерту и Штутцу 5—20% от объема клубка [45]. Реакции полимеров с различными функциональными группами могут протекать на поверхности клубков, в то время как в случае низкомолекулярных реагентов возможно их проникновение внутрь клубка и участие в реакциях с находящимися там функциональными группами [46]. Реакции на поверхности или диффузионно-контролируемые реакции превалируют, если состав двух взаимодействующих полимеров различается более чем на 5% (например, вследствие большой химической неоднородности) и если клубки сжимаются или они несовместимы [42]. Окружение функциональных групп также влияет на их реакционную способность [47]. Кроме всех перечисленных выше факторов, на течение реакции может влиять и сам растворитель, с помощью которого образуются сольватационные слои, кластеры молекул и т.д. [48]. Функциональные группы зачастую более подвижны, чем фрагменты макромолекулы, причем при этом имеет значение размер вновь вводимой группы. [c.20]

    Химическая неоднородность состава продуктов отражает специфику гидрогенизации макромолекр на поверхности гетерогенного катализатора. Для наиболее подробно изученных полимеров имеются как прямые, так и косвенные данные, свидетельствующие о неоднородном характере самого процесса их гетерогенной гидрогенизации. Гидрированию подвергаются не отдельные звенья, а целые макромолекулы или, по крайней мере, блоки. Макромолекулы покидают поверхность катализатора только претерпев глубокую гидрогенизацию. Кроме того, исследование молекулярномассового распределения гидрированного и исходного 1,4- / с-полиизопрена показало, что в первую очередь глубоко гидрируются более высокомолекулярные фракции (что, очевидно, связано с преимущественной их адсорбцией), а остаточная ненасыщен-ность образца концентрируется в более низкомолекупярных фракциях [c.44]

    Технические ионообменные смолы представляют собой смесь фракций весьма сложных продуктов, неоднородных по химическому составу и структуре. Они содержат, во-первых, ионообменные смолы сетчатого строения с ионогеннымн группами п большим числом поперечных связей во-вторых, химически неоднородные полимеры с дефектными трехмерными структурами, содерн ащие ионогенные группы, или полимеры без активных групп с малым числом поперечных связей и рыхлой трехмерной структурой в-третьих, фракции низкомолекулярных соединений различного состава, растворимые в воде, кислотах, щелочах и некоторых органических растворителях и, наконец, растворимые примеси, представляющие собой в основном мономеры, а также примеси металлов. Отсюдаследует, что окислительная деструкция ионообменных полимеров должна протекать следующим образом. Сначала разлагаются низкомолекулярные соединения, т. е. растворимые фракции и примеси, а затем деструктпруются продукты с дефектной трехмерной структурой. Далее, при длительном контакте с окислителями происходит деструкция каркаса, и в первую очередь отщепление ионогенных групп. [c.283]

    Приемлемость метода подтверждается все более широким применением турбидиметрического титрования при исследованиях смесей полимеров и образцов сополимеров. В этих случаях очень трудно делать количественные выводы относительно распределений по молекулярным весам в связи с химической неоднородностью, которая довольно сильно влияет на параметры растворимости молекул. Подробно проблемы, связанные с химической неоднородностью макромолекул, будут рассмотрены в гл. 12. С помощью турбидиметрии можно получить определенные данные о количественном соотношении гомополимера и сополимера в смеси даже при наличии затрудняющего интерпретацию соосаждения. Изменения механизма полимеризации специфически отран аются на характере кривой изменения мутности. В ряде случаев метод турбидиметрии может даже дать сведения о соотношении линейных и разветвленных макромолекул в полимерном образце. [c.170]

    Возможности использования метода турбидиметрического титрования для полимеров, обладающих химической неоднородностью, такие же как и для сополимеров. Например, растворимость эфиров целлюлозы зависит от степени этерификации, которая может обусловливать возникновение ошибок при получении кривых распределения по молекулярным весам. Замещение концевых групп также изменяет растворимость этого полимера. Во многих случаях зависимость растворимости от химических изменений в структуре полимера может сделать интерпретацию результатов измерения более сложной. Но тем не менее в других случаях на основании указанной зависимости можно получить особенно важные данные об изменении структуры. Иногда можно использовать химические реакции для того, чтобы сохранить возможность разделения различных компонентов методом турбидиметрического титрования (см. обсуждение работы Хоффмана [59] в разд. VI,Б, И). С помощью турбидиметрического титрования можно исследовать медленно развивающиеся химические реакции, например деструкцию полимера в определенных растворителях или нри созревании вязких растворов. Примеры необычной температурной зависимости осанедения рассмотрены в разд. [c.200]

