Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа вещества атомная теория

    ПРИРОДА ВЕЩЕСТВА АТОМНАЯ ТЕОРИЯ [c.26]

    Природа вещества атомная теория 29 [c.29]

    Таким образом, в течение многовекового периода древнего мира человечество не только накопило многочисленные и различные химико-практические знания и научилось использовать разнообразные вещества и некоторые химические превращения для разных целей, но и создало первоначальные теории о природе веществ, о началах, или стихиях, их составляющих, выдвинуло важнейшие положения об атомном строении материи и теории о происхождении металлов и минералов и т. п. [c.78]


    Строго применяя атомную теорию в химии, углубляясь с ее помощью в самую сущность явлений, Ломоносов, естественно, пришел к открытию одного из величайших законов природы — закона сохранения вещества и энергии. [c.68]

    Наряду с законом М. В. Ломоносова и атомной теорией весьма сильное стимулирующее влияние на развитие аналитической химии, как и других химических дисциплин, оказало гениальное творение великого русского химика Д. И. Менделеева (1834—1907) — периодическая система элементов, предложенная им в 1869 г. Эта система внесла новый смысл и показала новые цели точных исследований состава различных веществ и направила ХИМИКОВ на поиски соотношений, которые могли бы служить основой для дальнейших суждений о природе химических соединений .  [c.24]

    В свете химической атомистики химический элемент понимался уже не просто как индивидуальное, неразлагаемое вещество, а как совокупность атомов, одинаковых по своей природе и свойствам (атомные веса) и отличающихся от атомов других элементов. Атомная теория Дальтона, объединенная с учением о химических элементах Лавуазье, послужила отправной точкой для дальнейшего развития химии-и физики. [c.133]

    В современной науке проявляются два подхода к изучению и моделированию явлений в природе и технике. Первый - дифференциальный, заключается в детальном изучении физико-химических явлений на молекулярном, атомном и квантовом уровне, второй - феноменологический, предполагает изучение вещества, как единого целого, без выделения первичных элементов систем и, соответственно, элементарных стадий процессов. Примером таких направлений являются классическая термодинамика, завершенная в XIX веке, кибернетика и учение о ноосфере, связанные в наше время с именами Н. Винера и В.Н. Вернадского. К этому направлению относится синергетика и теория подобия. Но, несмотря на развитие этих наук о природе, в методологии естествознания XX века преобладает дифференциальный и атомарный подход к изучению вещества и явлений. [c.44]

    Творческая деятельность Ломоносова отличается исключительной широтой интересов и глубиной проникновения в тайны природы. Его исследования относятся к области физики, химии, астрономии и др. Результаты этих работ заложили основы современного естествознания. Ломоносов указал (1765) на основополагающее значение закона сохранения массы вещества в химических реакциях изложил (1741 —1750) основы корпускулярного (атомно-молекулярного) учения выдвинул (1744—1748) кинетическую теорию теплоты. Был зачинателем применения математических и физических методов исследования в химии и первым начал читать в Петербургской АН самостоятельный Курс истинно физической химии , заложил основы русского химического языка. [c.9]


    Уникальными возможностями обладает метод нейтронографии, успешно применяемый для исследования твердых тел и жидкостей, веществ с близкими и достаточно далекими атомными номерами, а также соединений, содержащих изотопы одного и того же вещества. По угловому распределению интенсивности рассеяния медленных нейтронов впервые удалось определить пространственное расположение атомов водорода и длины водородных связей в обычной и тяжелой воде, обнаружить наличие ближайшего ориентационного порядка, существующего в этих жидкостях наряду с ближним координационным порядком. Опыты по неупругому рассеянию медленных нейтронов продемонстрировали коллективный характер теплового движения атомов и молекул в жидкостях, подтвердили теоретические предсказания Л. Д. Ландау о существовании в жидком гелии квазичастиц двух типов фононов и ротонов. В настоящее время эти дифракционные методы являются составной частью физики твердого тела, физического материаловедения, молекулярной физики, биофизики и биологии. Они взаимно дополняют друг друга, имеют свою специфику, преимущества и ограничения, связанные с различием физических свойств рентгеновского излучения, электронов и нейтронов. На современном этапе при проведении структурных исследований используется новейшая аппаратура и вычислительная техника. Помимо навыков работы с ними от специалиста требуется знание теории рассеяния, основ статистической и атомной физики, природы сил взаимодействия атомов и молекул. [c.6]

