Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород системы пар жидкость

    В результате анализа многочисленных литературных источников отобраны наиболее необходимые и достоверные данные по всем основным свойствам водорода, по характеристикам процессов его воспламенения и горения, о фазовом равновесии в системах жидкость — пар, твердое вещество — жидкость и т. д. Как правило, приведены не только экспериментальные и расчетные данные, но и анализ основных закономерностей в изменении показателей соответствующих свойств в зависимости от температуры и давления. Для этой цели широко использовано графическое представление экспериментальных и расчетных данных. Уравнения для расчета показателей теплофизических и других свойств водорода отобраны с учетом физических представлений о процессе когда же такой возможности не было, выбирали наиболее удобные для практического использования эмпирические уравнения. Коэффициенты таких уравнений проверены и пересчитаны с учетом Международных единиц СИ. В порядке иллюстрации приведены примеры расчетов по этим уравнениям. [c.9]


    Было исследовано влияние добавки перекиси водорода в систему ацетон—вода в количестве 1—3% мол. на летучесть ацетона. Ввиду малых концентраций перекиси водорода в жидкости, малой ее летучести (в парах определено лишь 0,03% мол.) и для удобства интерпретации результатов система рассматривалась как бинарная. Полученные экспериментальные данные свидетельствуют о том, что даже небольшое количество перекиси водорода заметно изменяет равновесие в изучаемой системе в сторону приближения к идеальности, что видно из рис. 3, и изменения величин коэффициента активности в сторону [c.50]

    В реакции гидрогенизации жиров (и жирных кислот) участвуют три основных компонента жидкие (расплавленные) жиры, газообразный водород и твердый, нерастворимый в жирах катализатор. К моменту протекания самой химической реакции водород уже растворен в жире, тогда как катализатор сохраняет свое первоначальное агрегатное состояние. Таким образом, процесс гидрогенизации протекает в системе жидкость — твердое тело, где жидкость представляет собой раствор водорода в масле, а твердое тело, как уже говорилось, — катализатор. Процессы, происходящие между веществами в различном агрегатном состоянии, называются гетерогенными. Следовательно, гидрогенизация жиров на твердом катализаторе представляет собой гетерогенный жидкофазный каталитический процесс. [c.181]

    По механизму гетерофазные реакции могут быть некаталитическими, радикально-цепными или гомогенно-каталитическими. В системах жидкость — жидкость обычно реализуются гидролиз и щелочное дегидрохлорирование хлорпроизводных при помощи водных растворов щелочей, сульфирование и нитрование ароматических соединений, алкилирование изобутана бутаном (когда во второй жидкой фазе Находится катализатор — серная кислота или безводный фторид водорода) и т. д. В системах из газа и жидкости осуществляют многие процессы хлорирования молекулярным хлором или газообразным HG1, окисления органических веществ воздухом или кислородом, реакции сульфохлорирования и сульфоокисления (когда в газовой фазе находятся два из трех реагентов SO2 и I2 или SO2 и [c.246]

    Мешалка останавливается и сосуд для гидрирования погружается на 10 мин в водяную баню. Затем вносится такое количество анализируемого раствора, чтобы при последующем гидрировании поглотилось 2—4 мл водорода. Система продувается водородом отмечается уровень жидкости в бюретке, температура и барометрическое давление убирается баня и приводится в движение мешалка. После прекращения поглощения водорода сосуд для гидрирования снова погружают на 10 мин в водяную баню, имеющую ту же температуру, что и до начала опыта, и отмечают конечный объем водорода в бюретке. [c.10]


    Увеличение давления до уровня, превышающего давление начала конденсации, при неизменной температуре реакции способствует образованию жидкой фазы. Наличие жидкой фазы влияет на скорость диффузии. Скорость диффузии водорода через жидкие углеводороды мала активные центры катализатора в заполненных жидкостью порах практически пе участвуют в реакции. Суммарная скорость превращения смешаннофазной системы определяется н% ичи водорода на поверхности катализатора. Следовательно, в реакторе должны быть созданы условия, ведущие к уменьшению толщины жидкостной пленки. [c.47]

    Так, на одном из хлорных заводов при абсорбции хлористого водорода образовалась смесь взрывоопасных газов, которая вместе с соляной кислотой проникла в сеть канализации кислых вод, так как высота запирающего слоя гидрозатвора на выходе жидкости пз абсорбера была недостаточной. В системе канализации отходящие газы абсорбции образовали с воздухом взрывоопасную смесь, которая через некоторое время взорвалась. [c.246]

