Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение органических кислот хроматографическим методом

    Применение хроматографических методов к определению органических кислот в вине [2887]. [c.236]

    Ф концентрирование и определение органических кислот и солей хроматографическими методами  [c.347]

    Определение органических кислот хроматографическим методом [c.139]

    С помощью ИМХ в атмосферных аэрозолях и газофазных образцах были определены 60 органических примесей, представ ленные алифатическими и полициклическими ароматическими углеводородами и карбоновыми кислотами [345] Хромато масс спектрометр, соединенный с микропроцессором, позволяет детектировать все соединения в процессе одного хроматографического разделения без участия оператора Чувствительность метода ИМХ слишком мала для прямого обнаружения фор мальдегида в образцах воздуха при его концентрации менее 10 % Кроме того при анализе формаль дегида определенную ошибку вносят присутствующие в воздухе пары воды Была предложена [346] чувствительная ме тодика определения формальдегида в воздухе с помощью [c.144]


    Содержание непредельных, аренов, органических кислот и тиолов можно определить методами спектрального анализа. Жидкостную хроматографию с успехом можно использовать для быстрого определения сераорганических соединений и необходимых групп углеводородов. Среди многих инструментальных методов анализа эти методы, вероятно, наиболее приемлемы. К сожалению, спектральные и хроматографические методы анализа для контроля качества топлив и масел применяются недостаточно, хотя аналитические возможности этих методов довольно велики. Съемка спектров осуществляется в течение нескольких минут, практически сразу их можно расшифровать и получить необходимую информацию. [c.327]

    Методы определения. В воздухе. Хроматографический метод на бумаге, основанный на переводе С. в нелетучее ртуть-органическое производное при взаимодействии с ацетатом ртути и выделении полученного соединения с применением способа нисходящей хроматографии минимально определяемое количество 1 мкг ( Тех. уел... ). Колориметрическое определение по образованию окрашенного в желтый цвет продукта реакции С. с концентрированной Н2504 сравнение интенсивности желтой окраски со стандартной шкалой [47]. Метод ТСХ с применением отражательной спектрофотометр и и основан на переведении С. в ртутьорганическое соединение при взаимодействии с ацетатом ртути в среде этанола и последующем хроматографировании предел обнаружения в анализируемом объеме пробы 1 мкг, в воздухе 1 мг/м (при отборе 3 л воздуха) погрешность определения 10 %, диапазон измеряемых концентраций 1—10 мг/м [411. Метод ГЖХ отбор проб без концентрирования предел обнаружения в анализируемом объеме пробы 0,004 мкг диапазон измеряемых концентраций 1,7—17,0 мг/м [41]. В почве. Метод ГЖХ на приборе с пламенно-иониЗационным детектором — чувствительность 0,05 мкг— или с детектором по теплопроводности — чувствительность 0,01 мг (Даукаева). В к р о в и, Масс спектрометрический метод определяемые количества 0,5— 1 млн" (Вгос Ьег1). В биологических жидкостях. ГХ метод определения С., миндальной и фенилглиоксиловой кислот (Муравьева, Смоляр) чувствительность определения для фенилглиоксиловой кислоты 0,1 мг в 10 мл мочи и 0,25 мг в 1 мл крови для миндальной кислоты — 0,2 мг в 10 мл мочи и 0,5 мг в 1 мл крови предел обнаружения С. в крови 0,03 мкг, погрешность 1—3 %. Обзор методов определения С. в воздухе, определения С. и его метаболитов в биологических пробах ( Гиг. критерии... ). См. также Ксилолы. [c.199]