    Стремясь согласовать растворы с атомистической теорией, синтезировать представления Бертолле ч Пруста, Д. И. Менделеев не раз отмечал, что великое учение Дальтона об атомном строении вещества еще не прилагалось к объяснению явлений растворения между тем, по его мнению, очень важно выявить соотношения между обычными случаями соединения и явлениями растворения . Он считал, что можно согласовать растворы с атомистической теорией, если ввести понятия ассоциации и диссоциации, которые, по его мнению, определяют природу растворов. В моем уме,—писал Д. И. Менделеев,—растворы не выделяются в область, чуждую атомистических представлений, они входят вместе с обычными определенными соединениями в круг тех понятий, которые господствуют ныне в учении о влиянии масс, о диссоциации и о газах, и в то же время растворы представляют для меня самый общий случай химического воздействия, определяемого сравнительно слабыми сродствами, а потому представляют плодовитейшее поле для дальнейшего успеха химических учений .  [c.304]

    Уже отмечалось, что основные понятия термодинамики сложились до создания современной молекулярной теории вещества. Поэтому классическая термодинамика не занималась вопросом о природе внутренней энергии. В действительности эта энергия имеет молекулярную природу. Она складывается из кинетической энергии движущихся молекул и их потенциальной энергии, определяемой взаимным притяжением и отталкиванием. Наряду с этими составляющими внутренней энергии являются энергия электронов в атомах и атомных ядер, а также лучистая энергия. Естественно, что внутренняя энергия при определенных параметрах состояния зависит от химической природы тел и их состава. [c.15]

    Одним из наиболее важных положений химической теории является положение о разделении веществ на два класса —на элементарные (простые) вещества и соединения. Такая классификация была предложена в 1787 г. французским химиком Антуаном Лораном Лавуазье (1743—1794) на основании выполненных им за предшествующие 15 лет количественных исследований множества веществ (реагентов и продуктов реакций), участвующих в химических процессах. Лавуазье определял соединение как вещество, которое можно разложить на два или несколько других веществ, а элементарное вещество (или элемент)— как вещество, которое нельзя разложить. В своем Элементарном курсе химии , опубликованном в 1789 г., Лавуазье перечислил 33 элемента и среди них 10 еще не выделенных в виде простых веществ (но уже известных по своим окислам, сложную природу которых он предугадал точно). После открытия электрона и атомного ядра определения элементарных веществ и соединений были пересмотрены этому вопросу посвящены последующие разделы данной главы. [c.77]

    Наиболее общей моделью, отражающей наиболее общее представление о молекуле как микросистеме, состоящей из ядер атомов и электронов, является брутто-формула вещества Для полной характеристики этой модели (предполагается, что система электронейтральна) достаточно указать лишь число и природу (массовые числа) атомных ядер, составляющих эту молекулярную систему При этом автоматически определяется и число электронов Если к представлению, заложенному в брутто-форму-ле, добавить предположение о том, что заряженные частицы, составляющие систему, взаимодействуют между собой лишь по закону Кулона, и учесть, что их движения подчиняются квантовым законам, то можно записать адекватное этому представлению уравнение Шредингера весьма общего вида, которое и приводится во всех руководствах по квантовой химии и теории молекулярных спектров [c.87]


