Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Колебания молекулярные переходы

    Спектроскопия комбинационного рассеяния (КР), так же как ИК Спектроскопия, имеет дело с колебательными и вращательными переходами. Однако природа возникновения спектров КР иная. Данные спектроскопии КР часто дополняют информацию, полученную при изучении ИК-спектров, что расширяет сведения о строении химических соединений. Исходя из классических представлений рассеяние света возникает вследствие колебаний молекулярного диполя, индуцированного переменным электрическим полем падающей на вещество электромагнитной волны. Правилами отбора предусматривается, что колебание активно в спектре КР, если оно сопровождается изменением поляризуемости молекулы, тогда как условием возникновения ИК-спектра поглощения является изменение собственного дипольного момента при колебании молекулы. [c.170]


    Символы различных неприводимых представлений (типов симметрии) точечных групп используются для многих целей и в том числе для обозначения колебаний, электронных переходов и симметрии молекулярных орбиталей. При обозначении молекулярных орбиталей приняты следующие условия (в случае необходимости следует рассмотреть таблицы характеров, данные в приложении в конце книги)  [c.135]

    Исходя из результатов, полученных в разделах 4А — 4В, мы можем сразу же написать правила отбора для основных колебаний молекулярного кристалла, обладающего трансляционной симметрией. В ИК- и КР-спектрах активны только те переходы, для которых выражения (76) или (77) полностью симметричны. Поскольку основное состояние [c.99]

    Рамановские спектры наблюдаются для тех молекулярных соединений, у которых при колебаниях, соответствующих переходу с волновым числом Ау, изменяется поляризуемость. Поляризуемость— способность к наведению диполя под действием электромагнитного поля фотона, попадающего в молекулу. При этом молекула не обязательно должна быть диполем, тогда как для поглощения инфракрасного излучения молекула должна обладать постоянным дипольным моментом, следовательно, частоты, наблюдаемые в ИК-спектре, могут не проявиться в ра- [c.169]

    Возможен, например, следующий молекулярный механизм возникновения изобарической флуктуации плотности. Избыток энергии колебательного движения сложной молекулы, ассоциата или комплекса, перераспределяясь по степеням свободы внутримолекулярных колебаний, спонтанно переходит в кинетическую энергию трансляционного движения молекул жидкости. Возникает локальный разогрев системы, сопровождающийся возникновением температурных волн и изобарических флуктуаций плотности. [c.30]

    Спектры электромагнитного излучения, испускаемого, поглощаемого и рассеиваемого веществом, изучает раздел физики — спектроскопия. Квант поглощаемой или испускаемой веществом энергии соответствует изменению энергии при каком-либо единичном акте атомного или молекулярного процесса (табл. 11). Наиболее коротковолновое излучение (у-излучение) соответствует ядерным процессам. Квантовые переходы внутренних электронов атомов и молекул сопровождаются рентгеновским излучением. Электромагнитное излучение ультрафиолетовой и видимой области спектра отвечает квантовым переходам внешних (валентных) электронов. Колебанию атомов в молекулах отвечает инфракрасное излучение, вращению молекул — дальнее инфракрасное излучение, спиновому переходу элект-1)онов и ядер — радиоизлучение. [c.140]


    При электронных переходах изменяются основные собственные частоты колебаний молекулы. Обозначим частоту в основном электронном состоянии через ш" и в возбужденном — через ш. Исходя из теории молекулярных колебаний, сумму электронной и колебательной энергии в этих состояниях можно определить ио следующим формулам  [c.63]

    Схема переходов молекулы при поглощении квантов света и при переходе в низшее энергетическое состояние с излучением квантов (рис. 10) поясняет появление линий в спектре комбинационного рассеяния. Измерение частот линий в спектре комбинационного рассеяния (стоксовых линий) дает возможность определять частоту колебания атомов в молекуле, т. е. молекулярную константу  [c.17]