    Регенерацию теплоты можно проводить непрерывным способом, когда в качестве теплового агента применяется, например, твердый материал небольшого зернения, жидкость или даже газ, движущиеся в системе и поглощающие периодически теплоту горячего носителя, а затем отдающие ее материалу, который нужно нагреть. Такая установка, использующая твердые гранулы (или мелкие камни, гальку), показана на рис. 1Х-39. Она может применяться для нагревания воздуха, водорода, метана, водяных паров или других газообразных веществ в различных промышленных процессах. Гранулы диаметром 8—15 мм нагреваются в верхней камере 2 при непосредственном соприкосновении (прямой теплообмен) с отдающим теплоту носителем, которым может быть любой газ с высокой температурой (например, продукты сгорания). После перемещения в нижнюю камеру 3 гранулы отдают теплоту газам, которые нужно нагреть. Подъемником 1 гранулы транспортируются снова на верх камеры 2. В среднем цикл перемещения гранул составляет 30—50 мин. Нижняя камера может также использоваться как реактор для проведения высокотемпературных реакций в газовой фазе (например, для каталитического крекинга нефтепродуктов) тепловой агент, в этом случае одновременно является катализатором. [c.387]

    Скорость окисления кумола кислородом в системе газ —жидкость достаточно велика, даже без инициаторов, благодаря высокой реакционной способности атомов водорода, связанных с третичными [c.177]

    Реакции с участием водорода в системе газ — жидкость [c.298]

    Ряд реакций с газообразным водородом, главным образом гидрирования, проводят при невысоких температурах, когда реагенты и (или) продукты находятся в жидкой фазе. Если для той же температуры выполнен термодинамический расчет для газофазной реакции (все компоненты — газообразные), т. е. найдены АЯ°, К°р, равновесный состав, то можно перейти к термодинамическим характеристикам равновесия в газожидкостной системе. Для идеального раствора рг = р°1М1 (где р°1 — давление насыщенного пара компонента а N1 — мольная доля I в жидкости). Поэтому, пренебрегая содержанием Н2 в жидкой фазе мало), имеем для паровой (п) фазы  [c.298]

    Конвективный теплообмен между газом или жидкостью и твердым телом происходит в результате их соприкосновения. Теплопередача при этом происходит переносом теплоты движущимися материальными частицами газа или жидкости, прилегающей к поверхности твердого тела при эндотермических реакциях, и от частиц материала к газу или жидкости при экзотермических реакциях, за исключением печи синтеза хлористого водорода, где тепло от реакционных газов передается металлическому кожуху печи и отводится из системы. [c.26]

    Процесс гидрирования проводится при 10—12-кратном избытке водорода по отношению к объему гидрируемой жидкости. Для поддержания требуемого модуля водорода проводят его циркуляцию в системе при помощи циркуляционных газовых насосов. Применяемый технический водород должен содержать не менее 99,6% водорода. В случае загрязнения водорода примесями кислорода и других газов предусматривается возможность сброса водорода в атмосферу. [c.156]

    Таким образом, в реакторных устройствах, имеющих разные степени вспенивания, для достижения одной и той же глубины процесса нужно поддерживать различные концентрации порошкообразного катализатора в жидкости путем регулирования рециркуляции пульпы катализатора. Так, при возрастании степени вспенивания рециркуляцию пульпы нужно увеличить. Кроме того, из кривых, изображенных на рис. 34—36, следует, что при постоянной подаче циркулирующего газа степень вспенивания возрастает с увеличением пропускной способности установок. Поэтому условия транспортирования водорода в установках разной производительности получаются тоже разные, а в опытных и промышленных системах они просто несопоставимы. Следовательно, ведение процесса при постоянных соотношениях сжатого газа и жидкости теоретически не обосновано. Для получения сравнимых условий на экспериментальных и промыш- [c.162]


    Чтобы уменьшить образование двухфазного потока, повышают давление в системе, переохлаждают на несколько градусов жидкий водород, уменьшают приток тепла. Следует отметить, что двухфазный поток характерен для всех криогенных жидкостей [27]. [c.92]