    Атомное ядро. Раннее развитие теории внутриатомной структуры во многом обязано открытию радиоактивности. Встречающиеся в природе радиоактивные элементы испускают три вида лучей, одни из которых, а-лучи, представляют собой атомы гелия с двойным положительным зарядом. Энергия частиц, из которых состоят а-лучи, очень велика, и их можно использовать для бомбардировки вещества с целью выяснения деталей строения атомов. Если эти снаряды , обладающие высокой энергией, направить на тонкий лист из любого вещества, то большая часть их пройдет через него без заметного отклонения — результат, который подтверждает, что внутриатомные частицы очень малы по сравнению с объемом свободного пространства, которое они занимают. Однако иногда а-частица довольно заметно отклоняется, как будто бы она прошла вблизи материальной частицы, которая ее сильно оттолкнула. На основании таких наблюдений Резерфорд разработал теорию строения атомов, в которой атомы рассматриваются как частицы, состоящие из положительно заряженного ядра, занимающего исключительно малый объем, и окружающих его электронов. [c.21]

    Понятие о химическом элементе — важнейшее, очень сложное, абстрактное понятие курса химии. Учащиеся работают с веществами, наблюдают химические процессы, но химический элемент они не видят. Нужны сложные умозаключения и убедительные доказательства того, что химические элементы действительно существуют и что они определяют качественный и количественный состав и, следовательно, свойства веществ. На основе понятия химический элемент формируется представление о материальном единстве мира, о едином происхождении живой и неживой природы, развивается абстрактное мышление учащихся. Без этого понятия невозможно изучить периодический закон Д. И. Менделеева. Вместе с тем при изучении курса химии постоянно наблюдалась путаница понятий химический элемент и простое вещество . Нередко между ними незаметно ставился знак равенства. Понятие химический элемент находится неизменно в центре внимания методистов, ему уделяют особое внимание. Различают четыре стадии формирования понятия химический элемент эмпирическая (до атомно-молекулярного учения), теоретическая (на основе атомно-молекулярного учения), развитие понятия на основе периодического закона и, наконец, на базе теории строения атома. Лишь после того как учащиеся получат первые представления о химических элементах, становится возможным пользоваться химической символикой, моделировать вещества и процессы. Поэтому формирование понятия химический элемент имеет большое образовательное, воспитательное и развивающее значение. То, что химический элемент является центральным понятием курса химии, отмечается в большинстве методических работ. [c.266]

    Структура системы теоретических знаний о строении вещества в курсе неорганической и органической химии и их методическое обоснование. Последовательность введения понятий о строении вещества в курсе химии средней школы. Понятия о строении вещества на этапе изучения атомно-молекулярной теории в 8 классе. Развитие понятий о строении вещества на основе электронной теории. Методика изучения вопросов химической связи строения кристаллических решеток в курсе химии 8 класса. Формирование понятий о единой электронной природе химической связи. Системообразующая функция знаний о строении вещества. Создание опорной базы для подготовки учащихся к восприятию органической химии. [c.318]

    Таким образом, после прочтения настоящего раздела мы убедились, что к концу 60-х годов прошлого века было неоспоримо доказано существование атомов и моле- кул, была разработана стройная атомно-молекулярная теория, на которой базировалась вся физика и химия того времени. Мы познакомились пока лишь с основными понятиями и некоторыми из основных законов химии. Подчеркнем еще раз, что атомно-молекулярная теория базировалась на представлении о том, что атом неделим. Вследствие этого атомно-молекулярная теория оказалась не в состоянии объяснить ряд экспериментальных фактов конца XIX — начала XX в., показавших, что атомы делимы, т.е. состоят из каких-то более мелких частиц. Более того, на основании только атомно-молекулярной теории трудно было понять и целый ряд ранних результатов. Например, без дополнительных сведений о природе газообразного состояния трудно объяснить закон Авогадро. Поэтому закон Авогадро и ряд других законов и понятий мы рассмотрим далее, когда познакомимся подробнее с современными представлениями о молекуле, веществе и т.д. [c.12]

