Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон как химическая единица

    Многие соединения платины, кобальта и других переходных металлов имеют необычные эмпирические формулы и часто ярко окрашены. Они называются координационными соединениями. Их главным отличительным признаком является наличие двух, четырех, пяти, шести, а иногда большего числа химических групп, расположенных геометрически правильно вокруг иона металла. Такими группами могут быть нейтральные молекулы, катионы или анионы. Каждая группа может представлять собой независимую структурную единицу, но нередки и такие случаи, когда все группы связаны в одну длинную, гибкую молекулу, свернувшуюся вокруг атома металла. Координированные группы сушественно изменяют химические свойства металла. Окраска таких соединений позволяет судить об их электронных энергетических уровнях. [c.205]


    Теория Льюиса по своему характеру выглядит наиболее общей из всех трех теорий, так как связывает кислотно-основные свойства с определенной электронной структурой, а не относит их к известным химическим единицам, таким, как Н+ и 0Н , в теории Аррениуса или Н+ в теории Бренстеда. Так как акцепторами электронов, кроме протона, могут быть и многие другие химические реагенты, число кислот по Льюису во много раз больше числа кислот по Бренстеду. Из определения оснований по Льюису непосредственно следует, что оно включает в себя и все основания по Бренстеду. [c.28]

    Концентрация парамагнитных центров (ПМЦ) определяет число частиц с неспаренным электроном в единице объема или массы вещества и является важнейшей физико-химической характеристикой, позволяющей судить о реакционной способности вещества. Известно, что концентрация ПМЦ связана с количеством стабильных свободных радикалов в веществе. [c.128]

    Ранее указывалось, что в молекулах с делокализованными электронами химические связи можно рассматривать как промежуточные между двойными и одинарными. Представление о порядке связи дает этому понятию количественную характеристику. Если порядок связи равен единице, то связь следует считать одинарной, двум — двойной, однако этот параметр может иметь и промежуточные значения. Чем выше порядок связи, тем, при прочих равных условиях, прочнее данная связь. В структурной формуле бутадиена [c.193]

    Кратко рассмотрены химические свойства радикалов, их реакционность, способность вступать в многочисленные реакции, в том числе и в реакции, протекающие без затрагивания неспаренного электрона. Следует отметить, что мы везде будем иметь дело только с электрически нейтральными радикалами, т. е. все ионы-радикалы исключены из рассмотрения не описаны также радикалы, стабилизированные в жестких матрицах (см., например, [8]), и радикальные состояния с числом неспаренных электронов, большим единицы. [c.6]

    Открытие радиоактивности и многочисленные исследования, вызванные им, привели к необходимости дополнить атомную теорию электронной, однако не в том смысле, что электронная теория делает бесполезной атомную, как думали одно время некоторые ученые, а в том, что электронная теория требует внести изменения в некоторые понятия классической атомной теории. Эти новые исследования привели к изменению понятия атома, который нельзя уже определять как самую малую из частиц, образующих химические элементы, потому что атом элемента должен рассматриваться как система, в образовании которой принимают участие четыре корпускулы, а именно электрон — элементарная единица отрицательного электрического заряда, протон (Резерфорд, 1911), заряженный положительно, нейтрон (Бёте и Беккер, 1930), масса которого почти равна [c.416]


    ЭЛЕКТРОН КАК ХИМИЧЕСКАЯ ЕДИНИЦА [c.89]

    Скандий стоит в начале первого большого (IV) периода и именно с него начинается усложнение строения атома вследствие заполнения не внешней электронной оболочки, а второй снаружи. Иттрий, выделенный Ф. Велером в 1828 г. из минерала, найденного близ города Иттерби (Швеция), выполняет ту же функцию в следующем большом периоде (V), а лантан — в VI. Строение электронных оболочек этих элементов таково (см. табл. 27), что они имеют устойчивую валентность 3, при которой теряют оба внешних электрона и один электрон со второй оболочки, приобретая таким образом устойчивую 8-электронную структуру наружного слоя. Сходство в химических свойствах этих трех элементов очень велико, но особенно близки по химическим свойствам элементы группы редких земель. Эта близость объясняется одинаковым строением двух внешних электронных оболочек в связи с тем, что при достройке атома при переходе от одного элемента к другому, т. е. при возрастании заряда и числа электронов на единицу, дополнительный электрон располагается у этих элементов не во внешнем электронном слое, а на третьем снаружи, обозначаемом 4/. Вполне понятно, что близость химических свойств обусловливает как совместное нахождение этих элементов в природе, так и трудность их разделения и выделения в виде индивидуальных соединений. [c.229]

