Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация влияние противоиона

    Количество данных, отражающих влияние противоиона на кинетику процесса катионной полимеризации, недостаточно [193]. Получение их в строго фиксированном количестве затруднено, так как обычно неизвестна концентрация растущих ионных пар и константа их диссоциации на свободные ионы. Последнее обстоятельство может внести существенные ошибки в измеряемые значения кр из-за высокой реакционности свободных ионов, образующихся из ионных пар. [c.86]


    Данные по влиянию противоиона на состав сополимера неоднозначны. Это влияние более характерно для неполярных растворителей, тогда как в полярных растворителях в ряде случаев оно вообще отсутствует. Последнее не удивительно, т. к. в полярных растворителях ионные пары разделены, а сольватная оболочка не содержит мономера. Темп-ра в большей степени влияет на состав сополимера при катионной сополимеризации, чем при радикальной. Обычно с повышением температуры возрастает и часто существенно превышает единицу. См. также Катионная полимеризация. [c.228]

    Подробных данных по этому вопросу нет, но можно предположить, что во многих случаях влияние противоиона обусловлено изменениями частотного фактора при реакции роста. Значенпе Лр для полимеризации, катализируемой хлорной кислотой, составляет около 10 —10 , т. е. находится в той же области, что и при радикальной полимеризации (табл. 3.9). Однако Лр уменьшается на много порядков (до 10 ) для полимеризации, катализируемой иодом [28]. Это свидетельствует о том, что противоион 1з расположен очень близко от растущего иона карбония и прочно связан с ним. Способность мономера внедряться в растущую цепь сильно затруднена. О прочности связи 1 с растущим центром с очевидностью свидетельствует также отсутствие влияния внешнего электрического поля (постоянного тока) на полимеризацию [7]. Приложенное электрическое поле увеличивает скорость и степень катионной полимеризации в тех случаях, когда имеется некоторое разделение ионной пары. Под действием электрического поля происходит дальнейшее увеличение расстояния между ионом карбония и его противоионом. Результатом этого является увеличение /Ср, Кр и А . (Такого рода влияние электрического поля не следует путать с использованием электрического поля для инициирования полимеризации путем электролитиче- [c.295]

    Влияние противоиона на анионную полимеризацию стирола [43, 44] [c.309]

Таблица 1.12. Влияние противоиона на активность ионных пар при полимеризации стирола в диоксане и ТГФ Таблица 1.12. <a href="/info/705411">Влияние противоиона</a> на <a href="/info/5076">активность ионных</a> пар при <a href="/info/11907">полимеризации стирола</a> в диоксане и ТГФ
    Весьма вероятно, что при полимеризации гетероциклов катионная часть ионной пары, как правило, сильно сольватирована, и поэтому влияние противоиона на скорость полимеризации сказывается очень слабо. [c.87]


    Закономерности полимеризации углеводородных мономеров с соединениями щелочных металлов в неполярных средах характеризуются очень значительным влиянием противоиона на кинетику процесса, составы и структуры полимеров, что указывает на существенное участие щелочного металла в актах роста цепи в таких анионно-координационных процессах. [c.377]

    Эти примеры разъясняют некоторые проблемы стереорегулярной полимеризации. Необходимо учесть, что изложенные выше идеи касаются структуры ионных частиц, участвующих в реакциях роста цепи. Они объясняют влияние противоиона, растворителя, сольватирующих агентов и т. д. Отчетливо видно огромное значение структуры ионных пар в ионной полимеризации. [c.463]

    Таким образом, прочность образующихся сольватов изменялась в той же последовательности, что и степень влияния противоиона в углеводородных средах на акты роста цепи калий натрий литий. Соответственно, как было отмечено и при синтезе металл ароматических комплексов [92 ], при переходе от углеводородных растворителей к электронодонорным можно было ожидать изменения последовательности, характеризующей зависимость координирующей способности противоиона от его природы, что и было подтверждено экспериментально [51]. Действительно, при изучении структур полибутадиена в разных средах было найдено, что в связи с относительно низкими электроноакцепторными свойствами калия степень сольватации активных центров (характеризуемая долей 1,2-структур) при полимеризации бутадиена с КК в углеводородной среде в присутствии различных электронодонорных добавок была ниже, чем с КаК и особенно с Ь1К. [c.187]