    Важным моментом при проектировании наземных сооружений для хранения жидкого водорода является устройство низкой кольцевой защитной дамбы высотой 0,6—1 м, образующей блюдце , способное вместить все количество жидкого водорода, содержащегося в емкости, в случае выливания его при аварии. Для уменьшения продолжительности горения площадка внутри кольца выполняется из щебенки, имеющей развитую поверхность теплоподвода, что ускоряет испарение жидкости [155, 166]. Ввиду того, что водородное пламя легко перемещается под действием ветра, практически расстояние между незащищенными емкостями не должно быть менее 30 м [163]. Результаты испытаний горения облака водородных паров свидетельствуют о высокой вероятности загорания на. дистанции 30 и уменьшении опасности с увеличением расстояния расстояние 150 м считается уже вполне безопасным. Внешняя оболочка емкости должна быть термоизолирована или оборудована специальной водоподающей системой для защиты от возгорания в случае пожара на соседней емкости. [c.191]

    В промышленных установках тех лет применяли трех- и четырехступенчатые схемы переработки угля [63]. На стадии жидкофазной гидрогенизации паста — 40% угля и 60 /о высококипящего угольного продукта с добавкой железного катализатора — подвергалась воздействию газообразного водорода при температуре 450—490 °С и давлении до 70 МПа в системе из трех или четырех последовательно расположенных реакторов. Степень конверсии угля в жидкие продукты и газ составляла 90—95% (масс.). Поскольку экономичные методы регенерации катализаторов в то время не были разработаны, в большинстве случаев использовали дешевые малоактивные катализаторы на основе оксидов и сульфидов, железа. После прохождения системы реакторов и горячего сепаратора при температуре 440—450 °С циркуляционный водородсодержащий газ и жидкие продукты отводили сверху. Затем в холодном сепараторе газ отделялся от жидкости и после промывки возвращался в цикл в смеси со свежим водородом. Жидкий продукт после двухступенчатого снижения давления для отделения углеводородных газов и воды подвергался разгонке, при этом выделяли фракцию с температурой конца кипения до 320—350 °С и остаток (тяжелое масло, его употребляли для разбав.чения шлама гидрогенизации перед центрифугированием). [c.79]

    Таким образом, для системы водород — вода при указанных давлении и температуре увеличение концентрации жидкости в газе почти целиком обусловлено изменением давления насыщенного пара жидкости при возрастании давления газа. При использовании в качестве сжимающего газа азота расхождения между опытными данными и теоретическими становятся более значительными. Если же сжимающим газом является диоксид уг- [c.74]

    Азеотропные смеси (азеотропы). Азеотропная смесь ведет себя подобно чистому веществу, поскольку она перегоняется без изменения состава или температуры кипения до тех пор, пока давление остается постоянным. Перемена давления приводит как к изменению температуры кипения и состава азеотропа, так и формы кривой равновесия пар—жидкость. Эти изменения почти всегда малы, если только давление не изменится значительно. Так, раствор хлористого водорода и воды, содержащий 20,2% (весовых) хлористого водорода, кипит при 110° (при 760 мм рт. ст.), давая дестиллят того же состава (рис. 7). При нагревании смеси любого другого состава один из компонентов отгоняется в различных количествах до тех пор, пока в кубе не останется азеотропная смесь, которая затем перегоняется при постоянной температуре. Все смеси, содержащие меньше 20,2% хлористого водорода, можно рассматривать как составленные из воды и азеотропа, причем более летучим компонентом будет вода. Те же смеси, в которых содержится более 20,2% хлористого водорода, можно рассматривать аналогично как состоящие из хлористого водорода и азеотропа более летучим компонентом будет хлористый водород. Подобно тому, как это происходите системами, не содержащими азеотропа, перегонка, если только она достаточно эффективна, приводит к разделению на воду и азеотроп для систем, содержащих менее 20,2% хлористого водорода, и на хлористый водород и азеотроп для систем, содержащих более 20,2% хлористого водорода. Система вода— хлористый водород является типичной для систем, образующих смеси с максимальной точкой кипения. Аналогичные положения применшмы к системам, образующим смеси с минимальной точкой кипения, за исключением того, что в них азеотроп более летуч, чем любой из компонентов. Так, все смеси толуол—спирт, содержащие менее 41 % толуола, могут быть разделены на азеотроп и спирт, а смеси, содержащие более 41% толуола,—на азеотроп и толуол. Изложенную характеристику двойных азеотропных систем можно свести в следующие положения  [c.26]