    Поместив источник и образец в твердые кристаллические решетки, мы не оказали воздействия на переходы без отдачи для всех ядер, но увеличили вероятность перехода без отдачи. Причина этого заключается в том, что энергия у-лучей может привести к возбуждению колебаний решетки. Эта энергия влияет тем же самым образом, что и энергия отдачи в газе, т. е. она приводит к снижению энергии излучающей частицы и увеличению энергии поглощающей частицы. Некоторые характеристики кристалла и условия эксперимента для излучения и поглощения не меняют исходного колебательного состояния решетки, т.е. будут удовлетворять условиям перехода без отдачи. Следует подчеркнуть, что эти условия определяют просто интенсивность наблюдаемых линий, поскольку этим эффектом задается только число частиц с подходящей энергией. Нас не интересует абсолютная интенсивность полос, поэтому здесь не обсуждается этот аспект МБ-спектроскопии. Однако упомянем, что для некоторых веществ (обычно твердых молекулярных веществ) решеточные и молекулярные колебания возбуждаются до такой степени, что при комнатной температуре происходит только небольшое число переходов без отдачи и спектр не наблюдается. Часто спектр регистрируют путем значительного понижения температуры образца. [c.287]

    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]

    Спектры поглощения или испускания молекул состоят из отдельных полос, причем каждая полоса имеет большое число линий. Отдельные полосы образуют закономерные группы, которые могут повторяться в различных частях спектра, давая систему групп. Такое наличие тройных закономерностей в молекулярных спектрах (линии, полосы, группы полос) отвечает трем видам движения в молекулах вращению молекул, колебанию ядер и движению электронов. Энергия молекул складывается из трех видов энергии энергии вращения молекул, энергии колебания ядер и энергии движения электронов. При этом наименьшей оказывается энергия вращения цр молекул, несколько большей — энергия колебания ядер Е ая и наибольшей — энергия электронных переходов Соотношение между этими видами энергии, примерно, следующее Еэ Е оа-Еър = 1000 100 1. Наименьшей энергией молекула обладает в невозбужденном состоянии. Прн этом электроны находятся на самых низких [c.64]


    Необходимо раскрыть содержание термина энергия связи . Схема потенциальной энергии произвольной А—В-связи в многоатомной молекуле (рис. 4.1) служит для объяснения данного понятия. Для многоэлектронных атомов, как было отмечено выше, следует учитывать, что валентное состояние может лежать выше соответствующего основного состояния. Если в таком случае два атома находятся в своих основных состояниях, то никакой связи между ними возникнуть не может если же они сближаются друг с другом, то их потенциальная энергия будет возрастать. На определенном межатомном расстоянии потенциальная энергия системы будет приближаться к энергии атомов в валентных состояниях (рис. 4.1, пунктирная линия), и может произойти переход к связанному состоянию. Поэтому внутренняя энергия связи Е равна разности энергий основного молекулярного состояния и валентного состояния, соответствующего бесконечному расстоянию между атомами. Энергия диссоциации О меньше Е на величину энергии нулевых колебаний /lv/2 н на сумму Р энергий перехода, гибридизации, полярного и стерического упорядочения, необходимых для достижения валентного состояния. Разность между энергией нулевых колебаний и максимумом кривой потенциальной энергии равна [c.100]

    Таким образом, стеклообразное состояние является неким - заморожен-ным , кинетически стабильным, но термодинамически неравновесным состоянием, а не новой фазой, отличной от жидкой. Наблюдаемые температурные кривые различных температурных коэффициентов (рис. 11.7) вполне объяснимы с молекулярно-кинетической точки зрения [39, с. 27 40, с. 24 42, с. 69—73]. Так, в стеклообразном состоянии поглощаемая при повышении температуры теплота идет только на увеличение интенсивности колебаний частиц, и теплоемкость определяется колебательными степенями свободы. В структурно-жидком состоянии, к которому относятся и высокоэластическое, и вязкотекучее деформационные состояния, при нагревании затрачивается добавочная теплота, идущая на увеличение внутренней энергии при переходе от низкотемпературной плотной к высокотемпературной рыхлой структуре. Вследствие этого теплоемкость полимерного стекла меньше теплоемкости полимера в структурно-жидком состоянии. Поэтому на температурной кривой теплоемкости при переходе от жидкости к стеклу наблюдается падение теплоемкости (кривая I, рис. П. 7). Тепловое расширение стекла в твердом состоянии происходит только аа счет увеличения ангармоничности колебаний. Но в структурно-жидком состоянии объем при нагревании дополнительно уве- [c.88]