    На неионизированных активных центрах скорость полимеризации невелика, а скорость обрыва возрастает. При наличии диссоциированных активных центров скорость реакции достигает мак- симальных значений, и влияние противоиона на рост и обрыв цепи становится незначительным. [c.123]

    Константы скорости роста цепи при катионной полимеризации, в отличие от радикальных процессов, зависят не только от температуры и природы мономера, но и от типа инициатора и поляр- -ности среды. Действительно, при изменении полярности среды может сильно меняться соотношение между различными формами активных центров, что приводит к изменению влияния противоиона на рост цепи. Следовательно, влияние природы противоиона и полярности среды на процесс полимеризации находятся в тесной связи и их нельзя рассматривать изолированно. [c.177]

    Еще меньшее влияние противоион оказывает на процесс полимеризации в полярных средах. При использовании в качестве растворителей простых эфиров образование комплексов противоион — эфир приводит к значительному ослаблению связи С—Ме и в системе повышается количество свободных анионов. При полимеризации стирола в тетрагидрофуране при 25° С активность свободных анионов в реакции роста цепи в 300—500 раз выше активности ионных пар, поэтому если даже I % активных центров существует в виде свободных ионов, на них образуется 60—80% полимера. Вот почему в полярных средах рост цепи почти полностью проте- [c.190]

    Влияние противоиона иллюстрируется данными анионной полимеризации стирола. Изменение природы противоиона в порядке Ь +Ка+К+КЬ+С5+ приводит к закономерному изменению константы диссоциации ионной пары (2,2 1,5 0,8 0,1 0,02)-10- моль/л, что, в свою очередь, вызывает уменьшение константы скорости роста 160, 80, 70, 65, 22 л/(моль-с). Эффект связан с уменьшением плотности заряда противоиона и степени его сольватации растворителем в приведенном ряду. Естественно, что реакционная способность свободных ионов роста не зависит от природы противоиона - во всех случаях к = 6,5 10 л/(моль с). [c.240]

    Характерной особенностью ионной полимеризации является влияние полярности растворителя на скорость реакции роста, что, в первую очередь, обусловлено изменением степени диссоциации ионной пары. Этот эффект особенно значителен для анионной полимеризации, где противоионом является катион металла. Такой противоион имеет большую плотность заряда (по сравнению с противоионом в катионной полимеризации) и достаточно прочно связан с карбанионом. Поэтому разделение ионной пары, достигаемое за счет ее сольватации полярным растворителем, приводит к возрастанию константы скорости роста на несколько порядков, [c.285]

    В отличие от радикальной полимеризации константы скорости роста, обрыва и передачи цепи при ионной полимеризации характерны не для того или иного мономера, а только для определенной системы мономер - катализатор - сокатализатор -растворитель, ибо противоион расположен достаточно близко, оказывая существенное влияние на реакции ионизированного конца растущей цепи, а степень ионизации зависит от природы растворителя. [c.257]


    В зависимости от знака заряда на конце растущей цепи ионную полимеризацию подразделяют на анионную, протекающую под влиянием возбудителей основного характера, и катионную, вызываемую кислотными агентами. Активные центры при ионной полимеризации обычно имеют структуру ионных пар, компоненты которых называются растущим ионом (R+ или R ) и противоионом (А или В+). Реакционная способность активных центров при ионной полимеризации, в отличие от радикальной полимеризации в большой степени зависит от свойств реакционной среды. [c.28]

    Катионная полимеризация обычно осуществляется при температурах порядка от —50 до —70° С рост макроиона является регулируемым процессом, зависящим от природы ионной пары. Реакция, как правило, проводится в среде с низкой электрической постоянной (например, углеводороды), поэтому анион катализатора не удаляется от растущего макроиона на значительное расстояние. Вследствие постоянной близости этого противоиона, ха-рактер которого зависит от природы катализатора и сокатализатора, он оказывает заметное влияние на реакции обрыва и роста цепи. В этом отношении катионная полимеризация существенно отличается от радикальной, где радикалы, возникшие при распаде [c.162]

    Обращаясь к значениям констант роста, мы обнаруживаем их зависимость от полярности среды и природы возбудителя. Это специфическая черта ионной полимеризации, резко отличающая ее от радикального процесса, где константа роста для данного мономера определяется только температурой. Влияние полярности среды на константы скоростей элементарных реакций в ионных процессах не должно вызывать удивления полярность определяет взаимодействие концевого иона растущей цепи с противоионом. Однако до появления прямых данных о зависимости от е ускорение полимеризации с повышением полярности среды пытались объяснять изменением констант инициирования и обрыва. Сведениями о зависимости констант к у, Ад и к от характера ореды мы пока не располагаем. Имеются только данные, указывающие [c.310]