    Ранее мы говорили, что электроны (проводимости) и дырки можно рассматривать, как дефекты твердого тела, в этой и последующих главах широко используется теория химического равновесия, в которой электроны и дырки выступают как химические единицы. Представление об электронах и дырках как химических единицах неприменимо к металлам, где концентрации этих частиц имеют тот же порядок, что и число атомов и не зависят ни от присутствия, ни от концентрации дефектов в кристалле. В диэлектриках и полупроводниках, однако, концентрации электронов и дырок обычно зависят от присутствия дефектов, и они меньше концентрации атомов самого кристалла. В таких веществах вполне допустимо рассматривать электроны и дырки как химические единицы. Согласно законам термодинамики, химический потенциал нейтрального -го компонента определяется выражением [c.89]

    Сопоставим рассмотренные выше представления об электронах и дырках как химических единицах с обычными химическими понятиями. Предположим, что равновесие (5.8) относится к слабо ионизованной среде, и в таком случае можно подобрать несколько аналогичных примеров, относящихся к системам в слабо ионизованных средах, например в воде  [c.92]

    Развитие начинается с вида атомов, у которых в электронной оболочке содержится минимум электронов и, естественно, такое же число протонов в ядре, т. е. Ер" = Ее = 0. Его местом на оси абсцисс является начало координат. На оси А при этом может быть несколько значений, так как она слагается из суммы А = Ер" + EN и при Ер" = О, А = ЕК. При ЕК = 1, А = 1 и т. д. Это ни что иное, как нейтрон — одна из структурных единиц ядра, лежащая в основе эволюции атомов. С него и начинается ряд химических элементов. Определение понятия химического элемента позволяет вполне законно считать нейтрон химическим элементом (видом атомов), предшествующим водороду, общей формулы оЭо. Далее логика построения системы проста. Если заполнение электронами квантового подслоя рассматривать как цикл, а цикл графически — круг, то фаза заполнения квантового подслоя идентифицируется с частью круга. Таким образом, полярный угол моделирует фазу заполнения электронного подслоя, наименьшей мерой которого является один электрон, он определяет еще и валентную группу. [c.157]

    Недостаток этой теории заключается в том, что она хорошо применялась к углеводородам, тогда как замеш,енные бензола и производные других углеводородов труднее поддавались толкованию в ее рамках. Правда, например, можно было предположить, что в анилине, в котором число я-электронов на единицу больше числа л-электронных центров, не только атом азота, но и другие, альтернирующие с ним атомы углерода обладают > 1. Даже такие выводы казались обнадеживающими и Коулсон и Лонгет-Хиггинс писали Теория химической ориентации, выдвинутая в этой статье, никоим образом не противоречит современной качественной резонансной картине, но она позволяет оценить относительную степень влияния замещения на различные положения в молекуле — проблема, которая до сих пор ускользала от удовлетворительной трактовки в рамках теории резонанса> [83, с. 32]. [c.171]

    В настоящее время широко применяются два различных подхода к рассмотрению системы из химически связанных атомов. Согласно одному из них молекулу считают системой из атомов, связывающим звеном между которыми являются общие электронные пары, каждая из которых образуется за счет перекрывания по одному электронному облаку из внешнего электронного слоя двух атомов и локализована между ядрами этих атомов. Общая пара электронов считается единицей химической связи — единицей валентности каждого из двух связанных атомов. Количество общих электронных пар у данного атома с другими атомами определяет число валентных связей его в молекуле. Теория, [c.123]


    У большей части -элементов ковалентность переменная. Минимальная ковалентность у всех -элементов с переменной валентностью равна двум за счет двух -электронов на внешнем уровне, которые легко распариваются, занимая свободный р-подуровень на этом же уровне. Исключение составляют лишь элементы IВ-группы медь Си, серебро Ag и, золото Ли. Минимальная ковалентность этих элементов за счет провала электронов равна единице. (По одному электрону на -подуровне за счет провала электронов содержат также элементы хром Сг и молибден Мо из У1В-группы. Однако энергетические состояния электрона гs и одного из пяти электронов п—1) так близки между собой, что оба эти электрона участвуют в образовании химических связей. Отсюда минимальная ковалентность хрома Сг и молибдена Мо, так же как и других -элементов с переменной ковалентностью, кроме -элементов Ш-груп-пы, равна двум). [c.137]