    Нагляднее всего суть механического стеклования иллюстрируется при рассмотрении положения стрелки действия относительно оси релаксационного спектра. Рассматривая жидкость как упруго-вязкую максвелловскую среду, мы положением стрелки действия определяем, будут ли доминировать при отклике на приложенную механическую нагрузку упругие или вязкие компоненты. Этот переход от одной формы ответа к другой происходит примерно при условии 0 = т, где время молекулярной релаксации, определяемое формулой (П. 1), 0 —период колебаний (период действия силы) .  [c.95]

    В аналитической оптической молекулярной спектроскопии наблюдают и исследуют аналитические сигналы в области 100— 800 нм, вызванные электронными переходами внешних валентных электронов. Поглощение излучения в ИК- и микроволновой области, связанное с изменением вращения и колебания молекул, часто используют в целях -идентификации различных соединений. Методы аналитической оптической молекулярной спектроскопии удобны для решения практических задач широкого профиля и имеют наибольшее значение в аналитической химии. [c.52]

    Возрастание энтропии связано с самопроизвольным переходом вещества из состояния со строго упорядоченным расположением частиц (в кристалле) в состояние с большим (в жидкости) и наибольшим (в газе) молекулярным беспорядком. Максимальной энтропии отвечало бы состояние газа с совершенно равномерным распределением хаотически движущихся частиц по объему. Опыт, однако, показывает, что в реальных системах равномерное распределение частиц осуществляется лишь как среднее во времени. В каждый же данный момент, в результате беспорядочного движения молекул, имеются местные отклонения от равномерного распределения (флуктуации) временное увеличение концентрации молекул в одних участках объема и уменьшение в других. Поэтому можно говорить о более или менее вероят Ных состояниях системы. В частности, состояния с более равномерным распределением частиц более вероятны по сравнению с состояниями, в которых наблюдаются значительные статистические колебания в распределении частиц. [c.99]

    Оптическая молекулярная спектроскопия наблюдает переходы электрических диполей между дискретными энергетическими уровнями. Из возможных видов движения молекул — вращение, колебания ядер и возбуждение электронов — особенно большое аналитическое значение имеют два последних. Частота колебаний ядер (V, 10 Гц) мала по сравнению с частотой возбуждения электронов ( е1 Гц), поэтому эти явления можно рас- [c.218]

    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]

    Теоретическое определение возможной поляризации полос, являющихся компонентами чисто электронного перехода в кристалле бензола, было произведено А. С. Давыдовым [35] на основании созданной им теории экситонного поглощения молекулярных кристаллов [15]. Давыдов исходил из того, что четыре молекулы бензола, содержащиеся в элементарной ячейке кристалла, расположены таким образом, что их плоскости приблизительно параллельны оси Ь . Отсюда, если принять, что симметрия возбужденных уровней молекулы бензола может быть в, , В2и или (см. подраздел 4 настоящей главы), то можно получить такие результаты 1) в кристалле запрещенный молекулярный переход на уровень оказывается разрешенным и должен проявиться в направлении электрического вектора световой волны вдоль оси Ь кристалла 2) запрещенному молекулярному переходу на уровень в, в кристалле соответствует дублет, одна из компонент которого имеет колебания электрического вектора вдоль оси с, другая— вдоль оси а кристалла 3) разрешенный двукратно вырожденный молекулярный терм, соответствующий переходу на уровень в кристалле, распхепится и должен проявиться в виде триплета с компонентами по всем трем осям кристалла. [c.61]