    Творческая деятельность Ломоносова отличается как исключительной широтой интересов, так и глубиной проникновения в тайны природы. Его исследования относятся к математике, физике, химии, наукам о Земле, астрономии. Результаты этих исследований заложили основы современного естествознания. Ломоносов обратил внимание (1756) на основополагающее значение закона сохранения массы вещества в химических реакциях изложил (1741—1750) основы своего корпускулярного (атомно-молекулярного) учения, получившего развитие лишь спустя столетие выдвинул (1744—1748) кинетическую теорию теплоты обосновал (1747—1752) необходимость привлечения физики для объяснения химических явлений и предложил для теоретической части химии название физическая химия , а для практической части — техническая химия . Его [c.307]

    Ленинградские химики имеют большие заслуги в развитии потенциометрии, в частности теории стеклянного электрода, разделения близких по свойствам элементов (Ленинградский университет). В Институте химии силикатов АН СССР разработано много методов анализа сложных природных и промышленных объектов минеральной природы, а также проводятся работы по спектральному анализу чистых веществ. Заслуживают внимания исследования в области атомно-абсорбционного анализа (Ленинградский политехнический институт). Методы разделения элементов успешно разрабатываются в Радиевом институте. В Ленинграде разрабатывается и выпускается разнообразная химико-аналитическая аппаратура— спектрофотометры, масс-спектрометры, газоанализаторы. Следует отметить также исследования, проводимые в Ленинградском технологическом институте. Всесоюзном институте метрологии. [c.203]

    В растворах неэлектролитов компоненты представляют собой нейтральные частицы атомно-молекулярной степени дисперсности. Примером могут служить растворы благородных газов, спиртов и других типичных неэлектролитов в неводных растворителях. Отличительной особенностью таких растворов, как указано выше, является межмолекулярное взаимодействие частиц растворенного вещества и молекул растворителя. Образование растворов неэлектролитов, как правило, не сопровождается существенными химическими изменениями. Поэтому изучение их свойств послужило основой для создания физической теории растворов, в которой главную роль играла не природа растворенных частиц, а их количество. [c.9]

    Ранее упоминалось (примеч. 42), что Дэви, получив образец иОда от Клемана, принялся за исследование этого вещества, которое считалось соединением. В одном сообщении, опубликованном в 1814 г., Дэви признал, как и Гей-Люссак, элементарную природу иода однако французский химик распространил исследования и на многочисленные производные этого элемента. Дэви занимался также и проблемой атомных весов, проявляя, однако, большую сдержанность относительно теории Дальтона. Дэви принадлежат различные работы обобщающего характера из этих работ особенно хорошо характеризуют его как выдающегося исследователя Элементы химической философии . [c.205]

    Когда научное мышление отрешилось от средневековой узости, атомистическую теорию древних активно восприняли и философы, и естествоиспытатели. В XVII в., с возрождешхем атомной теории Демокрита — Эпикура, приобретает признание древняя аксиома о сохранении всего существующего , следовательно, и вещества. Причину постоянства законов природы атомисты искали в вечности и неизменности атомов, В доказательство этого еще древние атомисты приводили такие же аргументы, которыми пользовался и Ньютон в 1700 г. Если бы они (частицы) изнашивались или разбивались на куски, то природа вещей, зависящая от них, изменилась бы. Вода и земля, составленные из старых изношенных частиц и их обломков, не имели бы той же природы и строения теперь, как вода и земля, составленные из целых чаетиц вначале . Поэтому природа их должна быть постоянной. Изменения телесных вещей должны проявляться только в различных разделениях и новых сочетаниях и движениях таких постоянных частиц...  [c.27]