    Через несколько часов, когда можно ожидать разделения аминокислот, бумагу вынимают из ванночки и растворитель удаляют высуи иванием. После этого для лучшего разделения аминокислот лист бумаги поворачивают на 90° и снова помещают в ванночку и по бумаге пропускают другой растворитель. После вторичного пропускания растворителя бумагу обрабатывают каким-либо реактивом, дающим окрашивание при взаимодействии с аминокислотами, чаще всего нингидрином или изатином. На бумаге появляются окрашенные пятна, соответствующие отдельным аминокислотам. По месту положения пятен и интенсивности их окраски судят о наличии и содержании в гидролизате белка тех или иных аминокислот. Фотография хроматограммы показана на рисунке 21. Метод распределительной хроматографии на бумаге позволяет быстро и точно определить содержание аминокислот. В последние годы хроматографические методы успешно применяются для разделения и определения сахаров, органических кислот и ряда других соединений. [c.218]

    Близость химических свойств циркония и гафния во многом определяет специфику аналитических методов определения последнего. Для количественного определения гафния особое значение приобретают физические методы (рентгеноспектральные, спектральные и др.). Химические и физико-химические методы применяются в меньшей степени, так как в этом случае необходимо предварительное отделение гафния от сопутствующих элементов, в том числе и от циркония, что связано с большими трудностями. Для удаления циркония рекомендуется применять хроматографические, экстракционные, ректификационные и другие способы. Гравиметрические методы в настоящее время используются мало из-за длительности анализа. Значительное место в гравиметрических методах определения гафния и циркония и отделения их от других металлов занимают органические кислоты и их соли. Применение органических веществ позволяет повысить специфичность реакции на эти металлы. Больше внимания уделяется разработке быстрых и точных рентгеноспектральных, спектрографических и спектрофотометрических методов количественного определения гафния. [c.366]

    Хроматографические методы анализа связаны, главным образом,, с разделением, идентификацией и количественной оценкой различных классов органических соединений. В этой части речь пойдет об определении аминокислот, сахаров, высших жирных и летучих кислот. [c.562]

    Капиллярная ГХ может быть эффективно использована для определения цитологических жирных кислот, образующихся под действием бактерий [21]. Проводят сравнение хроматографических профилей бактериальных жирных кислот со стандартными профилями, хранящимися в памяти компьютера. Этот метод применим для всех чистых культур бактерий. По сравнению с традиционными методами микробиологической идентификации этот метод занимает меньше времени и более экономичен. Иа рис. 8-26 представлены хроматограммы градуировочного стандарта и образца бактерий. В принципе, оиисаииый метод может быть применен и в других областях, где требуется получить профиль метаболитов, например при определении стероидов или органических кислот в моче. [c.121]

    Для определения содержания органических кислот приведены два метода титриметрический — для определения общего содержания кислот и хроматографический — для раздельного определения кислот. [c.27]

    СКОС определение аспарагиновой кислоты в белках. И. И. Жуков и А. В. Маркович глубоко разработали теорию электродиализа и б связи с этим успешно применили метод электродиализа для разделения белков. Чрезвычайно много сделали советские ученые в разработке хроматографического анализа, открытого знаменитым русским ученым М. С. Цветом (1903 г.) и получившего за последние годы исключительно важное значение для разделения смесей аминокислот, углеводов, органических кислот, пигментов и многих других веществ в частности, необходимо отметить разработку теории молекулярной хроматографии М. М. Дубининым, ионообменной хроматографической адсорбции Е. Н. Гапоном, распределительной хроматографии Н. А. Фуксом и др. [c.10]

    Метод прямого анализа водных растворов является, несомненно, наиболее подходящим для определения органического углерода в водах. Описаны разные варианты методов, основанные на каталитическом окислительном сожжении органических веществ до углекислоты путем введения нескольких микролитров анализируемого раствора в нагретую до 850—900° С трубку с окисью меди (окислитель), восстановлении углекислоты до метана водородом в трубке над металлическим никелем и детектировании метана при помощи пламенно-ионизационного детектора. Чувствительность определения менее 1 мг л [10, 11]. При содержании в образце неорганического углерода органический углерод может быть определен но разности между содержанием общего углерода и углерода неорганического путем введения пробы в дополнительную колонку с носителем, пропитанным кислотой [11], либо после удаления неорганического углерода продуванием подкисленной пробы азотом [12]. Хроматографический прибор для анализа сточных вод, в котором реализован этот метод, описан в работе [13]. [c.178]