    В некоторых анионных системах при полимеризации образуются стереорегулярные полимеры, что объясняется ориентирующим влиянием противоиона в ионной паре на присоединение мономера к аниону. При использовании анионных инициаторов, содержащих асимметрический атом углерода, образуются оптически активные полимеры из монометров, также содержащих асимметрический атом С. [c.231]

    Ионная полимеризация может характеризоваться значительно большей стереоспецифичностью, чем радикальная. Это обусловливается не только взаимодействием заместителей концевых звеньев растущих полимерных цепей, но и участием в элементарных актах роста других компонентов каталитического комплекса, в частности, противоиона. Если активным центром на конце растущей цепи является ионная пара, то противоион оказывается одним из компонентов переходного комплекса, образующегося в реакции роста цепи. Поэтому он может влиять на фиксацию той или иной пространственной конфигурации, концевого звена растущей цепи. В некоторых случаях влияние противоиона, по-видимому, сводится к чисто стерическим эффектам, т. е. можно рассматривать противоион как своеобразный дополнительный заместитель в концевом звене растущей цепи. Например, при катионной полимеризации винилизобутилового эфира на катализаторе ВРз-НаО (противоион ВРзОН-) при —70°С образуется атактический полимер, при полимеризации в тех же условиях на катализаторе ВРз-(С2Н5)20 противоион ВР3ОС2Н5) образуется изотактический полимер. Увеличение объема противоиона значительно усиливает стереоспеци-фический эффект при росте цепи. [c.26]

    Влияние условий полимеризации. Констаита сксрос Ги роста цепи при катионной полимеризации определяется не только природой мономера и температурой, но и зависит от типа инициирующей добавки и нолярности среды, т. е. действие всех этих факторов имеет комплексный характер, и нельзя их рассматривать изолированно. С понижением температуры скорость процесса уменьшается, но при этом возрастает диэлектрическая проницаемость среды, в результате чегс уменьшится влияние противоиона на процесс это может привести к повышению константы скорости роста цепи. Ниже показано, как изменяется с температурой при полимеризации изобутилена в среде СНгОг на катализаторе Н2О  [c.129]

    Предполагается, что в случае гомополимеризации в диметилформамиде ионная пара растущей цепи полностью диссоциирована, вследствие чего степень полимеризации не зависит от противоиона и температуры. При гетерогенной полимеризации в петролейном эфире отмечено влияние противоиона (К+и Ма+)9 Ч Изучалась также полимеризация акрилонитрила под действием Ма-диэтилмалоиового эфира 9 . Скорость полимеризации пропорциональна концентрации инициатора и квадрату концентрации мономера. Константа скорости при —40° С равна 1,41 л- -моль -мин К [c.123]

    Характер отрицательного противоиона также может оказывать влияние на катионную полимеризацию. Чем больше и чем слабее связан противоион, тем легче происходит рост цепи. Влияние противоиона, так же как и влияние растворителя, может быть очень широким. Так, эффективная константа роста цепи для полимеризации стирола при 25 °С в растворе в 1,2-дихлорэтане возрастает от 0,003 при катализе иодом до 0,42 и 17,0 нри катализе 8нС14-Н20 и НСЮ4 соответственно [26, 27]. [c.295]

    В пеполярпых растворителях реакция может протекать по механизму анионно-координационной полимеризации. Под влиянием противоиона каждая новая молекула мономера присоединяется к полимерной цепи изотактическим способом. При этом степень изотактического расположения зависит от координационной способности противоиона. Различные щелочные металлы по координационной способности располагаются в следующем порядке  [c.537]

    Рост цепи обычно считают простейшим элементарным процессом. Следует отметить влияние противоиона. Если существующие общие представления о катионной полимеризации правильны, то надо полагать, что противоион не может полностью выйти за пределы радиуса электростатического действия растущего карбониевого иона и ионная пара выступает в качестве единой кинетической единицы. Тогда, конечно, во всех элементарных процессах участвует и противоион. Это особенно характерно для сред с низкой диэлектрической проницаемостью, в которых противоион тесно связан с растущим центром. Акт роста можно представить себе как результат согласованного донорно-акценторного действия ионной пары [c.223]