    Синтезы циклопентадиенил-аниона и циклооктатетраена, осуществленные в начале двадцатого столетия, совпали с новым пробуждением интереса к природе вещества. Открытие электрона, радиоактивности и атомного ядра активизировали научную мысль успехи в области физики были вскоре использованы при обсуждении строения молекул. Теории Косселя, Лангмюра, Льюиса и других позволили формально описать химические связи с участием электронов. Особенно плодотворной оказалась октетная теория Льюиса, в которой магическому числу восемь приписывалась важнейшая роль в образовании электронной валентной оболочки вокруг атомов. В 1925 г. Армит и Робинсон [17], модифицировав гексацентричесКую теорию Бамбергера на основе электронных представлений, предположили, что ароматический секстет, подобно октету, представляет собой особо устойчивую комбинацию электронов. Как и в случае октета, причина, почему шесть, а не четыре или восемь электронов принимают устойчивую конфигурацию, оставалась непонятной. Примерно в то же время Ингольд [18] предположил, что помимо структур Кекуле в основное состояние бензола могут вносить вклад структуры ара-связанного бензола Дьюара, и таким образом была создана резонансная картина бензола. [c.286]

    Рассмотрим с точки зрения атомно-молекулярной теории три состояния вещества газ, жидкость и твердое тело. В состоянии газа илп пара вещество состоит из отдельных молекул — одно-атс гных или многоатомных, в зависимости от природы вещества п внешних условий. Эти молекулы находятся в хаотическая/ движенпи, соударяясь друг с другом, и при отсутствии внешних сил свободно распространяются в пространстве, заполнят, например, весь объем сосуда, в который введен газ. [c.17]

    С помощью химии изучают биологические формы движения. Следовательно, химия, являясь одной из естественных наук, тесно связана с физикой и биологией, а также с геологией. Наукой химия стала тогда, когда в своих исследованиях химики, опираясь на закон сохранения материи, стали использовать количественный метод, а в основу теоретических представлений о природе веществ и их превращений ими была положена атомно-молекулярная теория. Основные положения атомно-молекулярной теории были вцд-винуты М. В. Ломоносовым в 1741 г. в работе Элементы математической химии . Им же (в середине XVHI в.) был открыт закон сохранения материи. [c.8]

    На рубеже XVIII и XIX вв. имеет место первое нащупывание момента всеобщего, правда, снача.ла ещё то,лько в форме эмпирических правил и обобщений (стехиометри-ческпе законы Рихтера п Пруста). С установлением атомной теории в начале XIX в. все химические превращения оказались связанными межд собой единым обучим законом, согласно которому. любая новая форма вещества не возникает пз ничего п не исчезает бесследно в природе имеет место только взаимный переход различных форм химического вещества друг в друга, причём в основе этого перехода лежат различные соединения и разъединения атомов. [c.55]

    Менделеев иногда склонялся к мысли, что атомную теорию можно рассматривать как приём, применяемый исследователями при изучении природы, в качестве рабочей гипотезы . Он писал, например На современный атомизм, по моему мнению, прежде всего должно смотреть как на приём или способ, удобоприменимый при изучении весомого вещества природы (рабочую гипотезу). Как геометр, рассуждая о кривых, представляет их состоящими из совокупности прямых, ибо тако1 1 приём даёт возможность анализировать кривые, так естествоиспытатель применяет атомное учение прежде всего как способ анализировать явления природы . Итак, атомное учение, [c.219]

    Противоречие суш ествования нестехиометрических фаз с широкой областью однородности с основными законами химии — законом постоянства состава и целых и кратных отношений и трудности в понимании их природы приводят иногда к потере ведуш,его принципа во взгляде на природу вещества. Таким ведущим принципом, несомнеппо, является атомно-молекулярная теория строения вещества и следующее из нее представление о дискретности элементарных актов химического превращения. [c.61]

    Вопрос о границах знаннн в естественных науках н путях дальнейшего изучения природы актуальны сейчас, когда техногенная энергия и энергия природных процессов сопоставимы между собой. По мнению автора сложные техногенные и природные системы не могут быть полностью поняты с позиции атомно-молекулярного учения и общепринятой теорией эксперимента и материализма. Автор анализирует пути развития науки о сложных природных, технических п физико-химических системах, в методологическом н физико-химических аспектах. В основе физикохимической теории, развиваемой автором, предлагается недискретный (феноменологический) взгляд на сложное вещество, как непрерывную единую систему. Приведены соответствующие примеры применительно к сложным объектам природы и общества. Первая и вторая части книги могут заинтересовать неспециалистов и гуманитариев. Книга расчитана на широкий круг специалистов и может использоваться, как учебное пособие для аспирантов и студентов Вузов по специальным дисциплинам, связанным с методологией науки, физикой, химией и компьютерными исследованиями. [c.4]