    Опыты по переработке в коронном разряде мелкоизмельчен-ного каменного угля в присутствии водорода дали обнадеживающие результаты, однако повышение электропроводности каменного угля по мере увеличения степени его переработки приводило к расстройству процесса и невоз можности поддерживать коронный разряд. Более стабильный коронный разряд был получен в системе жидкость — газ прн переработке тяжелых углеводородов и в системе газ —пар при переработке летучих продуктов нагрева каменного угля. В результате воздействия коронного разряда отмечался сдвиг в сторону образования низкомолеку-лярпых продуктов. [c.59]

    Типичные системы, взаимодействующие в условиях МФК, представляют собой двухфазные системы жидкость-жидкость с четкой границей раздела фаз [13, 14]. В случае межфазного дегидрохлорирования полимеров ВХ это достигается использованием водных щелочных растворов и не растворяющих воду полярных растворителей, например, о-дихлорбензола [9], нитробензола [15-17]. Именно в таких системах из ПВХ, сополимера винилхлорида с винилацетатом (ВХВА), сополимера винилхлорида с винилацетатом и виниловым спиртом (ВХВАВС) в присутствии четвертичных аммониевых солей (ЧАС) и спиртов, увеличивающих активность ЧАС в реакциях дегидрохлорирования хлоругле-водородов [18, 19], под действием водных растворов щелочей получены поливинилены с высокой степенью кристалличности, не достигаемой никакими другими способами [15-17] (табл. 1). Конверсия полимера и соотношение аморфной и кристаллической фаз зависят от природы всех компонентов системы. Увеличение длины углеводородного радикала в катионной части ЧАС ведет к повышению его липофильности и росту конверсии в процессе дегидрохлорирования. Небольшие ионы типа тетраметил аммониевых практически не активны в случае дегидрохлорирования ПВХ и мало активны в случае сополимеров ВХ. Существенную роль играет и природа аниона ЧАС. При одинаковой катионной части каталитическая активность (А1к)4КНа1 уменьшается от хлорида к иодиду. При этом активность катализатора связана не с липофильностью галогенидов, которая уменьшается в ряду Г > Вг > СГ [20], а определяется, вероятно, размерами ионов. Для галогенидов они составляют 2.20А, 1.81 А и 1.96А, соответственно. Большой размер аниона способствует уменьшению его адсорбции на поверхности раздела фаз. [c.130]

    Дозатор раствора соды (рис. 9 и 10) позволяет поворотом пробки крана в течение нескольких секунд подать в абсорбер определенное и постоянное количество раствора, а именно около 10 мл 0,05 N раствора ЫагСОз в дистиллированной воде (см.также рис. 10).Носик дозатора располагается на таком уровне относительно крана, что при вытекании отмеряемого дозатором количества раствора мениск остающейся в системе жидкости устанавливается в самой узкой нижней части дозатора. Это обеспечивает точность работы дозатора. При наладке нового прибора важно подобрать и всегда применять такую концентрацию раствора соды, при которой на титрование его в холостом опыте требовалось бы от 9,0 до 9,9 мл 0,05 N раствора Н2504. Устройство дозатора перекиси водорода показано на рис. 11. [c.69]

    Особенность обоих методов (в отличие от ранее рассмотренного магнийорганического метода) в том, что ни карбид, ни гидрид невозможно перевести в растворенное состояние, поэтому основные реакции проходят в гетерогенной системе жидкость — твердое тело или газ — твердое тело. Следовательно, время полного исчерпания воды в этом случае заметно больше, чем в случае гомогенной системы. Один из путей ускорения процесса — увеличение поверхности соприкосновения реактива и анализируемого вещества. Отсюда следует, что внесение избытка реактива и его более полное измельчение должно способствовать быстрейшему окончанию реакции. Однако отмечена [18, 19] адсорбция ацетилена и водорода на поверхности порошка, и, естественно, количество сорбированного газа пропорционально поверхности. По этой причине измеренный объем газа может оказаться меньше объема, соответствующего истинному содержанию воды. Наоборот, результаты будз т завышены, если применяемый реактив перед началом анализа был насыщен газом и в ходе анализа часть его десорбировалась за счет теплоты реакции или нагревания реакционного сосуда. Особенно сильно влияние адсорбции может проявиться при анализе органических растворителей. В этом случае дополнительное выделение сорбированного газа может быть вызвано заменой молекул газа молекулами растворителя на активных центрах поверхности. Насколько велико влияние растворителя, показывают данные Уивера [18] последние следы ацетилена, которые не удавалось удалить длительным нагреванием и вакуумированием карбида, сравнительно легко десорбировались его кипячением в эфире. [c.17]