    Значения Un,m в уравнении (7.5) означают уаредне-ние ио всем молекулярным движениям ((колебаниям, конформационным переходам). Результатом усреднения будет новый (уоредненный) опин-гамильто(н1иа(н Н = = ,. для которого будем. иметь я 2я [c.220]

    Под действием поля световой волны происходит смещение зарядов — заряженных частиц друг относительно друга — в молекулах, составляющих среду. Эти колебания создают, в свою очередь, электромагнитное поле, накладывающееся на первоначальное, в результате чего возникает результирующая волна, отстающая по фазе от исходной. Это приводит к изменению (уменьшению) ско-рости рагпрпгтрянения световой волны при переходе от вакуума к конденсированной среде. Если частота колебаний световой волны совпадает с частотой собственных колебаний молекулярных осцилляторов, в последних возбуждаются устойчивые колебания, на которые затрачивается энергия световой волны. Это приводит к ее затуханию, т. е. к уменьшению интенсивности- проходящего через среду света. Математически затухание световой волны выражают введением в выражение (1.94) комплексного показателя преломления Я  [c.22]

    Во втором случае, который соответствует более слабой связи между молекулами, скорость переноса энергии возбуждения достаточно мала для того, чтобы ядра, а возможно, и сами молекулы, успели занять новое положение равновесия. При этом перенос энергии от одной молекулы к другой сопровождается проходящей через кристалл волной деформации. Такой механизм очень похож на механизм, который, по нашему предположению, может играть важную роль в стопочных системах, например в молекуле ДНК. Однако поскольку в последнем случае система обладает гораздо меньшей жесткостью, чем истинный кристалл, деформации могут быть еще значительнее. Следовательно, в промежутках между передачей энергии от молекулы к молекуле часть ее превращается в энергию колебаний. Вскоре оставшейся электронной энергии становится уже недостаточно для возбуждения соседней молекулы и она захватывается какой-либо отдельной молекулой, которая либо излучает ее, либо переходит в основное состояние в результате ряда последовательных безизлучательных переходов. Если связь между молекулами достаточно слаба, то такой процесс часто может совершиться прежде, чем вообще произойдет какой-либо перенос энергии. Таким образом, переходы подобного типа гораздо ближе к истинным молекулярным переходам, чем экситон-ный механизм переноса энергии в первом случае. Спектр поглощения рассматриваемых систем может несколько отличаться от спектра изолированных молекул, но обычно спектральные полосы только немного уширяются и не смещаются заметным образом. [c.160]

    Вязкость полимера, находящегося в жидкой фазе (т. е, при отсутствии дальнего порядка во взаимном расположении макромолекул), зависит от его молекулярного веса и полярности звеньев. При предельно высокой вязкости полимеры, находящиеся в жидкой фазе, могут быть твердыми. В этом случае их обычно называют аморфными. Плотность упаковки макромолекул аморфных полимеров значительно ниже, чем кристаллических. Наличие большого свободного объема обусловливает более интенсивные колебательные движения. С повышением температуры интенсивность колебательных движений атомов возрастает настолько, что их колебания преобразуются в колебания групп, переходят в совместные колеба- ния звеньев и затем сегм ентов. Результатом сегментальной подвижности является смена конформаций макромолекул. На каждом этапе меняется физическое состояние аморфного полимера или аморфной фазы в аморфно-кристаллическом полимере. Из хрупкого, легко разрушающегося стекла полимер превращается в стекло упругое, а с наступлением сегментальной подвижности — в высокоэластичный аморфный полимер. Аморфные линейные полимеры в зависимости от температуры могут находиться в трех физических состояниях стеклообразном, высокоэластическом и вязкотекучем. Каждый переход из одного физического состояния в другое происходит в пределе одной и той же фазы и не сопровождается [c.43]