    Справедливость этой схемы подтверждена наличием в конечных продуктах концевых А-анионов [325]. Преимущество подобного развития процесса — в ориентирующем влиянии противоиона на растущую макроцепь, обусловливающим ее регулярность и, как следствие, высокие когезионные и адгезионные характеристики полицианакрилатов. В результате молекулярная масса полиэтил-а-цианакрилата 6-10 достигается уже через 15 мин после начала полимеризации [329]. [c.90]

    Координация объясняет поразительное влияние растворителей на степень стереорегулярности полимеров. Так, Фокс и др. [93] установили, что при анионной полимеризации метилметакрилата (противоион LI+) в углеводородах получается изотактический полимер, в растворителях с относительно высокой диэлектрической проницаемостью — синдиотактический, а в смешанных растворителях — сте-реоблок-полимер. Более подробные исследования Керна и др. [112] показали, что степень синдиотактичности увеличивается по мере роста основности растворителя. При изотактической полимеризации влияние растворителя еще сильнее оно обнаруживается при добавках эфиров в количестве 10 моль л [113]. Эти эффекты нельзя объяснить изменением диэлектрической проницаемости, так как добавки мало меняют макроскопическую диэлектрическую проницаемость. Они должны быть приписаны специфической сольватации (координации) ионных пар [92, 114, 115]. Очевидно, контактные ионные пары способствуют образованию изотактического, а сольватно разделенные пары — синдиотактического полимера. [c.458]

    Такой подход вполне оправдывается при рассмотрении зависимости структуры макромолекулы от присутствия в системе комплексообразующих соединений (оснований Льюиса), в частности полярного растворителя. Обычно эту зависимость связывают с изменением состояния активной связи М — А под действием таких агентов. Имеется в виду переход ионной пары (т. е. состояния активного центра, благоприятствующего избирательному образованию промежуточных комплексов определенной структуры) в разделенные пары или свободные ионы. Подобное изменение характера активных центров действительно может ослабить регулирующее влияние противоиона, а при полной диссоциации ионной пары целиком исключить его. Поэтому для процессов полимеризации, протекающих в полярных средах, такое представление о роли полярных соединений в известной мере оправдано. Однако значительные изменения в строении макромолекул часто наблюдаются в присутствии А1алых, а иногда ничтожных количеств полярного агента, т. е. в условиях, когда общая полярность среды практически не отличается от исходной. Один из хорошо известных примеров — синтез 1,4-1 ис-полиизо-прена под действием литиевых инициаторов, который оказался возможным лишь при исключении микропримесей из реакционных систем. По-видимому, механизм действия малых количеств различных ингибиторов стереоспецифичности состоит в образовании их комплексов с инициатором или активными центрами. Конечно, такие акты влияют на полярность и, следовательно, на длину связи М —А. Тем пе менее соответствующие эффекты [c.243]

    Общепринятое представление о причинах изменения структуры макромолекулы с изменением полярности среды сводится к переходу контактных ионных пар в сольватированные (или в свободные ионы), т. е. к ослаблению (или исчезновению) регулирующего влияния противоиона. Универсальность такого подхода сомнительна, так как значительные эффекты изхменения структуры макромолекулы часто наблюдаются уже в присутствии малых, а иногда ничтожных количеств полярного агента, т. е. в условиях, когда общая полярность среды практически не отличается от исходной. Далее, полярные среды отнюдь не всегда вызывают уменьшение стереорегулярности их влияние способно проявляться в инверсии микроструктуры полимера (например, метилметакрилат) [1] или в образовании полимеров более однородного строения (например, бутадиен) [2]. Кинетические данные, известные для ряда анионных систем, также часто не согласуются с представлением о функциональной связи между полярностью среды и наблюдаемыми изменениями в строении полимера. Структурные параметры, характеризующие повышение ионного вклада реакции роста, не всегда меняются симбатно с константой скорости этой реакции. Заметим, наконец, что полярные эффекты в их обычном понимании должны были бы наблюдаться при полимеризации полярных мономеров (акрилатов и т. п.) и в отсутствие дополнительных агентов. Здесь можно было бы ожидать зависимости характера и степени стереорегулярности полимера от концентрации мономера (как полярного агента) в исходной реакционной смеси. Однако в действительности это, по-видимому, не имеет места. [c.115]