    Одновременно с достижениями в области промышленного применения редких элементов успешно развиваются и новые методы их анализа. Вероятно, наиболее важными из них являются хроматографические методы определения урана, тория, земельных кислот, полярография для урана, европия, иттербия, экстракция органическими растворителями д.ля скандия и урана и спектрофотометрия д. я редкоземельных элементов и платиновых металлов. Все эти методы включены в настоящее издание наряду с больишм числом усовершенствований в части классических методов анализа. Главы, посвященные редкоземельным металлам, торию, германию, ниобию и танталу, значительно переработаны главы, посвященные скандию, урану, рению и платиновым металлам, почти полностью написаны заново и содержат много совершенно новых аналитических методов [c.6]

    При проведении таких экспериментов в пробирку помещали 10 мл смеси, содержащей определенное число миллилитров 5- или 10%-ной желатины, насыщенного раствора нитрата бария и 0,1 раствора гидрата окиси аммония или 0,1 iV раствора уксусной кислоты. Во всех случаях суммарный объем был равен 10 мл. Отношение этих трех растворов соответственно изменялось по триангулярной диаграмме (метод Думанского). Вся диаграмма разбивалась на 36 точек, т. е. было приготовлено в каждом случае 36 различных смесей. Каждый опыт проведен в трех повторениях. В пробирку наливали 10. л приготовленной смеси и после застывания геля поверх него добавляли 1 мл разделяемой смеси солей органических кислот. После диффузии смеси 0,1 N растворов солей в гель наблюдалось образование двух последовательно расположенных хроматографических полос белого цвета, разделенных прозрачным промежутком геля [c.258]

    Ниже описаны отдельные типы сточных вод, их характеристики и оптимальные методики анализа. Стоки, попадающие в поверхностные воды, содержат бензин, керосин, топливные и смазочные масла, бензол, толуол, стирол, ксилол, жирные кислоты, фенолы, глицериды, стероиды, пестициды и металлорганические соединения. Перечисленные соединения составляют примерно 90% или выше от общего количества всех органических примесей (данные основаны на приблизительной оценке загрузки аналитической лаборатории). В числе других веществ, загрязняющих окружающую среду, можно назвать нитросоединения, асфальты, воска, твердые парафины, карбонильные и сернистые соединения, хлорированные углеводороды и бифенилы ( последние два типа соединений производятся промышленностью в больших количествах), а также соли трех- и многоосновных органических кислот. Методы газо-хроматографической идентификации этих соединений в данной главе подробно не рассматриваются, не потому, что это невозможно (напротив, такие анализы уже описаны), а потому, что природа и содержание подобных примесей для целей настоящего изложения имеют второстепенное значение [1—5]. В приведенном списке вещества-загрязнители расположены в соответствии с возрастающей трудностью их определения. Состав стоков завода, производящего органические растворители, проверить нетрудно. Однако гораздо труднее получить аналогичные результаты, анализируя канализационные воды в нескольких милях ниже, поскольку в этом случае примеси, сбрасываемые заводом, смешиваются с другими веществами и, вероятно, успевают прореагировать с некоторыми из них. В результате при любом анализе органических примесей в сточных водах мы можем узнать только о соединениях, присутствующих в пробе в момент анализа, но не о составе исходных стоков. [c.519]

    Наряду с исследованиями, цель которых — обнаружение и количественное определение различных соединений данного элемента как таковых, в хроматографических методах часто используются химические реакции, цель которых — получение производных, обладающих более благоприятными хроматографическими свойствами (образование хелатов металлов, превращение анионов или соответствующих кислот в органические производные, химические реакции для обнаружения ионов на тонкослойных пластинках и т. д.). Поэтому при разработке хроматографических методов значительное внимание должно уделяться химическим свойствам элементов. [c.11]