    Вероятность неупругого перехода увеличивается с увеличением жесткости столкновения. Эта жесткость измеряется отношением времени колебания к времени столкновения tJx ow = Уц/2л а, где ст — сфера действия молекулярных сил , v — частота осциллятора, а Vr — относительная скорость в момент столкновения. [c.153]

    Формула (146) основана на предположении, что при образовании активированного комплекса из соединяющихся радикалов теряются три трансляционные и приобретаются две вращательные степени свободы около новой связи [300]. Как уже упоминалось, учет противодействия поляризационных и центробежных сил, составляющих сущность взаимодействия сближающихся радикалов, и приравнивание их позволяют выполнить расчет ротационной суммы состояний посредством вычисления энергии вращения радикалой. В реакции рекомбинации система теряет шесть трансляционных и шесть вращательных степеней свободы радикалов и приобретает три трансляционные,- три ротационные и шесть вибрационных степеней свободы, включая одно заторможенное вращение, новой молекулы. При этом шесть трансляционных движений радикалов переходят в три трансляции, два вращения и одно симметричное колебание новой молекулы шесть ротаций радикалов переходят в аксиальное вращение и пять вибраций новой молекулы. Поэтому при образовании активированного комплекса шесть трансляций радикалов переходят к новым степеням свободы, в то время как шесть ротаций радикалов не преобразуются, или, другими словами, время молекулярных столкновений короче, чем время молекулярного вращения. [c.235]

    Инфракрасные спектры молекул — результат энергетических переходов между различными колебательными, вращательными и реже электронными уровнями под действием электромагнитного излучения. Эти переходы значительно различаются по энергиям пр шерно от 0,4 до 140 кДж/моль. Соответственно различают ближнюю ИК-область в диапазоне примерно от 0,8 до 2,5 мкм (12 500—4000 см- ), в которой наблюдаются электронные и колебательные переходы основную или среднюю ИК-область от 2,5 до 16 мкм (4000—625 см ), связанную в основном с колебаниями модекул, и дальнюю, или длинноволновую, ИК-область от 16 до 200 мкм (625—50 см- ), в которой наблюдаются вращательные пе-ре оды, колебания в тяжелых молекулах, в ионных и молекулярных кристаллах, некоторые электронные переходы в твердых тела , крутильные и скелетно-деформационные колебания в сложных молекулах, например в биополимерах. В настоящее время наибольшее развитие получила спектроскопия в средней ИК-области, в ко орой работает большинство серийных приборов. [c.199]

    С чисто релаксационных позиций для жесткоцепных полимеров, характерно исчезновение полосы а-перехода на релаксационном спектре. На молекулярном уровне это означает переход от поворотно-изомерного механизма гибкости к ограниченным крутиль ным колебаниям относительно связей главной цепи. [c.283]

    Из упругого состояния полимер можно вновь перевести сначала в высокоэластическое, а затем и в вязкотекучее состояние либо увеличением периода действия силы 0 (или уменьшением частоты), либо уменьшением времени релаксации т, что достигается повышением температуры. Следовательно, природа перехода полимера из высокоэластического деформационного состояния в упругое, как и природа структурного стеклования, молекулярно-кинетическая и определяется теми же процессами молекулярных перегруппировок. Однако переход в упруготвердое состояние не связан с замораживанием структуры и происходит в структурно-жидком состоянии системы, т. е. выше Гс. Таким образом, под стеклованием в силовых полях или механическим стеклованием следует понимать переход полимеров из высокоэластического в упруготвердое состояние, не связанный с их структурным стеклованием. При охлаждении расплава полимера вначале происходит механическое стеклование, а затем и структурное. Учет различия между процессами механического и структурного стеклования позволяет устранить неясность в механизмах стеклования полимеров под действием внешних сил и при их отсутствии. Температуры структурного Гс и механического стеклования Гм независимы между собой, так как первая зависит от скорости охлаждения, а вторая —от времени действия силы 0 или частоты упругих колебаний V. [c.43]