    Для анализа водорода в жидкостях и газах, содержащих окислители (например, кислород, хлор), используется датчик, работающий по принципу гальванического элемента. Электрохимическая система такого датчика для определения водорода, например в хлористом водороде (рис. П-2), состоит из специально обработанного полупогруженного угольного кислородного электрода 3, концентрированной НС1 в качестве электролита 7 и платинового индикаторного электрода 6. В качестве деполяризатора угольного катода используется кислород воздуха, свободно поступающий к катоду, поверхность которого настолько велика, что он практически не поляризуется. Платиновый анод отделяется от [c.46]

    В еще недостаточно исследованном нитрофтор-процессе [31 — 33] облученные тепловыделяющие элементы реагируют с системой окислов азота и фторидов. Практический интерес представляют два реагента 20 мол.%-ный раствор NOj в жидком фтористом водороде и жидкость состава NOF 3HF. Обе жидкости реагируют почти со всеми компонентами используемых типов топливных материалов, превращая все элементы в соответствующие фториды. Эти фториды часто являются комплексными соединениями, содержащими окислы азота, которые можно превратить в нормальные фториды при осторожном нагревании. В созданной по этой схеме установке растворение облученного топливного элемента проводят в вертикально расположенной трубе из монель-металла диаметром 20—30 мм и длиной 150 см. В процессе растворения выделяются водород, криптон и ксенон. Нерастворимые комплексные фториды осаждаются в нижней части растворителя и удаляются из него промыванием и декантацией. Выходящий из растворителя раствор, содержащий уран и плутоний, выпаривают до сухого остатка, который подвергается термическому разложению до простых фторидов. К этому остатку добавляют жидкий трифторид брома смесь нагревают до 100—140° С. Образующиеся гексафторид урана и летучие фториды продуктов деления направляются в дистилляционную колонку, где происходит очистка паров гексафторида урана от продуктов и от BrFg. Полученный трифторид брома вновь используется для фторирования смеси фторидов [1, 2, 4]. [c.337]

    Типы реакционных устройств. Реакционная масса в процессах жидкофазного гидрирования является, как правило, трехфазной (жидкий реагент, твердый катализатор, газообразный водород). Реакция протекает на поверхности катализатора, причем ее скорость при прочих равных условиях зависит от концентрации водорода в жидкости, скорости его растворения в реакционной массе и скорости диффузии водорода к поверхности катализатора. Повышению скорости благоприятствует высокое давление водорода и перемешивание реакционной массы, что характерно для всех процессов жидкофазного гидрирования. В лабораторных установках этого типа обычно осуществляется механическое перемешивание — при помощи мешалок, путем вращения или встряхивания автоклава. В промышленных реакторах большой производительности, где такой метод невыгоден или вообще неприменим, для перемешивания реакционной массы большей частью барботируют через нее избыточный водород, который циркулирует в системе. [c.621]

    Фтористый водород образует с водой азеотропную смесь с м-аксимальной т. кип. 112,0° при 750,2 мм рт. ст., состоящую из 38,26% фтористого водорода и 61,74% воды [551]. Очевидно, что перегонкой ра0тв0(р 0в более высокой концентрации можно получить ЧИСТЫЙ фтористый водород. Равновесие жидкость — Н ар системы фтористый в0д 0 p 0 д—вода чрезвычайно благоприятно. Как следует из рис. -6, практически безводный фтористый водор од (98%) можно получить одио ратной перегон-1К0Й 70%-ной фтори стовадородн ой кислоты или двухкратной перегон кой 48%-кисл Оты [551]. [c.34]

    Для получения низких температур используется обычно ожиженный газ. Снижая давление над свободной поверхностью жидкости, можно получить температуры ниже нормальной точки кипения хладоагента. При этом система жидкость — пар переходит в состояние, соответствующее равновесию при более низких температурах. Так, например, температура около 63° К легко получаегся при откачке паров из теплоизолированной ванны с жидким азотом. После достижения тройной точки при дальнейшем понижении давления над твердой фазой также будет снижаться температура, однако из-за плохого теплообмена между паром и твердым телом и низкой теплопроводности твердой фазы охлаждение откачкой паров из пространства над твердым азотом, как правило, не производится. Правда, ожижитель гелия Симона, описанный в гл. 1 (стр. 78), охлаждался до 10° К откачкой паров под твердым водородом. [c.118]