    Разновидностью хроматографического метода разделения веществ с помощью колонки, заполненной твердофазным наполнителем, является так называемая гельхроматография, в основу которой положен принцип молекулярного сита. Твердое вещество представляет собой органический полимер, который под действием растворителя набухает. При этом в его структуре появляются поры определенного размера, которые пропускают растворитель или растворенные в нем ионы либо молекулы с небольшим радиусом, но задерживают крупные молекулы, размер которых превышает радиус пор. Этот метод успешно используют для отделения, например, неорганических солей от больших органических молекул, таких, как протеины, гормоны, полисахариды, нуклеиновые кислоты и т. д. [c.416]

    Так, например, в работе [41] был развит метод, основанный на превращении воды в ацетилен в специальном реакторе с карбидом кальция, расположенном перед хроматографической колонкой. Конверсию воды в ацетилен проводили при 220° С в реакторе из пирекса (30 X X 1,8 см), заполненном смесью карбида кальция (30 меш) и стеклянных шариков (диаметр 0,5 мм), в отношении 1 2. Метод был применен для анализа водных растворов альдегидов, эфиров и спиртов. Органические кислоты удерн-сиваются в реакторе, и поэтому такой метод не может быть применен для их определения. [c.69]

    Отличительной чертой хроматографических методов является возможность их широкого применения. Хроматография может быть использована ДЛЯ разделения как больших, так и малых количеств элементов. Она может быть с одинаковым успехом применена к органическим и неорганическим веществам, для больших и малых молекул, для анионов и катионов. Кроме того, имеется возможность применять разнообразшле растворители и элюенты. В области-аналитической химии хроматография открывает большие возможности для разделения редкоземельных металлов, для отделения ниобия от тантала, гафния от циркония и т. д. Она может приобрести также большое значение для упрощения некоторых продолжительных методов анализа. Так, например, при определении пятиокиси фосфора в апатите сначала из раствора - Саз(Р04)а извлекают хроматографически ионы Са +, а затем титруют освобожденную фосфорную кислоту. Техника хроматографии разнообразна, но для аналитических [c.183]

    Метод ХМС широко используется для идентификации жир ных кислот в биологических объектах Чаще всего кислоты для анализа переводятся в метиловые эфиры Однако масс спектры этих производных кислот характеризуются интенсивными пика ми в области низких массовых чисел, отражая, как правило, сложноэфирную группировку, а не структуру кислотного ради кала, поэтому они не обеспечивают надежной идентификации и достаточной чувствительности определения Было предложе но использовать ТБДМС эфиры жирных кислот, которые обла дают лучшими хроматографическими и масс спектральными характеристиками [140] Почти во всех масс спектрах этих производных максимальный пик отвечал иону (М — С4Нд)+, интенсивность этого пика была особенно высока в масс спек трах производных моно, ди и триненасыщенных органических кислот При анализе методом ИМХ предел обнаружения нахо дится на уровне ниже нанограммового [c.81]

    Современные схемы и методы выделения и концентрирования микропримесей органических соединений в воде и последующего их газо-жидростного хроматографического анализа описаны в обзоре [498]. Ниже приведены современные методы определения органических соединений в водах производства сырья (нефть и нефтепродукты), полупродуктов (жирные кислоты, спирты и др.) и отдельных классов анионоактивных, неионогенных и катионоактивных ПАВ и их смесей. [c.272]

    Н — вес материала, взятого для анализа (г) у — процент влаги в анализируемом веществе. Полученный препарат сырого жира может быть использован для дальнейших исследований. Он может быть подвергнут фракционированию на отдельные группы соединений, относящиеся к классу липидов (глицериды, жирные кислоты, лецитины, кефалины, стериды, инозит-фосфатиды, фосфатидные кислоты и др.). Такое фракционирование проводится на основании различной растворимости этих соединений в органических растворителях, а также при использовании хроматографических методов. Суммарный препарат жира или отдельные компоненты, входящие в его состав, используют также для более детальной йх химической характеристики определения кислотного числа, йодного числа, числа омыления, перекисного числа, а также определения углерода, водорода, фосфора и азота. [c.99]