    Вопросы взаимоотношения науки и общества, вопрос о пределах знаний и науки о природе особенно актуальны в XX веке, когда техногенная энергия, я имею ввиду энергию промышленных и военных процессов, сопоставима с энергией природных процессов и катаклизмов. Несмотря на разумные доводы, разрушение тончайшей пленки живого вещества Земли продолжается. Апокалипсис начинается сегодня с разрушения природы и человека. В этой книге я анализирую некоторые итоги и пути развития науки о сложных природных и ноосферных системах в методологическом и феноменологическом физико-химических аспектах, анализируя границы и тупиковые ветви познания, применяя феноменологический - неатомарный подход к веществу. По моему мнению, сложные техногенные и природные системы не могут быть полностью поняты с позиции атомно-молекулярного учения, материализма и существующей теории эксперимента. В развиваемой в книге физико-химической теории, предлагается недискретный взгляд на вещество, как единую непрерывную среду. Приведены соответствующие примеры такого подхода к сложным объектам природы и общества. Эта книга является итогом многолетней работы и содержит фрагменты физико-химической теории многокомпонентных сложных природных и техногенных систем. Первый вариант книги был издан в Москве в 1991 году под названием Физико-химические основы новых методов исследования сложных многокомпонентных систем. Перспективы практического использования . С того времени многие мысли, развиваемые в этой работе иашли практическое подтверждение. [c.5]

    Ядро занимает лишь незначительную часть обш его объема атома, хотя концентрирует почти всю массу атома. Вокруг ядра группируются электроны. Оин вносят очень небольшой вклад в обшую массу атома, но зато занимают большой объем и обусловливают размеры атома. Главная концепция современной теории микромира состоит в том, что в атомной шкале частицы и волны незаметно переходят друг в друга, т.е. частицы имеют свойства воли, а волны - свойства частиц. Несмотря на то, что волновая природа фотонов (то есть света) была установлена давно, почти инкто до 1925 г. не принимал всерьез точку зрения, согласно которой вещество (например, электроны, атомы) подобно волне, а не корпускулярно. Но в 1925 г. Дэвиссон и Джермер открьпш дифракцию (т.е. волновые свойства) электронов на кристаллической решетке. Опыт по дифракции, позднее проведенный с другими частицами, включая молекулярный водород, четко показал, что частицы имеют волновые свойства. [c.5]

    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]

    В ХУ1П веке и в первой четверти XIX века господствовало убеяодение, что химия живой природы принципиально отлична от химии мертвой природы (минеральной химии) и что организмы строят свои вещества с участием особой жизненной силы виталистические воззрения), без которой искусственно, в колбе, их создать нельзя. Поскольку с начала XIX века стало обнаруживаться все больше веществ, общих для мира животных и мира растений (начиная от кислот, таких, как щавелевая и муравьиная, кончая жирами и белками),,грани между химией растений и животных постепенно стирались. Когда стало ясно, что химия растений и химия животных должны быть слиты, образовавшуюся ветвь химической науки стали называть органической химией. Этим слиянием мы обязаны замечательному шведскому химику Берцелиусу (1779—-1848), Вслед за Лавуазье он широко использовал в своих исследованиях количественный анализ, открыл ряд новых элементов, установил атомные веса многих элементов, обнаружил явление изомерии и создал дуалистическую электрохимическую теорию. [c.11]