    Атомное ядро окружено электронами, часть из которых образует замкнутые электронные оболочки и, как правило, не участвует в образовании химических связей. Электроны незамкнутых внешних оболочек атомов, участвующие в образовании связи, принято называть валентными электронами. Естественно, что характер связи будет существенным образом зависеть от числа и состояния этих электронов. Согласно квантовой механике состояние любого электрона характеризуется набором из четырех квантовых чисел (га, I, т, т ). При одном и том же значении главного квантового числа п) пространственное распределение электронной плотности (вероятность пребывания электрона в единице объема) может быть различным. Пространственное распределение электронной плотности характеризуется вторым квантовым числом I (азимутальное квантовое число). Оно зависит от главного квантового числа и может принимать целочисленные значения О, 1,2, 3... га—1. Когда / = О, наиболее вероятно, что электрон присутствует на поверхности сферы, в центре которой находится атомное ядро такое сферическое электронное облако обозначается буквой 5. При I = 1 электронное облако, обозначаемое буквой р ( -орбита), принимает форму гантели это две сферы, расположенные по разным сторонам ядра. Четырехлепестковой орбите, или орбите с1, соответствует 1 = 2. Электронные облака р-электронов, [c.21]

    Одно из наиболее существенных отличий радиационнохимических реакций от фотохимических связано с неизбирательным характером поглощения ионизирующего излучения. В то время, как свет поглощается молекулой лишь в том случае, когда его частота соответствует полосам поглощения молекул, радиационная энергия поглощается всеми молекулами, вызывая акты ионизации, а также переводя молекулы в возбужденные состояния. Количество поглощенной энергии можно считать пропорциональным общему числу электронов в единице объема вещества и не зависящим от химической природы молекул. [c.67]

    Следует подчеркнуть, что способные инициировать полимеризацию ионы и радикалы, промежуточные и конечные продукты радиолиза по своему составу и строению представляют широкий спектр частиц. Масс-спектрометрические данные показывают, что некоторые из образующихся ионов приобретают в результате ион-молекулярных реакций большие молекулярные массы, чем подвергаемые облучению вещества. Это в основном ионы, требующие для своего рождения наименьших энергетических затрат [5]. В этом проявляется весьма существенная специфичность радиационнохимических процессов в отличие от фотохимических, где поглощение световой энергии является избирательным. При радиационнохимическом акте суммарное количество поглощенной энергии пропорционально количеству электронов в единице объема, независимо от природы вещества, образующего этот объем. Механизм радиационно-химического процесса, связанный с образованием вторичных электронов, почти не зависит от вида ионизирующего излучения [6, 27]. [c.36]

    Обе записанные выше реакции протона происходят вовсе не так просто, как это показывают приведенные уравнения. Эти схемы фиксируют только окончательный результат реакций, истинный механизм которых гораздо сложнее. Подобное упрощение аналогично используемому при записи большинства химических реакций.) В каждой из двух последних реакций происходит уменьшение порядкового номера ядра на единицу, но атомная масса остается постоянной. Радий-228 распадается по другому механизму, с испусканием электрона  [c.411]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    Одно из наиболее суп1 ественных отличий радиационно-химических реакций от фотохимических связано с неизбирательным характером поглощения ионизирующего излучения. В то время как свет поглощается лишь в том случае, когда его частота соответствует полосе поглощения молекулы, энергия радиации поглощается всеми молекулами, вызывая акты ионизации и переводя молекулы в возбужденное состояние. Количество поглощенной энерпги можно считать пропорциональным общему числу электронов в единице объема вещества и не зависящим от химической природы молекул. Эта величина, однако, зависит от вида излучения. Быстрый электрон, порожденный у-квантом Со , в среднем теряет 0,02 эв энергии на 1 А своего пути в воде, тогда как для а-частиц эта величина почти в 1000 раз больше. Величина потери энергии на единице пути частицы получила название линейной потери энергии (ЛПЭ или L.E.T.). [c.67]