    Широко распространены менее длительные способы выделения кислот из кислых экстрактов в виде свинцовых или бариевых солей [2—4]. Для получения свободных кислот раствор солей обрабатывают H2S или NajS с последующим отделением осадка сульфидов бария или свинца центрифугированием или фильтрацией. Выделенные тем или иным способом кислоты используют для количественного определения. Для продуктов, в которых преобладает какая-либо одна кислота, количество ее определяют одним из химических методов. Для продуктов, содержащих несколько кислот, удобнее использовать хроматографические методы, позволяющие одновременно определять несколько кислот. При этом вначале рекомендуется проводить качественное определение методами бумажной хроматографии [1, 7, 9]. Непосредственно количество отдельных органических кислот можно определять жидкостной (на силикагеле) [1, 5, 12], ионообменной [1, 10] или газожидкостной хроматографией в виде метиловых или лучше триметилсилановых производных [10]. Последний способ позволяет получать производные непосредственно из свинцовых или бариевых солей без выделения свободных кислот. [c.222]

    Литвинов Н.Р. - В сб.гТезисы докл.конференции по методам очистки газ.выбросов и промстоков от вредн.веществ,1967. Дзержинск,1967,267-271 Р1Хим, 1968,4И262. Хроматографическое определение органических примесей в сточной воде производства акриловой кислоты. [c.229]

    Определение органического углерода также давно уже является общепринятым методом. Первоначально применяли длительный процесс мокрого сжигания (с КМПО4, хромовой кислотой, позже— с персульфатом), лишь в последние годы в практику входят быстрые методы сухого сжигания в специальных приборах, в которых выпариваются очень малые объемы проб (20—50 мкл), а остатки затем сжигаются. Образующуюся при этом СО2 определяют либо с помощью ИК-спектрометрии, либо хроматографически с пламенно-ионизационным детектором после. каталитического гидрирования СО2 до метана. Эти методы предпочтительнее, благодаря быстрому и количественному протеканию реакции. Однако при этом определяется лишь углерод органических веществ, а водород не определяется, таким образом, точ- [c.46]

    Предложено несколько методов кондуктометрического определения серы в органических соединениях. В методе, предложенном Чумаченко и Алексеевой [54], проводят пиролиз серусодержащих органических соединений в присутствии предельного углеводорода (гексадекана) при 1100—1200 °С. При этих условиях находящаяся в веществе сера переходит в сероводород. Однако при пиролизе азотсодержащих соединений вместе с элементным азотом образуется циан. Для устранения мешающего влияния циана использовали хроматографическую колонку, заполненную хромосорбом W, промытым кислотой. В качестве подвижной жидкой фазы можно применять флексоль 8N8, трикрезилфосфат или карбо-вакс 1500, в качестве газа-носителя — аргон. Навеску вещества 1—2 мг и столько же предельного углеводорода вносят в реакционную камеру, наполненную аргоном, и проводят пиролиз. После пиролиза газообразные продукты распада вытесняют аргоном на хроматографическую колонку, а потом в кондуктомет-рическую ячейку, содержащую раствор нитрата ртути. Сопротивление раствора в ячейке измеряют до и после опыта. Приведены результаты анализов органических соединений с содержанием серы от 7 до 38%. [c.28]

    Жидкостную хроматографию использовали впервые как метод окончательного разделения больших количеств полярных, термолабильных и (или) нелетучих веществ, например органических кислот [27] и фосфорорганических пестицидов [28]. Газовая хроматография была первым методом окончательного разделения летучих и (или) неполярных соединений, однако высокоскоростные жидкостные хроматографические системы сразу иосле своего появления оказались конкурентоспособными по отношению ко всем видам ГХ [29]. Для качественной идентификации с применением ЖХ используют относительные удерживаемые объемы. Количественное определение обычно выполняют с помощьк> системы детектирования, помещенной на выходе хроматографической колонки. Новые высокоскоростные ЖХ-системы аналогично газохроматографическим системам соединяют в себе возможности качественного и количественного анализа. Бирн [18] приводит сведения о современных детекторах для высокоскоростных систем, таких как детектор, измеряющий коэффициент преломления, и ультрафиолетовый детектор, в котором используется селективное поглощение [c.405]