    Несмотря на то что еще в 30-х гг. XIX в. были открыты реак ции замещения (Ж. Дюма и др.), что в связи с этим в конц( концов теория радикалов пала, химиков еще некоторое врем привлекала идея существования свободных радикалов — атомоЕ органических веществ. И лишь после возникновения атомно-моле-кулярного учения и успехов в изучении и характеристике физических свойств молекул (молекулярная масса) было наконец установлено, что свободные радикалы (в смысле, электрохимической теории Берцелиуса) не существуют. Возникновение теории химического строения в 60-х гг. XIX в., основанной на признании четырехвалентности углерода, вполне подтверждало этот вывод. В 1896 г. В. Оствальд высказал мнение, что природа органических радикалов (в современном их понимании) такова, что получить их в свободном состоянии невозможно. [c.232]

    Для выводов об атомной природе активных центров более важен вывод об атомизации, как о тенденции к относительному увеличению содержания вещества на поверхности в виде атомов и докристаллических атомных образований. Эти выводы подкрепляют ранее полученные данные об атомизации серебра на различных носителях [11] и находятся в согласии с теорией реального кристалла О. М. Полторака [12]. [c.151]

    Ло1ионосов впервые развил атомно-молекулярную теорию вещества, являющуюся основой всех наук. Внедряя последовательно атомно-молекулярное учение в науку, он не только создал новую дисциплину — физическую химию, но и открыл один из фундаментальных законов природы — закон сохранения материи. Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимется, столько же присовокупится к другому. Так, ежели, где убудет несколько материи, то умножится в другом месте. .. Сей всеобщий естественный закон простирается и в самые правила движения ибо тело, движущее своей силой другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает . Мысль о том, что материя не возникает из ничего и не превращается в ничто, высказывалась также философами древнего мира. Из ничего ничто произойти не может, ничто существующее не может быть уничтожено, и всякое изменение состоит лишь в соединении и разъединении атомов , учил древнегреческий философ Демокрит (460—370 гг. до и. э.). Однако эти гениальные догадки о сохранении материи носили чисто созерцательный характер. Заслугой Ломоносова перед наукой является то, что он первый количественно (опытным путем) обосновал этот всеобъемлющий закон природы. Закон сохранения материи, открытый Ломоносовым, содержит в себе закон сохранения массы и закон сохранения энергии. В 1864 г. русский ученый Н. Н. Бекетов начал читать курс физической химии в Харьковском университете, создав физи1 о-химическое отделение и физико-химический практикум. [c.6]

    Принимая в качестве руководящей идеи представление о том, что соединения образуются в соответствии с самыми простыми отношениями, Берцелиус впал в ошибку, приписав атомным весам многих металлических элементов значе ця вдвое и вчетверо большие, чем принятые ныне. Этот слабый пункт его атомистического построения, сохранявшийся в течение ряда десятилетий, многими рассматривался как введенный произвольно. Б таблице атомных весов, датированной 1826 г., сохраняется та же ошибка и наряду с ней другая, связанная с тем, что он не различал понятий атома и молекулы, считая, что количества элементов, содержащ иеся в одинаковых объемах в виде газов, пропорциональны их атомным весам. Эти ошибки не позволяли Берцелиусу найти верное решение атомистической проблемы, хотя он предоставил для этого обильный и точный экспериментальный материал. Канниццаро в своем знаменитом Очерке так оценивает эту сторону деятельности Берцелиуса С одной стороны, он развивал дуалистическую теорию Лавуазье, что нашло свое завершение в электрохимической гипотезе, а с другой, познакомившись с теорией Дальтона, подкрепленной опытами Уолластона (результаты которых позволили расширить законы Рихтера Уолластон пытался согласовать их с результатами Пруста), стал применять эту теорию, руководствуясь ею в дальнейших исследованиях и согласуя ее со своей электрохимической дуалис р[вской теорией. Рассматривая ход мыслей Берцелиуса, я ясно пон соображения, в силу которых он пришел к допущению, что атомы, отделенные друг от друга в простых телах, объединяются при образовании атомов соединений первого порядка, а эти, объединяясь простейшим образом, дают сложные атомы второго порядка, и почему Берцелиус, будучи не в силах допустить, что два вещества, давая только одно соединение (из одной молекулы одного вещества и одной другого), образуют две молекулы одинаковой природы, вместо того чтобы объединиться в одну-единственную молекулу, не мог принять гипотезы Авогадро и Ампера, которая во многих случаях приводила к только что сформулированному выводу. Я продолжаю утверждать, что Берцелиус, будучи не в состоянии освободиться от своих дуалистических идей и в то же время желая так или иначе объяснить открытые Гей-Люссаком простые отношения между объемами газообразных соединений и их компонентов, пришел к гипотезе, совершенно отличной от гипотезы Авогадро и Ампера, а именно что одинаковые объемы простых тел в газообразном состоянии содержат одинаковое число атомов, которые целиком входят в соединения. Позднее, когда были определены плотности паров многих простых веществ, Берцелиус ограничил свою гипотезу, говоря, [c.193]