    Большинство авторов отмечает, однако, что, по крайней мере в некоторых случаях, все объяснения, основанные на представлении о ведущей роли энергии отдачи, должны, повидимому, оказаться неправильными (даже с учетом отдачи при вылете электрона). То обстоятельство, что гз процессе перехода может разрываться даже связь С—Вг, несовместимо ни с каким механизмом, основанным только на отдаче. Энергия активации для реакции огромна. Некоторые авторы, сохраняя идею о важной роли внутренней конверсии, предполагали, что разрыв связи отнюдь не обязательно должен обусловливаться отдачей. Ряд результатов [99, 101, 113, 123, 124] интерпретировался в том смысле, что атом, будучи лишен своего электрона, переходит в некоторую активную форму. Фэйброзер [33] утверждает, что выделение активного вещества может быть обусловлено ...процессом, затрагивающим любую серию возбужденных молекулярных состояний, возникающих при постепенном успокоении атома брома после внутренней конверсии. Молекула не просто активируется, а разрывается в результате процесса, более похожего на фотодиссоциацию под действием внутримолекулярных квантов . Суэсс [111] подчеркивает роль положительного заряда после вылета фотоэлектрона при изомерном переходе Повидимому, ион НВг, сильно возбужденный благодаря вылету электрона с внутренней орбиты, за время перехода в нормальное состояние успевает распасться на атом Н и ион Вг . Было вычислено также [28] (для одного специального, сильно идеализированного случая), что в броме может иметь место множественный эффект Оже вслед за внутренней конверсией и вылетом электрона из внутренней оболочки на освободившееся место может перейти электрон из внешней части атома затем, вместо рентгеновского кванта, будет излучен еще один электрон и т. д. каждый раз положительный заряд атома увеличивается на единицу. Скорость эффекта оказывается больше, чем у конкурирующего процесса—непосредственного испускания рентгеновских лучей, так что в среднем в результате внутренней конверсии с К-оболочки атом Вг приобретает 4,7 единицы положительного заряда (принимая заряд электрона за единицу). По мере накопления заряда в атоме брома молекула делается все более и более неустойчивой, и, по мнению Купера [18], в конце концов, она должна диссоциировать. Эффект еще усилится, если молекула теряет электроны, ответственные за химическую связь. Этот вопрос рассматривался также в работе [23] в связи с изомерным переходом в Se i. В этой работе указывается также, что связь между коэффициентом конверсии и выходом отнюдь не проста. [c.110]

    Радиационная химия изучает химические воздействия ионизирующих излучений на вещество. Излучения, обладающие достаточным для ионизации молекул количеством энергии, отнесенным к одной частице или фотону, — это рентгеновские лучи, улучи, электроны с энергией выше 10 эв и более тяжелые частицы, например протоны больших энергий, дейтероны, а-частицы и т. д. По существу все исследования действия излучений на полимеры проводились с помощью рентгеновских лучей, у-лучей или пучков электронов. Химическое воздействие на полимеры могли бы оказать и нейтроны, но количественных данных об облучении такого рода очень мало, поэтому облучение нейтронами здесь не рассматривается. Рентгеновские и улучи взаимодействуют с веществом исключительно путем влияния на электроны твердого тела. Следовательно, можно предположить, что отнесенное к единице поглощенной энергии действие рентгеновских и у учей, а также электронов высоких энергий должно быть одинаковым. Это и наблюдается в действительности. [c.386]

    Сечение ионизации и возбуждения быстрым электроном очень слабо зависит от температуры газа. Поэтому главным кинетическим параметром, характеризующим скорость химического превращения всщества в радиациохг-ной химии, является величина G — числе превратившихся молекул па единицу поглощенной веществом энергии (обычно за Taityro единицу берется 100 эв). Эта величина носит название радиациошю-химического выхода. Выход ионизации для разных газов лежит в диапазоне от 2,39 у гелия до 4,46 у бутана [354] и слабо зависит от типа облучения [111]. [c.184]

    Большое значение в анализе имеет другая химическая единица массы — грамм-эквивалент (сокращенно обозначаемый г-э, иногда валь). Грамм-эквивалентом называется количество вещества в граммах, соответствующее одному грамм-атому водорода в данной реакции. В окислительно-восстановительных реакциях грамм-эквивалент равен количеству вещества в граммах, соответствующему переходу N электронов, т. е. 1 фарадю (96500 кулонов) электричества. [c.21]