    Из сопоставления результатов исследования кинетики процесса, состава сополимеров, структуры полимеров и спектрофотометрических данных следовало, что в ряде систем при наличии низких концентраций электронодонорных добавок или в средах с относительно низкой сольватирующей способностью (триэтиламин, диэтиловый эфир, диоксан) образуются малосольватированные центры (низшие сольваты), в присутствии которых также осуществляются своеобразные процессы координационной полимеризации, так как наблюдается существенное влияние противоиона не только на кинетику процесса и состав сополимеров, но и на структуру образующихся полимеров. Так, при сочетании исследований кинетики процесса полимеризации бутадиена и соответствующих структур полибутадиена с КК было найдено, что добавки ТГФ, существенно увеличивая скорость процесса, относительно мало меняют структуру полибутадиена [52]. [c.189]

    Естественно, влияние противоиона на процесс полимеризации для различных форм активных центров оказывается не равноценным. В неионизованных активных центрах связь ионов наиболее прочна, что приводит к снижению скорости полимеризации и значительному влиянию противоиона на характер реакций роста и обрыва цепи. Наоборот, при наличии в системе свободных ионов про-тивоионы практически не оказывают влияния на реакции роста и обрыва цепи, вследствие чего такие системы характеризуются высокими скоростями реакции и меньшей регулярностью получаемых полимеров. [c.171]

    Влияние комплексообразующей способности противоиона на стереоспедифичность реакции роста можно проиллюстрировать данными о микроструктуре полиизопрена, полученного при полимеризации в присутствии ряда щелочных металлов (табл. 1.3). [c.27]

    Полярность среды и температура полимеризации оказывают влияние на скорость роста цеРн и на природу получаемого полимера. Так, при полимеризации стирола прн одинаков ,1х температуре и природе противоиона константа скорости роста цепи возрастает с ростом полярности среды прн снижении температуры скорость полимеризации уменьшается Однако эта корреляция распространяется только на данную конкретную систему и не может быть перенесена на все процессы, и ицнируемые анионными катализаторами. [c.135]

    Важно подчеркнуть, что структура полимерный ион карбония - противо-ион не имеет аналогов в химии низкомолекулярных соединений, за исключением карбониевых солей. Но и эта аналогия условна, поскольку устойчивы только карбониевые соли с катионным компонентом более стабильным, чем любой компонент растущей цепи, поэтому, в частности (СбН5)зС А (А - BF4, AI I4 и другие) не вызывают полимеризации изобутилена [13]. Следовательно, отсутствие аналогии в поведении низкомолекулярных и полимерных ионов карбония связано со спецификой влияния комплексного противоиона. [c.72]

    Общая особенность в поведении ионных частиц реакции - это зависимость активности от факторов внешней (сольватация ионов, электростатический эффект противоиона) и внутренней (влияние электродонорных заместителей) стабилизации, а различие - в обратимом и необратимом характере образования ионов аренония и карбония соответственно. Следовательно, при наличии в системе более сильного, чем арен, 71-акцептора должно происходить его протонирование. Это подтверждается при использовании для инициирования полимеризации изобутилена различных комплексов присоединения протона на основе замещенных аренов, в том числе в составе полимеров стирола. [c.84]

    Амфотерный характер иона карбония в концепции ЖМКО предполагает способность на стадии роста к взаимодействию по типу мягкая кислота - мягкое основание и жесткая кислота - жесткое основание. Предельные случаи - реакции свободных катионов в газовой форме, где сольватация может осуществляться только субстратом и рост цепи по эфирной связи, например М-ОСЮ3. Для относительно устойчивого иона карбония из изобутилена эффективный рост цепи обеспечивается предпочтительностью реакции с мягким основанием - мономером по сравнению с более жесткими основаниями (противоион и другие). Важно, что условия конкуренции меняются по ходу полимеризации вследствие расхода мономера, изменения состояния катализатора и других процессов. Неблагоприятная вначале реакция карбкатиона, например с противоионом или его фрагментом, может стать выгодной к концу процесса. Видимо, по этой причине происходит дезактивация АЦ, вследствие чего полимеризация изобутилена во многих случаях не доходит до полного исчерпания мономера. Поэтому правильнее не конкретизировать состояние ионной пары, а говорить о неопределенности этого понятия, подразумевая неоднозначную роль противоиона во время роста полимерной цепи. Следовательно, термины свободный ион карбония и, соответственно свободный противоион , применяемые в отношении роста цепи при вещественном инициировании катионной полимеризации, весьма условны. Известная низкая способность к сольватации объемных противоионов в катионной полимеризации объясняет непринципиальное влияние полярности растворителя на стадии роста цепи. Аналогично комплексование противоиона с электроноакцепторными соединениями или введение солевых добавок с одноименным (катализатору) анионом, судя по сравнительно небольшому увеличению значений молекулярной массы полиизобутилена [217], мало изменяет поведение ионной пары. Полезную информацию о роли противоионов на стадии роста дают квантово-химические расчеты взаимодействия карбкатиона с мономером [218]. Учитывая конкурентный характер реакции мономера и противоиона с АЦ, переходное состояние стадии роста можно представить по типу реакций нуклеофильного замещения 8 ,2  [c.87]