    В условиях дорожных испытаний, проводившихся восьмичасовыми этапами, отбирали пробы выхлопных газов, пропуская через специальную конденсирующую систему 19, 8 выхлопных газов. Конденсирующая система состояла из устройства для отдельных углеродистых частиц и воды и трех ступеней охланедения ири 0°, —25° и —65°. После отбора пробы конденсирующую систему направляли в лабораторию, где под вакуумом разделяли конденсат и анализировали полученные фракции масс-снектро-метром. В воде, содержащейся в выхлопных газах, количественно определяли альдегиды и кетоны. Метод определения основан на получении производных 2,4-динитрофенилгидразина и соответствующих альдегидов и кетонов и хроматографическом разделении их на индивидуальные соединения. Полученные низкомолекулярные соединения идентифицировали путем определения точек плавления и инфракрасных спектров поглощения. Высокомолекулярные соединения хроматографически разделяли на группы алифатических и ароматическйх альдегидов и кетонов. Кроме того, в воде определяли содержание органических кислот и нитратов. Кроме воды и газа, в конденсате были найдены высокомолекулярные органические соединения, состоявшие из несгоревшего топлива, полициклических ароматических соединений (присутствие 3,4-бензпирена не обнаружено) и окисленных углеводородов (альдегиды, кетоны, небольшое количество органических кислот). [c.205]

    Domig D.-Пат.ГДР 120772,заявл.22.08.73,№173018,опубл.5.07.76 РЮСим,1977, 24Г317П. Метод хроматографического определения ароматических карбоновых кислот. (Определение примесей в терефталевой кислоте методом ГЖХ продуктов метилирования. НФ смесь ПЭГ, полярного силикона и щелочной соли органической кислоты на хромосорбе, детектор планенно-ионизационный.) [c.304]

    Таким путем удается добиться и разделения сахаров. Хроматография на бумаге была применена для качественного анализа редуцирующих сахаров в таких разнообразных материалах,. как яблочный сок, яичный белок и кровь [49, 216]. Для локализации положения отдельных сахаров на бумаге был применен аммиачный раствор окиси серебра, хотя в более поздней работе указывается, что флуоресценция, появляющаяся после конденсации редуцирующего сахара с ж-фенилендиамином, дает более надежные результаты. Как силикагель, так и фильтровальная бумага были применены для хроматографического разделения органических кислот, выделенных из фруктов [99, 139]. На этом же принципе основано определение молочной кислоты в молоке и янтарной — в яичных продуктах [60]. Особый интерес для биохимика представляет применение хроматографии на бумаге для разделения пуринов, пиримидинов и нуклеозидов из гидролизата нуклеиновой кислоты [134]. Удалось улучшить метод определения витамина В в рыбьих жирах и продуктах облучения эргостерина, основанный на измерении характерной абсорбции в ультрафиолетовом свете или интенсивности окраски производных с треххлористой сурьмой точность определения была значительно повышена после хроматографического удаления примесей, мешающих определению [79, 95]. [c.164]

    Среди таких методов значительное место заняла ионная хроматография — относительно молодой, но очень эффективный гибридный метод анализа. Гибридный, потому что он позволяет и разделять сложные смеси веществ, находящихся в ионной форме, и определять их содержание другими словами, ионная хроматография, как и прочие современные хроматографические методы, одновременно является и методом разделения, и методом определения. Кроме того, этот метод позволяет определять неорганические анионы (это вообще лучший метод определения анионов), органические кислоты и основания, катионы щелочных, щелочноземельных и переходных металлов разработаны приемы определения ряда тяжелых токсичных металлов. Интенсивно развиваются примыкающие к ионной хроматографии методы ион-парной и ион-эксклюзионной хроматографии. Ионной хроматографии посвящены сотни публикаций, в том числе несколько книг, ряд фирм изготавливает ионные хроматографы. Однако применение этого метода в анализе вод ранее не было обстоятельно рассмотрено. Было стремление осветить и оощпе основы метода, и его приложения как средства анализа вод различного типа. При этом авторы опирались на публикации по ионной хроматографии, появившиеся в основном до конца 1986 г. В какой-то степени в книге нашли отражение и результаты собственных исследований авторов, проводившихся на химическом факультете в Московском государственном университете с 1980 г. [c.3]