    Гораздо сложнее с ответом на второй вопрос, который требует сопоставления с независимыми экспериментальными критериями ароматичности. Если расчет ЭР на я-электрон дает непрерывную шкалу, способную, в принципе, охватить все ароматические соединения, экспериментального количественного критерия с подобной широтой охвата не существует. Рассматриваемые ниже структурные (см. 1.3.2) и магнитные (см. 1.3.3) критерии, а также реакционная способность (см. 2.2) применимы для количественной оценки ароматичности лишь в узких пределах. Поэтому сопоставление ЭР на я-электрон с данными физического и химического эксперимента ограничено отдельными группами близких по строению соединений. Так, отличная корреляция отмечена недавно между ЭР на я-электрон и скоростями образования макроциклических аннуленов при реакции Дильса — Альдера для дегидроаннулено [с] фура-нов с малеиновым ангидридом [49]. Кроме того, остается неясным, как сопоставлять количественно степень ароматичности, измеряемую ЭР на я-электрон в единицах энергии, со структурными или магнитными индексами, поскольку нет никаких оснований ожидать между ними линейной зависимости. [c.22]

    Открытие радиоактивности и многочисленные исследования, вызванные им, привели к необходимости дополнить атомную теорию электронной, однако не в том смысле, что электронная теория делает бесполезной атомную, как думали одно время некоторые ученые, а в том, что электронная теория требует внести изменения в некоторые понятия, классической атомной теории. Эти новые исследования привели к изменению понятия атома, который нельзя уже определять как самую малую из частиц, образующих химические элементы, потому что атом элемента должен рассматриваться как система, в образовании которой принимают участие четыре корпускулы, а именно электрон — элементарная единица отрицательного электрического заряда, протон (Резерфорд, 1911), заряженный положительно, нейтрон (Бёте и Беккер, 1930), масса которого почти равна массе протона, но он лишен электрического заряда, и геозитрои (Андерсон, 1933) — единичный заряд положительного электричества К этим четырем частицам следует добавить квант энергии, постулированный с 1900 г. Планком, согласно которому изменение энергии происходит не непрерывно, а атомами или квантамш> энергии. Это фундаментальное положение теории квантов, которое в 1907 г. Эйнштейн применил к атомной энергии. Константа Планка (значение которой равно 6,55-10 эрг-сек) имеет универсальный характер и чрезвычайно важна для современных представлений о материи .  [c.397]

    Наличие элементов симметрии в структуре сокращает количество максимумов паттерсоновской функции за счет наложений их друг на друга (симметрия приводит к обязательному существованию равных по величине и направлению межатомных векторов). Тем не менее количество максимумов остается много большим числа атомов в ячейке. Например, в центросимметричной структуре трихлоротриаммин-хлорида четырехвалентной платины [Р1(МНз)зС1з]С1- НаО на ячейку приходится 2 химические единицы, т. е. 40 атомов, а число максимумов межатомной функции в принципе должно составлять Л/ /2=800. Поскольку ячейки кристалла и векторного пространства имеют одинаковые объемы, среднее расстояние между максимумами межатомной функции должно быть значительно меньшим, чем расстояния в распределении электронной плотности. [c.428]

    Г = 1 атомные единиць.1 (1 атомная единица длинй равна = 0,529 А), на которой вероятность обнаружения электрона всюду равна нулю. Плотность вероятности принимает максимальное значение на расстоянии 4 атомных единиц от ядра, что совпадает с радиусом боровской орбиты при и = 2. Электрон на 2 -орбитали может быть с большой вероятностью обнаружен на расстояниях от ядра ближе или дальше чем г = 2, но на поверхности сферы с радиусом г — 2 вероятность его обнаружения точно равна нулю (рис. 8-20). 3 -Орбиталь имеет две такие сферические узловые поверхности, а 4 -орбиталь-три. Однако эти особенности не играют столь важной роли при объяснении химической связи, как то обшее свойство [c.369]

    Встречаются другие случаи, когда приходится пользоваться специальными единицами, потому что полученные прямым путем единицы системы СИ оказываются слишком неподходящими по величине. Например, заряд электрона или иона, образованного в результате потери одного электрона, имеет величину 1,602189 10 Кл. Однако в химической литературе никогда не указывают, что, скажем, ион натрия имеет заряд такой величины либо даже 0,16022 аттокулона (аКл), хотя с точки зрения системы СИ это было бы совершенно правильно. Вместо этого определяют специальную единицу заряда, равную величине заряда электрона, и выражают заряды на ионах через эти электронные заряды. При этом часто даже не осознают, что электронный заряд представляет собой специальную единицу. Если строго придерживаться системы СИ (немногие ученые приняли бы это), следовало бы отказаться от электронного заряда и выразить заряд, например, на ионе алюминия как -I- 0,4807 аттокулона, вместо того чтобы записать его просто как + 3 (электронных заряда). [c.444]