    На примере гидридов и оксидов типических элементов хорошо иллюстрируется корреляция между валентностью и номером группы элемента. Элементы, расположенные в левом нижнем углу периодической системы, представляют собой металлы. Они образуют ионные гидриды и оксиды, водные растворы которых обладают основными свойствами. Элементы, расположенные в верхнем правом углу периодической системы, являются неметаллами. Их соединения с водородом и оксиды представляют собой небольщие молекулы с ковалентными связями при нормальных условиях они существуют в форме жидкостей или газов и проявляют кйслотные свойства. В промежуточной части периодической таблицы между ее верхним правым и нижним левым углами находятся элементы, которые обнаруживают постепенно изменяющиеся свойства. По мере перехода от неметаллических элементов к семиметаллическим и далее к металлам их соединения с водородом становятся вместо кислотных инертными или нейтральными и далее основными (хотя эта общая закономерность осложняется многими отклонениями), а оксиды переходят более закономерным образом от кислотных к амфотерным и далее к основным. [c.323]

    Растворы газов в жидкостях. По своей природе и свойствам растворы газов в жидкостях ничем не отличаются от других жидких растворов. Обычно концентрации газов в этих растворах незначительны, и растворы являются разбавленными. Исключение составляют отд ьные системы, в которых растворимость оказывается весьма большой вследствие химического взаимодействия растворяемого газа с растворителем, например в растворах аммиака или хлористого водорода в воде. Малая концентрация раствора приводит обычно к сравнительно слабому отличию его свойств от свойств чистого растворителя. Впрочем, в незначительной степени растворений газов в жидкостях сопровождается в общем случае и изменением объема раствора и выделением или поглощением теплоты. Растворение газа в жидкости иначе называют абсорбцией газа жидкостью. [c.325]

Рис. 17. Данные о равновесии между жидкостью и паром в системах хлористый водород—вода—серная кислота (/), вода — уксусная кислота — хлористый кальций (2) и этиловый спирт—вода— хлористый литий (3). X —относительная концентрация первого. компонента (без учета третьер) Рис. 17. Данные о <a href="/info/333236">равновесии между жидкостью</a> и паром в системах <a href="/info/149542">хлористый водород—вода</a>—<a href="/info/1812">серная кислота</a> (/), вода — <a href="/info/1357">уксусная кислота</a> — <a href="/info/32609">хлористый кальций</a> (2) и <a href="/info/265005">этиловый спирт—вода</a>— <a href="/info/71419">хлористый литий</a> (3). X —<a href="/info/13570">относительная концентрация</a> первого. компонента (без учета третьер)
    Образующиеся значительные заряды статического электричества в хорошо заземленных системах при хранении и транспортировке водорода вследствие его малой электропроводности могут сохраняться довольно долго. Количество зарядов увеличивается при наличии двухфазного лотока во время перекачки жидкости. Особенно неблагоприятные условия создаются в процессе предварительного охлаждения системы, когда в соединительных трубопроводах имеются две фазы. Однако поскольку в процессе перекачки водорода получаются поля с напряженностью в десятки и сотни тысяч раз меньшей, чем при перекачке углеводородных горючих, опасность электростатических явлений в жидком водороде обычно менее значительна, чем для нефтяных топлив. [c.183]

    Если по условиям эксплуатации нельзя повысить квнцентрацию водорода в циркулирующем газе на входе в реактор до оптимального значения, то следует повышать общее давление в системе (и, как следствие, парциальное давление водорода). При снижении давления равновесие сдвигается в сторону образования паров, при повышении же давления — в сторону образования жидкости. Учитывая, что наиболее интенсивно процесс гидроочистки идет в паровой фазе, при снижении кратности циркуляции также целесообразно снижать общее давление в системе. [c.235]