    Теория радиоактивного распада. Так как а-частица имеет точно измеримую массу в 4 к. е., выбрасывание ее атомом радиоактивного элеменгга должно сопровождаться уменьшением его атомного веса на 4 единицы, а следовательно, согласно периодическому закону,—изменением и химической природы элемента, преобразованием его в новый, элемент. Эта замечательная по своей неотразимой убедительности идея была высказана М. Склодовской-Кюри в январе 1899 г. Тем самым было положено начало переходу в учении о радиоактивности от явления к сущности , как атомистика Ломоносова обусловила переход от явления К сущности в познании химических превращений веществ. [c.126]

    Для Бертло понятие атома было чисто гипотетическим, он даже как-то сказал Я не хочу, чтобы химия выродилась в какую-то религию, и чтобы в атомы верили так, как добрые христиане верят в присутствие Христа в остии [35, с. 32]. Согласно Меншуткнну, для суждения о строении вещества мы имеем лишь гипотезы . Отсюда, как он писал, метильная или иная группа..., вводимые в наши формулы, не существуют, по моему мнению, в соединениях остатки эти появляются в формулах вследствие арифметических операций..., представляют орудие мышления, символ, а не нечто реально существующее [36, с. 77]. В полемическом ответе Меншуткину Бутлеров писал Что бы значила, спрашивается, любая из наших формул с ее атомными знаками, если бы понятие об атоме не соответствовало для нас некоторой определенной реальности.... Что бы значили арифметические действия в реальной науке, если бы они ничему объективному, существующему в природе не соответствовали [24, с. 423, 427]. Добавим, только, что Бертло молчаливо признал себя побежденным в 90-х годах (тогда же он отказался и от написания формул через эквиваленты, чего до тех пор упорно придерживался), а 1М[ен-шуткин в эти годы перешел уже в лагерь приверженцев теории химического строения. И только Кольбе умер, оставаясь противником теории химического строения. [c.38]

    В 1924 г. Паули для объяснения особенностей в структуре атомных спектров высказал предположение о том, что ядра некоторых элементов обладают магнитным моментом. Так как проверка этого предположения имела большое значение для теории строения ядра, были сделаны многочисленные попытки исследовать ядерный магнетизм, но только в 1946 г. двум группам физиков (под руководством Блоха и Пурселла) удалось открыть метод, позволяюш жй рзучать этот эффект на протонах в веществах, находящихся в любом агрегатном состоянии. При этом вскоре выяснилось, что спектры ЯМР зависят не только от свойств самого ядра, но и от окружения, в котором оно находится, а именно от электронного экранирования ядра. Так открылась возможность изучения природы химической связи в различных молекулах, качественного указания на присутствие отдельных групп в соединениях (функциональный анализ), их количественного определения н т. д. [c.262]


Смотреть страницы где упоминается термин Природа вещества атомная теория: [c.39]    [c.201]    [c.69]    [c.230]    [c.395]   
Смотреть главы в:

Молекулярные основы жизни -> Природа вещества атомная теория




ПОИСК





Смотрите так же термины и статьи:

Атомная теория



© 2024 chem21.info Реклама на сайте