    При фракционировании макромолекул обычно предполага(зтся, что макромолекулы различаются только по молекулярному весу и обладают одинаковым химическим составом. Но такое предполо кение не выполняется для большого числа сополимеров и соединений, которые частично модифицированы после проведения синтеза, а также для некоторых природных соединений и ряда других полимеров. В подобных соединениях отдельные макромолекулы могут отличаться друг от друга по химическому составу, несмотря, папример, на одинаковые молекулярные веса. Предельный случай химической неоднородности можно представить смесями двух или более гомополимеров. В таких случаях имеет место неоднородность по химическому составу макромолекул наряду с неоднородностью по молекулярным весам. Можно полагать, что физические свойства образца определяются степенью неоднородности по молекулярным весам, а также величиной химической неоднородности макромолекул. Это предполон ение полностью подтверждается на практике [1—4]. Следовательно, при исследовании физических свойств образцов и при оценке данных кинетики полимеризации также необходимо учитывать химическую неоднородность и проводить ее определение. [c.292]

    Исследования подобных явлений в макромолекулярных системах находятся еще в стадии предварительного развития. Не совсем ясно, в какой степени влияет композиционная неоднородность на общие характеристики образцов. Для удобства последующего рассмотрения в табл. 12-1 приведены возможные типы химической неоднородности макромолекулярных соединений. Прежде чем обсуждать методы фракционирования, необходимо отчетливо представить себе указанные группы композиционных неоднородностей. Во второй колонке таблицы указаны соединения, которые могут обладать химической неоднородностью данного типа. Конкретные примеры соединений, приведенных в третьей колонке таблицы, более подробно рассматриваются в работах, цитированных в разд. IV данной главы. При классификации макромолекулярных соединений удобно исходить из типа и распределения основных мономерных звеньев в макромолекулах. Рассмотрим в качестве примера частично омыленный поливинилацетат. Этот полимер состоит из двух основных химических звеньев — винилового спирта и винилацетата. Образцы, содержащие гомонолимеры, отдельно не указаны в табл. 12-1, поскольку они уже приведены в общей схеме. Например, сополимер двух соединений X и Y может состоять из действительно сополимерных молекул и в то же время содержать любые гомополимеры типа X и Y или привитой сополимер. Система стирол на целлюлозе может содержать истинный привитой сополимер, чистый полистирол и чистую целлюлозу. Наиболее часто могут встречаться полимерные образцы с химической неоднородностью типа А и Б (см. табл. 12-1). Природа химической неоднородности и степень ее определяются условиями получения образцов темпера- [c.292]

    Наряду с отмеченными выше проблемами фракционирования химически неоднородных полимеров существует еще одна — интерпретация аналитических данных по химическому составу фракций. В описанных примерах авторы были удовлетворены данными анализа химического параметра (например, содержание хлора или пропилена) для каждой отдельной фракции. Но существуют макромолекулы, которые, несмотря на совпадение молекулярных весов и одинаковый суммарный химический состав, отличаются друг от друга раснределением мономерных звеньев вдоль цепи. Компоненты X и в сополимере могут быть распределены статистически вдоль полимерной цепи или какой-то участок макромолекулы может содержать преобладающее количество компонента X, а другой участок — компонента У. Подобная неодинаковость, нестатистичность раснределения компонентов вдоль полимерных цепей оказывает влияние на растворимость и, следовательно, на результаты фракционирования. Точно такое же положение может возникнуть для всех других химически неоднородных полимеров, упомянутых в табл. 12-1. Например, вполне возможно неоднородное распределение эфирных групп в частично этерифицированной целлюлозе или атомов хлора в не полностью хлорированном полиолефине. [c.299]

    Под дополнительными методами имеются в виду методы хроматографии на колонке (гл. 4), электрофореза и гель-проникающей хроматографии (гл. 5). В первом случае разделение исследуемых полимерных образцов происходит на основании зависимости растворимости от молекулярного веса и химического состава. Нетрудно понять механизм разделения по молекулярным весам, поскольку растворимость уменьшается при увеличении молекулярного веса. Но растворимость зависит также от присутствия в полимере полярных групп в связи с этим при наличии химической неоднородности происходит фракционирование и по составу молекул. Если полярность групп в разных звеньях макромолекулы примерно одинакова, то фракционирование определяется главным образом величиной молекулярного веса. При больших различиях в степени полярности разных групп влияние полярности может оказаться более сильным, чем влияние молекулярного веса, и разделение на фракции сможет осуществляться преимущественно по химическому строению. Именно на этом было основано разделение сывороточного альбумина лошади и яичного альбумина в водном фосфатном растворе на фракции с различным содержанием.кислых фосфатных групп [17]. Белки с большим содержанием серы были разделены методами хроматографии на фракции с различным содержанием серы и азота [18]. Влияние на результаты фракционирования сродства между исследуемым соединением и материалом носителя было изучено на примере рацемической смеси поли-4-метилгексена-1 [19]. При фракционировании методом хроматографии [c.299]


Смотреть страницы где упоминается термин Полимеры химическая неоднородность: [c.306]    [c.21]    [c.385]    [c.21]    [c.320]    [c.312]    [c.36]    [c.294]    [c.298]   
Фракционирование полимеров (1971) -- [ c.310 , c.311 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры химическая



© 2025 chem21.info Реклама на сайте