    В этом же году был опубликован доклад английского физика Дж. Стони (сделанный им еще в 1874 г. О физических единицах природы , где автор высказал аналогичные идеи. Позже, в 1891 г.. Стони предложил термин электрон . В каждом химическом атоме, —писал Стони, —может быть несколько элементарных зарядов. Эти зарядь , которые удобно на звать электронами , не могут быть отделены от атомов, но они обнаруживаются, когда атомы вступают в химическое соединение . [c.5]

    Эффективные заряды. При образовании химической связи электронная плотность около атомов меняется. Это изменение можно учесть, ириписав атому некоторый эффективный заряд б (в единицах заряда электрона). Эффективные заряды, характеризующие асимметр1гю электронного облака, условны, так как электронное облако делокализовано и его нельзя разделить между ядрами. [c.72]

    Оп еделите сумму состояний СНзВг при 298 К и 1,0133 10 Па, если межъядерные расстояния С— Н 1,09 С — Вг 1,9ГА углы между направлениями химических связей - НСН 111°, ВгСН 107°57. Число симметрии равно трем. Частоты колебаний и вырождения (указаны 13 скобках) 618 (1), 953 (2), 1290 (1), 1453 (2), 2965 (1) и 3082 (2). Вырождение нулевого электронного уровня равно единице. [c.111]

    Валентность химических элементов. Под валентностью, как известно, понимают способность атомов данного элемента соединяться с атомами другого элемента в определенных соотношениях, За единицу валентности была принята соответствующая способность атома водорода. Валентность элемента определяли как способность его атома присоединять (или замещать) то или иное число атомов водорода. В связи с возникновением и развитием теории строения атома и химической связи вален гность стали связывать с соответствующими структурно-теоретическими представлениями, а именно с числом электронов, пере-ходян их от одного атома к другому, или с числом химических связей, Bi.l.зпикaк)Lми.x мсж.ау атомами в процессе образования химического соединения. [c.44]

    Если при прохождении через реакционный сосуд поглощается незначительная доля падающего света, то можно считать, что в каждой единице объема поглощается одно и то же количество квантов света. Если / — число квантов света, проходящих через сечение 1 jn за секунду, то в слое, расположенном перпендикулярно направлению светового потока и имеющем сечение 1 см и толщину dl, поглотится по закону Ламберта—Бера di = [khdl квантов света, т. е. в единице объема поглотится У [А 1 s квантов и образуется / [А ] S возбужденных частиц. Величина е представляет собой молярный коэффициент поглощения или коэффициент экстинкции. Если обозначить через константу скорости флуоресценции или фосфоресценции, —константу скорости конверсии энергии электронного возбуждения в энергию теплоЕЮГо движения и kp— константу скорости химического превращения возбужденных частиц, то для скорости накопления возбужденных частиц А получится выражение  [c.240]

    Механизм адгезии парафиновых частиц к поверхностям различной природы невозможно понять без рассмотрения хотя бы в общих чертах особенностей кристаллической струиуры и электронной конфигурации твердых веществ, без представления закономерностей, которым подчиняются их свойства с изменением энергетического состояния. Принято считать, что однородное твердое вещество, состав и плотность которого практически одинаковы во всем объеме любых его образцов (т.е. они не отклоняются от средних значений больше, чем на величину ошибки измерения соответствующего параметра), представляет собой твердое химическое соединение /68/. Существенной особенностью твердого соединения является то, что любые его отдельные части - твердые тела - имеют поверхность. Поверхностный слой твердого вещества, толщиной порядка 10А (около 3-4 монослоев соответствующих структурных единиц), из-за неуравновешенного взаимодействия частиц слоя с частицами основной массы имеет несколько иное строение, что приводит к заметному отличию свойств этого JlJ i от глубинного вещества. Твердое вещество в отличие от газа и жидкости, имеет практически не изменяющееся во времени строение. При этом тип строения ве1цества определяется прежде всего тем, какие связи соединяют его структурные единицы - межмолекулярные или межатомные. [c.106]

    Испускание электрона (Р -излучение) или поглощение позитрона (е -захват) приводят к смещению вправо по изобарному ряду на одно место, т. е. к увеличению номера изопротонного ряда (химического элемента) на единицу. [c.126]


Смотреть страницы где упоминается термин Электрон как химическая единица: [c.284]    [c.180]    [c.253]    [c.219]    [c.259]    [c.312]    [c.60]    [c.184]    [c.98]   
Смотреть главы в:

Химия твердого тела -> Электрон как химическая единица




ПОИСК







© 2025 chem21.info Реклама на сайте