    Отличительной особенностью изобутилена является его высокая реакционная способность по отношению к катионным агентам и, как следствие, очень высокие скорости процесса, сопровождающиеся выделением значительного количества тепла. Достаточно конкретное и точное измерение скорости полимеризации изобутилена вряд ли к настоящему времени проведено из-за трудностей в постановке корректных количественных опытов (влияние примесей, неизотермический характер процесса) и отсутствия экспериментальных данных о природе и концентрации АЦ. По-существу, термин кинетика катионной полимеризации изобутилена не существует по следующим причинам мультиплетность АЦ, отсутствие стационарного состояния, неопределенность реакций передачи цепи и порядка реакций по компонентам (первый, второй или более высокий), трудно-учитываемые в кинетических уравнениях эффекты растворителя и противоиона и др. Поэтому сведения о кинетике полимеризации изобутилена имеют частный характер и достаточно приближены даже пррт исследовании процессов, протекающих с умеренной скоростью и образованием продуктов невысокой молекуляр- [c.115]

    Следует указать на селективную полимеризацию изобутилена из фракции С4 [0,9 отн.ед.] под действием комплекса Си804 НС1, отличающегося низкой кислотной силой (Но = - 8) и специфическим влиянием твердого противоиона, нивелирующего роль среды [30-32]. Природа растворителя в этом случае не влияет на селективность процесса. Перспективны также гетерогенные катализаторы на основе сульфокатионитов типа КУ-2 и КУ-2(8), модифицированные хлоридами алюминия. Этот тип каталитических систем привлекателен тем, что обеспечивает возможность производства полимеров изобутилена в одну стадию, без операций отмывки полимерных продуктов и дезактивации катализатора [32, 33]. [c.306]

    Влияние ионизации, природы растворителя, противоиона и т. д. на катионную полимеризацию может проявляться различно. В случае системы стирол — Sn l -НаО— I4 повышающее диэлектрическую постоянную добавление полярного нитробензола приводит к значительному возрастанию скорости полимеризации, но мало отражается на молекулярной массе. Это можно объяснить тем, что увеличение полярности среды ускоряет инициирование и тормозит обрыв цепи, так как оно благоприятствует переходу каталитического комплекса в ионное состояние, одновременно ослабляя взаимное притяжение макроиона карбония и [Sn I OH]". Хотя ускорение инициирования и замедление обрыва цепи приводят [с возрастанию общей скорости полимеризации, эти факторы оказывают противоположное влияние на молекулярную массу полимера (первый фактор снижает, а второй — увеличивает его), в значительной степени компенсируя друг друга поэтому молекулярная масса мало зависит от диэлектрической постоянной. [c.155]

    Таким образом, при полимеризации этилена на циглеровских катализаторах найдены адекватные модели, описывающие процесс полимеризации, которые во многом схожи у различных исследователей. Методами аЬ initio и DFT исследованы маршрут реакции полимеризации, объяснены особенности полимеризации олефинов на циглеровских катализаторах, показаны влияние лигандов в АЦ, противоиона и роль р-агостических комплексов в механизме реакции полимеризации. Однако данные по полицентровости каталитических систем полимеризации этилена [5] еще не были учтены в этих теоретических моделях. [c.310]


Смотреть страницы где упоминается термин Полимеризация влияние противоиона: [c.56]    [c.128]    [c.136]    [c.378]    [c.174]   
Химия и технология синтетического каучука Изд 2 (1975) -- [ c.157 , c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация влияние

Противоионы



© 2025 chem21.info Реклама на сайте