    Более совершенной и широко испытанной конструкцией является бензино-водородный автомобиль Mersedes Benz 280 ТЕ (рис. 4.26). Для аккумулирования водорода используют ме-таллогидрид FeTiHx, подогреваемый водой, которая, в свою очередь, нагревается в специальном теплообменнике за счет тепла отработавших газов. Выделяющийся водород проходит фильтр для очистки от частиц металлического носителя. С помощью редуктора давление водорода понижается до 0,2 МПа и он посредством электромагнитных клапанов подается на впуск каждого цилиндра, куда впрыскивается и основное топливо — бензин. Управление комбинированной топливной системой осуществляется микропроцессором, входными сигналами для которого служат нагрузка и обороты двигателя, а также температура охлаждающей жидкости. Для аварийного отключения подачи водорода имеется электромагнитный запорный клапан, включаемый водителем (тумблер на панели приборов). Пуск двигателя может производиться как на бензине, так и на водороде вплоть до температуры окружающего воздуха —15°С. Масса автомобиля при установке дополнительной водородной системы питания повысилась на 150 кг. [c.179]

    Обычно из электролизеров выводят газожидкостную эмульсию, разделение которой происходит в специальных емкостях — разделителях. Отделившийся в разделителях раствор электролита возвращают в электролизер. Система гидравлического регулирования (рис. 1У-4) основана на том, что отделенные в разделителях 5 и 6 газы проходят через регуляторы 3 и 4, представляющие собой бар-ботажные промыватели, соединенные переточной трубой. Таким образом, давление газов в разделителях 5 и 6 всегда выше давлеиия их в цеховых коллекторах на величину, определяемунэ столбом жидкости, равным глубине барботажа. Изменение давления газов в цеховых коллекторах приводит к изменению глубины барботажа газов в регуляторах давления 3 и 4, вследствие чего давление водорода и кислорода в разделителях 5 и 6 остается одинаковым. [c.120]

    Шарообразные раздутия трубки перед промывалкой 4 препятствуют перебрасыванию жидкости из промывалки в печь 6. После промывалки ставят трубку со стеклянной ватой (на рис. 1.18 не показана), чтобы удалить из газа капельки раствора, увлекаемые струей водорода. В работе, требующей высокой степени чистоты, газ дополнительно 0ЧИ01ДЮТ Бымораживанием жидким азотом. Система кончается краном и шлифом. Когда электролизер не работает, кран следует держать закрытым, чтобы избежать диффузии воздуха в систему. Выходящий водород часто преодолевает то или иное давление (например, гидростатическое давление раствора в ячейке), от чего уровни жидкости в обеих частях электролизера смещаются относительно друг друга. Чтобы избежать этого, на выходе кислорода из анодной части электролизера ставят гидравлический затвор, с помощью которого компенсируют давление, создающееся в катодной части, и поддерживают жидкость в обеих частях электролизера на одном уровне. [c.34]

    В термохимии этого недостаточно. Энергия системы в исходном состоянии — это энергия 2 моль водорода и 1 моль кислорода, в конечном состоянии — это энергия 2 моль воды. Эта энергия различна в зависимости от того, будет ли в результате реакции получена жидкая вода, или водяной пар, или лед. Точно так же и исходные вев1 ества могут быть взяты в различных агрегатных состояниях. По формулам (II. 1.2) и (И. 1.3) тепловые эффекты могут быть различными. Поэтому принято в термохимических уравнениях заключать формулу каждого вещества в скобки и указывать в форме подстрочного индекса состояние этого вещества, пользуясь символами г — газ ж — жидкость тв — твердый кристалл (в некоторых случаях необходимо указывать, какая кристаллическая модификация имеется в виду). Поэтому термохимическое уравнение для данной реакции будет иметь вид [c.73]

    Мы видим, что смола в набухшем состоянии совмещает в себе свойства одновременно твердого и жидкого тела. Обладая определенными механическими свойствами твердого тела, зерно набухшей смолы представляет собой однофазную (гомогенную) систему — своеобразный истинный раствор полимера, в котором молекуляр.чо-дисперсная часть образует жесткую пространственную сетку, а катионы водорода дают такой же раствор, как в обычной жидкости. Такие системы называют квазитвердыми. [c.259]


Смотреть страницы где упоминается термин Водород системы пар жидкость: [c.76]    [c.138]    [c.331]    [c.60]    [c.219]    [c.113]    [c.322]    [c.548]    [c.475]    [c.47]    [c.283]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Системы газ жидкость

Системы жидкость жидкость



© 2025 chem21.info Реклама на сайте