    Шмидером и Вольфом еще в 1953 г. были опубликованы результаты исследований внутреннего трения полиизобутилена (ПИБ), НК, бутилкаучука и других линейных полимеров методом затухания свободных колебаний (на крутильном маятнике) в и1иро-ком интервале температур. Из их данных для ПИБ с молекулярной массой М=1,75-10 следует (рис. 5.7), что ниже температуры механического стеклования Гм = 227 К (а-переход) проявляются V- и Р-переходы, а выше нее при температурах 7 1 = 313 К, Гг—353 К, 7 з=388 К — еще три перехода, которые можно связать с проявлением трех Я-процессов. Этими же авторами для несшитого и слабо-сшитого НК также наблюдалось три максимума в области плато высокой эластичности (при 278, 298 и 333 К), а для бутилкаучука— два максимума (при 313 и 338 К). Для НК плато высокой эластичности простиралось от 233 до 423 К, а для бутилкаучука — от 243 до 363 К- Все это подтверждают приведенные выше результаты, полученные на основании расчетов релаксационных спектров эластомеров. [c.135]

    Тепловое расширение твердых тел связано с ангармоничностью колебаний атомов. В жидком структурном состоянии кроме колебательных степеней свободы имеются и другие виды молекулярной подвижности, приводящие к непрерывному изменению структуры (например, в ближнем порядке) и образованию флуктуаци-онного свободного объема. Поэтому тепловое расширение в жидком состоянии больше, чем в твердом, что хорошо иллюстрируется на полимерах при их переходе из стеклообразного в высокоэластическое состояние. [c.262]

    Линии колебательного спектра обусловлены переходами на более высокие колебательные энергетические уровни. В соответствии с уравнениями (1.62) и (1.64) переходы возможны для частот поглощенного излучения Vпoгл, кратных частоте молекулярных колебаний V  [c.52]

    Смысл преобразований Фурье легко понять, если вспомнить, что молекулярная интенсивность рассеяния представляет собой набор синусоид, отвечающих каждому межъядерному расстоянию и про-модулированных в первом приближении произведением зарядов соответствующих ядер. Анализ Фурье позволяет выделить эти синусоиды, каждую со своим весом , т. е. вкладом в общую интенсивность. При этом каждой синусоиде должен был бы соответствовать бесконечно узкий пик на кривой F(r) или F( r). EJ силу того, что Ar= i= onst (r i= onst), этот пик размазывается и для гармонических колебаний переходит в гауссову кривую, причем ширина этого пика прямо связана с амплитудой. [c.136]

    Тепловое деижение молекул веществ в жидком состоянии имеет сходство с их движением для веществ в кристаллическом и газообразном состояниях. В кристаллах тепловое движение молекул выражается в основном в колебаниях молекул относительно положений равновесия, которые во времени практически не изменяются. Тепловое движение молекул в газах — это в основном их поступательное перемещение и вращение, направления которых изменяются в соударениях. Движение молекул в жидком состоянии — это сочетание колебательного движения с поступательным перемещением. Колебательные процессы молекул в жидкости, как и в кристаллах, состоят в отклонениях от их положений равновесия. Но в жидком состоянии положения равновесия не фиксированы, а изменяются во времени. Если по соседству с молекулой имеется полость молекулярных размеров, то происходит переход из одного положения равновесия в другое он осуществляется скачком. Скачкообразное перемещение молекул обычно называют трансляционным движением. Оно является причиной текучести жидкости. Количественная теория трансляционного движения разработана советским ученым Я. И. Френкелем. Основное уравнение этой теории [c.227]


Смотреть страницы где упоминается термин Колебания молекулярные переходы: [c.183]    [c.99]    [c.54]    [c.416]    [c.341]    [c.561]    [c.18]    [c.200]    [c.42]    [c.341]    [c.561]    [c.95]    [c.242]    [c.152]    [c.42]    [c.138]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.723 ]




ПОИСК







© 2025 chem21.info Реклама на сайте