    Для продуктов, в которых преобладает какая-либо одна кислота, количество ее определяют одним из химических методов. Для продуктов, содержащих несколько кислот, целесообразнее использовать хроматографические методы, позволяющие одновременно определять несколько кислот. При этом вначале рекомендуется проводить качественное определение методами бумажной хроматографии [1, 7, И]. Непосредственно количество отдельных органических кислот можно определять жидкостной (на силикагеле) [1, 6, 14], ионообменной [1] или газожидкостной хроматографией в виде метиловых или лучше триметилсилановых производных [5, 12]. Последний способ позволяет получать производные непосредственно из свинцовых или бариевых солей без вьщеления свободных кислот. [c.336]

    Газовая хроматография является одним из лучших методов разделения и определения эфиров, поскольку эфирная группа малополярна и устойчива к нагреванию. Метиловые эфиры жирных кислот с большим числом углеродных атомов ( 12— is) легко разделяются на хромосорбе R и целите 545, используемых в качестве носителя, которые предварительно обрабатывают ди-метилхлорсиланом, а затем наносят поливинилацетат [205].Для разделения метиловых эфиров кислот, входящих в состав канифоли, предложено использовать в качестве неподвижной фазы диэтиленгликольсукцинат [206]. Фуназака и др. [207] описали экспрессный хроматографический метод отделения эфиров фталевой кислоты от углеводов, органических кислот и ртутьоргани-ческих соединений. [c.477]

    Недавно [90, 91] разработан новый метод изучения кинетики массопередачи в течение короткого периода времени (5-10 —30 с) после осуществления контакта фаз. В дальнейшем этот метод был широко использован авторами для определения значения ПС при реэкстракции минеральных кислот [91, 92] и нитратов некоторых металлов из нейтральных алкилфосфатов [93]. Метод основан на измерении электропроводности слоев водной фазы, прилегающих к поверхности фазового контакта, в процессе массопередачи. Водный раствор наносится на полоску хроматографической бумаги. Закрепленная таким образом водная фаза вводится в объем органической фазы за время менее 5-10 с. Концентрацию вещества в водной фазе отмечают путем измерения электрического сопротивления полоски. Изменение электрического сопротивления в результате массопередачи приводит к разбалансу моста, сигнал разбаланса регистрируется осциллографически. Метод особенно удобен тогда, когда лимитирующая фаза — органическая, а вещество переходит в водную фазу. Совсем недавно [93] авторы предложили модифицированный метод, в котором устранен твердый носитель. Найденные обоими методами значения ПС находятся в очень хорошем соответствии. [c.396]

    Близкий по идее метод [66] применен для определения селена в теллуре. Образец металла растворяют в разбавленной вдвое царской водке и добавляют подкисленный раствор 4-фенил-о-фенилендиамина. Образовавшийся 5-нитропиазселенол определяют хроматографически на колонке с силиконовым эластомером SE-30 при 200 °С, детектируя электронно-захватным детектором органическое производное селена. Аналогичные методы были применены для анализа селена и ртути в чистой серной кислоте и морской воде. [c.240]


Смотреть страницы где упоминается термин Определение органических кислот хроматографическим методом: [c.111]    [c.233]    [c.35]    [c.343]    [c.85]    [c.344]    [c.8]    [c.445]    [c.87]    [c.253]    [c.155]    [c.142]   
Смотреть главы в:

Химико-технический контроль гидролизных производств Издание 2 -> Определение органических кислот хроматографическим методом




ПОИСК





Смотрите так же термины и статьи:

Кислота методы

Кислота органическая

Методы хроматографические



© 2025 chem21.info Реклама на сайте